Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jul 29;78(Pt 8):855–859. doi: 10.1107/S2056989022006764

Crystal structure and Hirshfeld surface analysis of 2-azido-N-(4-fluoro­phen­yl)acetamide

Mohcine Missioui a, Walid Guerrab a, Abdulsalam Alsubari b,*, Joel T Mague c, Youssef Ramli a,
Editor: L Van Meerveltd
PMCID: PMC9361366  PMID: 35974836

The asymmetric unit consists of two independent mol­ecules differing in the orientation of the azido group. Each mol­ecule forms N—H⋯O hydrogen-bonded chains extending along the c-axis direction with its symmetry-related counterparts. The chains are connected by C—F⋯π(ring), C=O⋯π(ring) and slipped π-stacking inter­actions. A Hirshfeld surface analysis of these inter­actions was performed.

Keywords: crystal structure, azide, acetamide, hydrogen bond, Hirshfeld surface

Abstract

The asymmetric unit of the title compound, C8H7FN4O, consists of two independent mol­ecules differing in the orientation of the azido group. Each mol­ecule forms N—H⋯O hydrogen-bonded chains along along the c-axis direction with its symmetry-related counterparts and the chains are connected by C—F⋯π(ring), C=O⋯π(ring) and slipped π-stacking inter­actions. A Hirshfeld surface analysis of these inter­actions was performed.

1. Chemical context

Azides are a class of versatile organic compounds having the basic structure RN3 where R can be an alkyl, acyl or aryl group. They have found valuable applications in medicinal chemistry (Contin et al., 2019) and mol­ecular biology (Ahmed & Abdallah, 2019). On the other hand, amide bonds are a key structural unit in many physiologically active compounds and have ubiquitous presence in biopolymers such as proteins and glycoproteins (Cheng et al., 2016; Pattabiraman & Bode, 2011; Zheng et al., 2016). Acetamides are useful building blocks for the preparation of biologically active natural products, especially depsipeptide compounds. In particular, N-aryl­acet­amides are significant inter­mediates for the synthesis of medicinal, agrochemical, and pharmaceutical compounds (Valeur & Bradley, 2009; Allen & Williams, 2011; Missioui et al., 2021; Missioui et al., 2022a ,b ). They have been identified as inhibitors of me­thio­nine amino­peptidase-2 and HIV protease, display potent anti­tumor activity, and play an important role in medicinal chemistry. As a result of the significance of this core, and in a continuation of our research efforts to synthesize N-aryl­acetamide-based heterocycles (Missioui et al., 2020; Al-Taifi et al., 2021; Guerrab et al., 2021; Missioui et al., 2022c ,d ), we report here the synthesis, mol­ecular and crystal structures and a Hirshfeld surface analysis of the title compound. 1.

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules differing moderately in conformation and connected by a weak C15=O2⋯Cg1 inter­action [Cg1 is the centroid of the C1–C6 benzene ring; O2⋯Cg1 = 3.904 (2) Å, C15⋯Cg1 = 3.902 (2) Å, C15=O2⋯Cg1 = 80.88 (13)°] as shown in Fig. 1. The conformational difference is primarily in the orientation of the azide groups (Fig. 2). Thus the N3—N2—C8–C7 torsion angle between the planes defined by N1/C7/C8/O1 and C8/N2/N3/N4 is −106.1 (2)° while the corresponding dihedral angle in the other mol­ecule is −175.4 (2)°. The dihedral angle between the plane defined by N1/C7/C8/O1 and that of the C1-C6 ring is 21.85 (13)° while the corresponding angle (N7—N6—C16—C15) in the other mol­ecule is the same within experimental error. By comparison, in the p-tolyl analog (Missioui et al., 2022e ), which has three independent mol­ecules in the asymmetric unit, the dihedral angles between the N/C/C/O and C/N/N/N planes are 7.6 (2), 86.34 (19) and 7.03 (19)° while those between the N/C/C/O and phenyl ring planes are 24.2 (2), 22.58 (10) and 15.38 (10)°.

Figure 1.

Figure 1

The asymmetric unit with labeling scheme and 50% probability ellipsoids. The C15=O2⋯Cg1 inter­action is depicted by a dashed line.

Figure 2.

Figure 2

Overlay of the two mol­ecules in the asymmetric unit. The yellow mol­ecule contains O1 while the red one contains O2.

3. Supra­molecular features

In the crystal, the mol­ecule containing O1 is linked into chains extending along the c-axis direction by N1—H1⋯O1i hydrogen bonds [symmetry code: (i) x, −y +  Inline graphic , z +  Inline graphic ], while N5—H5A⋯O2i hydrogen bonds form parallel chains for the second independent mol­ecule (Table 1 and Fig. 3). The chains are linked by C4—F1⋯Cg1ii and C12—F2⋯Cg2iii [Cg2 is the centroid of the C9–C14 benzene ring; symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y + 1, −z + 2] inter­actions as well as by the C15=O2⋯Cg1 inter­action noted above and weak, slipped π-stacking between centrosymmetrically related C1–C6 benzene rings [centroid–centroid = 3.8661 (13) Å, slippage = 1.6 Å] (Table 1 and Fig. 4). For the related p-tolyl analog (Missioui et al., 2022e ) each independent mol­ecule forms chains with its symmetry-related counterparts through N—H⋯O hydrogen bonds. There do not appear to be significant inter­molecular inter­actions between the chains although it is possible that very weak C=O⋯π(ring) inter­actions exist.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.17 2.921 (2) 146
N5—H5A⋯O2i 0.86 2.13 2.885 (2) 146
C4—F1⋯Cg1ii 1.35 (1) 3.76 (1) 3.563 (2) 72 (1)
C12—F2⋯Cg2iii 1.36 (1) 3.98 (1) 3.942 (2) 79 (1)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Perspective view of the chain structure with N—H⋯O hydrogen bonds and C15=O2⋯Cg1 inter­actions depicted, respectively, by violet and light-blue dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

Figure 4.

Figure 4

Packing viewed along the c-axis direction showing the linking of chains via C—F⋯π(ring) (green dashed lines) and C15=O2⋯Cg1 (light-blue dashed lines) and slipped π-stacking (orange dashed lines) inter­actions. N—H⋯O hydrogen bonds and non-inter­acting hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, updated to March 2022; Groom et al., 2016) with the search fragment A gave eleven hits of which three contained the 2-azido­acetamide unit while 30 hits resulted from a search with fragment B, of which six contained the 2-azido­acetamide unit. 4.

In the first group, the aromatic ring has a –CO2Et group in the 2-position (ARAPIU: Yassine et al., 2016a ), the second has i PrS– groups in the 2- and 3-positions (CEMRUJ: Okamura et al., 2013) and the last has a –CO2 n Bu group in the 2-position (OVIBAY: Yassine et al., 2016b ). The six relevant structures in the second group include ones with an unsubstituted phenyl group (ASEDIO: Guerrab et al., 2021) and those with the 4-position containing –NO2 (QAGNOF: Missioui et al., 2020), HC≡C– (DAPYOM: Madhusudhanan et al., 2021), MeO– (TARHIH: Missioui et al., 2021) and 2-acet­oxy­methyl-3,4,5-triacet­oxy-tetra­hydro-2H-pyran-6-yl-O– (BEBPIJ: Cecioni et al., 2012). The sixth has Cl at the 4-position and a 2-chloro­benzoyl substituent in the 2-position (VIFVOX: Cortes Eduardo et al., 2012). In ARAPIU and OVIBAY, the amide hydrogens form intra­molecular N—H⋯O hydrogen bonds with the carboxyl oxygen while in CEMRUJ an intra­molecular inter­action of the amide hydrogen with the sulfur atom in the 2-position is postulated. Thus, none of these structures show the formation of chains as seen in the present case nor do any have more than one mol­ecule in the asymmetric unit. Among the others, ASEDIO has two independent mol­ecules in the asymmetric unit and it also, like QAGNOF and BEBPIJ, forms chains through N—H⋯O hydrogen bonds. In ASEDIO, the chains are connected by π-inter­actions between the terminal two nitro­gens of the azide group and a phenyl ring, while in QAGNOF the chains are connected by C—H⋯O and C—H⋯N hydrogen bonds. The remaining structures in the first group all contain the —N=N—C fragment while the remainder of the second group all contain triazoles as the N3-containing fragment and are not considered relevant to the present structure.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed with CrystalExplorer 21.5 (Spackman et al., 2021) with the details of the pictorial output described in a recent publication (Tan et al., 2019). Fig. 5 a and 5c, respectively, show the d norm surfaces of the mol­ecule containing O1 and that containing O2 plotted over the range −0.4316 to 1.3253 in arbitrary units while Fig. 5 b and 5d show the corresponding shape-index functions. In both, two adjacent mol­ecules that are part of the hydrogen-bonded chains are included with the N—H⋯O and C—H⋯O inter­actions shown by dashed lines. The pattern of orange and blue triangles indicative of a π-inter­action is clearly evident in the lower part of Fig. 5 b and corresponds to the C4—F1⋯Cg1 inter­action. This is less clear in Fig. 5 d but the data in Table 1 clearly support a similar inter­action for this mol­ecule. Fig. 6 presents fingerprint plots for the mol­ecule containing O1 with Fig. 6 a showing all inter­molecular inter­actions and Fig. 6 b–6f those delineated into N⋯H/H⋯N (34.3%), H⋯H (13.5%), O⋯H/H⋯O (12.2%), C⋯H/H⋯C (11.9%) and F⋯H/H⋯F (9.7%), respectively. The two spikes in Fig. 6 d primarily represent the N—H⋯O hydrogen bonds but their breadth at longer values of d i + d e than at the tips indicate the contributions from C—H⋯O hydrogen bonds. Fig. 7 shows the fingerprint plots for the mol­ecule containing O2 with Fig. 7 a showing all inter­molecular inter­actions and Fig. 7 b–7f those delineated into N⋯H/H⋯N (28.8%), H⋯H (18.2%), C⋯H/H⋯C (12.6%), F⋯H/H⋯F (12.6%) and O⋯H/H⋯O (11.6%), respectively. Although the ordering of inter­actions based on their percentage of the total is not the same as in the other mol­ecule, the percentages are not greatly different between the two and the corresponding plots are very similar type by type.

Figure 5.

Figure 5

The (a) d norm and (b) shape-index surfaces for the mol­ecule containing O1, and the (c) d norm and (d) shape-index surfaces for the mol­ecule containing O2 together with the two closest mol­ecules of each type.

Figure 6.

Figure 6

Fingerprint plots for the mol­ecule containing O1 showing inter­molecular inter­actions. (a) all; (b) N⋯H/H⋯N; (c) H⋯H; (d) O⋯H/H⋯O; (e) C⋯H/H⋯C; (f) F⋯H/H⋯F.

Figure 7.

Figure 7

Fingerprint plots for the mol­ecule containing O2 showing inter­molecular inter­actions. (a) all; (b) N⋯H/H⋯N; (c) H⋯H; (d) C⋯H/H⋯C; (e) F⋯H/H⋯F; (f) O⋯H/H⋯O.

6. Synthesis and crystallization

2-Chloro-N-(4-fluoro­phen­yl)acetamide (0.011 mol), and sodium azide (0.015 mol) were dissolved in a mixture of ethanol/water (70:30) and refluxed for 24 h at 353 K. After completion of the reaction (monitored by thin-layer chromatography, TLC), the 2-azido-N-(4-fluoro­phen­yl)acetamide that precipitated was filtered off and washed with cold water. A portion of the product was dissolved in hot ethanol, the solution was filtered, and the filtrate was left undisturbed for 7 days to form colorless, thick plate-like crystals.

Yield 69%, m.p. 358–360K, FT–IR (ATR, υ, cm−1) 3254 υ (N—H amide), 1027 υ (N—C amide), 1660 υ (C=O amide), 3073 υ(C—Harom), 1175 υ(C—N), 2961 υ(C—H, CH2), 2109 υ (N3), 1H NMR (DMSO–d 6) δ ppm: 4.02 (2H, s, CH2), 6.93–7.11 (4H, m, J = 1.3 Hz, Harom), 10.05 (1H, s, NH), 13C NMR (DMSO–d 6) δ ppm: 51.18 (CH2), 131.47 (Carom—N), 113.90–120.86 (Carom); 165.71 (C=O); HRMS (ESI–MS) (m/z) calculated for C8H7FN4O 194.18; found 194.1165.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) while those attached to nitro­gen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C8H7FN4O
M r 194.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.8398 (7), 19.0207 (11), 9.3307 (5)
β (°) 112.378 (2)
V3) 1778.93 (18)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.47 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.75, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 12623, 3224, 2545
R int 0.034
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.162, 1.06
No. of reflections 3224
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.24

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022006764/vm2266sup1.cif

e-78-00855-sup1.cif (390.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006764/vm2266Isup3.hkl

e-78-00855-Isup3.hkl (257.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006764/vm2266Isup3.cml

CCDC reference: 2183049

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, YR; methodology, MM and AA; investigation, WG, MM; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

supplementary crystallographic information

Crystal data

C8H7FN4O F(000) = 800
Mr = 194.18 Dx = 1.450 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 10.8398 (7) Å Cell parameters from 8481 reflections
b = 19.0207 (11) Å θ = 2.3–68.3°
c = 9.3307 (5) Å µ = 1.00 mm1
β = 112.378 (2)° T = 296 K
V = 1778.93 (18) Å3 Thick plate, colourless
Z = 8 0.47 × 0.25 × 0.15 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3224 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2545 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4167 pixels mm-1 θmax = 68.5°, θmin = 4.4°
ω scans h = −12→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.75, Tmax = 0.87 l = −11→11
12623 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.4718P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3224 reflections Δρmax = 0.45 e Å3
254 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.0033 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.75450 (16) 0.51934 (8) 0.5506 (2) 0.1053 (6)
O1 0.37628 (16) 0.27865 (8) 0.11857 (16) 0.0704 (5)
N1 0.38854 (15) 0.30447 (8) 0.36111 (17) 0.0528 (4)
H1 0.357573 0.292390 0.429765 0.063*
N2 0.23792 (19) 0.15768 (11) 0.1118 (2) 0.0780 (6)
N3 0.1406 (2) 0.15796 (10) −0.0097 (2) 0.0673 (5)
N4 0.0587 (3) 0.15058 (17) −0.1238 (3) 0.1192 (11)
C1 0.48107 (18) 0.36020 (10) 0.4020 (2) 0.0494 (4)
C2 0.5065 (2) 0.40201 (11) 0.2943 (2) 0.0614 (5)
H2 0.461604 0.394037 0.188729 0.074*
C3 0.5994 (2) 0.45573 (12) 0.3457 (3) 0.0725 (6)
H3 0.617810 0.483972 0.274916 0.087*
C4 0.6637 (2) 0.46685 (11) 0.5015 (3) 0.0702 (6)
C5 0.6383 (2) 0.42787 (12) 0.6092 (3) 0.0675 (6)
H5 0.681609 0.437309 0.714400 0.081*
C6 0.54707 (19) 0.37419 (11) 0.5590 (2) 0.0569 (5)
H6 0.529166 0.346752 0.631306 0.068*
C7 0.34277 (18) 0.26790 (10) 0.2280 (2) 0.0517 (5)
C8 0.2417 (2) 0.21221 (12) 0.2228 (3) 0.0655 (6)
H8A 0.265262 0.191575 0.324847 0.079*
H8B 0.154166 0.233482 0.193244 0.079*
F2 1.2344 (2) 0.51818 (12) 0.9845 (3) 0.1438 (9)
O2 0.86230 (17) 0.27797 (9) 0.55142 (18) 0.0760 (5)
N5 0.87105 (16) 0.30220 (9) 0.79296 (17) 0.0546 (4)
H5A 0.839332 0.289670 0.860681 0.065*
N6 0.6704 (2) 0.18385 (13) 0.4918 (2) 0.0899 (7)
N7 0.5847 (2) 0.14001 (11) 0.4654 (2) 0.0670 (5)
N8 0.5019 (2) 0.10061 (15) 0.4215 (3) 0.0952 (8)
C9 0.96341 (19) 0.35814 (10) 0.8354 (2) 0.0536 (5)
C10 0.9881 (2) 0.40031 (12) 0.7283 (3) 0.0644 (5)
H10 0.943298 0.392439 0.622692 0.077*
C11 1.0801 (3) 0.45421 (14) 0.7798 (4) 0.0827 (7)
H11 1.098105 0.482845 0.709361 0.099*
C12 1.1445 (3) 0.46493 (15) 0.9364 (4) 0.0907 (8)
C13 1.1195 (3) 0.42528 (16) 1.0435 (3) 0.0904 (8)
H13 1.162906 0.434404 1.148769 0.108*
C14 1.0292 (2) 0.37163 (13) 0.9929 (3) 0.0713 (6)
H14 1.011492 0.343792 1.064795 0.086*
C15 0.82697 (19) 0.26628 (10) 0.6592 (2) 0.0539 (5)
C16 0.7313 (2) 0.20775 (12) 0.6530 (2) 0.0636 (5)
H16A 0.778421 0.169287 0.719587 0.076*
H16B 0.662987 0.224593 0.687969 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0904 (10) 0.0706 (9) 0.1334 (15) −0.0264 (8) 0.0185 (10) 0.0103 (9)
O1 0.0994 (11) 0.0750 (10) 0.0495 (8) −0.0053 (8) 0.0428 (8) −0.0079 (7)
N1 0.0596 (9) 0.0653 (10) 0.0411 (8) −0.0057 (7) 0.0275 (7) −0.0050 (7)
N2 0.0694 (11) 0.0849 (14) 0.0739 (13) 0.0008 (10) 0.0208 (10) −0.0273 (10)
N3 0.0781 (12) 0.0777 (12) 0.0517 (11) 0.0052 (9) 0.0310 (10) −0.0057 (8)
N4 0.1118 (19) 0.160 (3) 0.0615 (14) 0.0438 (19) 0.0055 (14) −0.0281 (15)
C1 0.0507 (10) 0.0542 (10) 0.0484 (9) 0.0043 (8) 0.0247 (8) −0.0003 (8)
C2 0.0684 (12) 0.0663 (13) 0.0534 (11) 0.0030 (10) 0.0276 (9) 0.0079 (9)
C3 0.0763 (14) 0.0614 (13) 0.0873 (16) 0.0025 (11) 0.0396 (13) 0.0198 (11)
C4 0.0589 (12) 0.0535 (12) 0.0897 (17) −0.0022 (9) 0.0186 (11) 0.0052 (11)
C5 0.0646 (12) 0.0637 (13) 0.0652 (13) −0.0030 (10) 0.0146 (10) −0.0036 (10)
C6 0.0621 (11) 0.0621 (12) 0.0484 (10) −0.0026 (9) 0.0231 (9) −0.0008 (8)
C7 0.0568 (10) 0.0593 (11) 0.0429 (9) 0.0079 (8) 0.0234 (8) −0.0033 (8)
C8 0.0651 (12) 0.0739 (13) 0.0620 (12) −0.0080 (10) 0.0292 (10) −0.0187 (10)
F2 0.1302 (15) 0.1254 (16) 0.174 (2) −0.0711 (13) 0.0557 (15) −0.0489 (15)
O2 0.1083 (13) 0.0784 (10) 0.0623 (9) −0.0201 (9) 0.0561 (9) −0.0135 (7)
N5 0.0633 (10) 0.0632 (10) 0.0437 (8) −0.0014 (7) 0.0276 (7) 0.0018 (7)
N6 0.1168 (17) 0.1021 (17) 0.0610 (12) −0.0385 (14) 0.0453 (12) −0.0225 (11)
N7 0.0765 (12) 0.0788 (12) 0.0501 (9) −0.0018 (11) 0.0292 (9) −0.0103 (9)
N8 0.0906 (15) 0.123 (2) 0.0712 (13) −0.0231 (15) 0.0300 (12) −0.0307 (13)
C9 0.0530 (10) 0.0571 (11) 0.0538 (10) 0.0049 (8) 0.0239 (8) −0.0017 (8)
C10 0.0691 (13) 0.0655 (13) 0.0654 (13) −0.0018 (10) 0.0334 (10) 0.0007 (10)
C11 0.0871 (17) 0.0708 (15) 0.106 (2) −0.0101 (13) 0.0538 (16) −0.0003 (14)
C12 0.0779 (16) 0.0806 (18) 0.112 (2) −0.0217 (13) 0.0351 (16) −0.0251 (16)
C13 0.0863 (17) 0.096 (2) 0.0774 (17) −0.0134 (15) 0.0181 (14) −0.0200 (15)
C14 0.0750 (14) 0.0762 (15) 0.0578 (12) −0.0036 (11) 0.0201 (10) −0.0046 (11)
C15 0.0615 (11) 0.0580 (11) 0.0472 (10) 0.0029 (8) 0.0262 (9) 0.0004 (8)
C16 0.0717 (13) 0.0722 (13) 0.0502 (11) −0.0077 (10) 0.0270 (9) −0.0008 (9)

Geometric parameters (Å, º)

F1—C4 1.353 (3) F2—C12 1.358 (3)
O1—C7 1.224 (2) O2—C15 1.225 (2)
N1—C7 1.343 (2) N5—C15 1.341 (2)
N1—C1 1.409 (2) N5—C9 1.411 (3)
N1—H1 0.8600 N5—H5A 0.8600
N2—N3 1.220 (3) N6—N7 1.202 (3)
N2—C8 1.455 (3) N6—C16 1.465 (3)
N3—N4 1.105 (3) N7—N8 1.120 (3)
C1—C2 1.389 (3) C9—C10 1.385 (3)
C1—C6 1.390 (3) C9—C14 1.391 (3)
C2—C3 1.386 (3) C10—C11 1.382 (3)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.368 (4) C11—C12 1.374 (4)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.359 (3) C12—C13 1.358 (4)
C5—C6 1.374 (3) C13—C14 1.368 (4)
C5—H5 0.9300 C13—H13 0.9300
C6—H6 0.9300 C14—H14 0.9300
C7—C8 1.511 (3) C15—C16 1.508 (3)
C8—H8A 0.9700 C16—H16A 0.9700
C8—H8B 0.9700 C16—H16B 0.9700
C7—N1—C1 127.90 (16) C15—N5—C9 127.53 (16)
C7—N1—H1 116.0 C15—N5—H5A 116.2
C1—N1—H1 116.0 C9—N5—H5A 116.2
N3—N2—C8 116.02 (19) N7—N6—C16 115.87 (19)
N4—N3—N2 171.2 (3) N8—N7—N6 171.2 (2)
C2—C1—C6 119.27 (18) C10—C9—C14 119.6 (2)
C2—C1—N1 123.51 (17) C10—C9—N5 123.08 (18)
C6—C1—N1 117.20 (17) C14—C9—N5 117.35 (18)
C3—C2—C1 119.3 (2) C11—C10—C9 119.4 (2)
C3—C2—H2 120.3 C11—C10—H10 120.3
C1—C2—H2 120.3 C9—C10—H10 120.3
C4—C3—C2 119.4 (2) C12—C11—C10 119.1 (3)
C4—C3—H3 120.3 C12—C11—H11 120.4
C2—C3—H3 120.3 C10—C11—H11 120.4
F1—C4—C5 118.5 (2) C13—C12—F2 119.4 (3)
F1—C4—C3 119.0 (2) C13—C12—C11 122.5 (2)
C5—C4—C3 122.4 (2) F2—C12—C11 118.2 (3)
C4—C5—C6 118.4 (2) C12—C13—C14 118.5 (3)
C4—C5—H5 120.8 C12—C13—H13 120.7
C6—C5—H5 120.8 C14—C13—H13 120.7
C5—C6—C1 121.11 (19) C13—C14—C9 120.9 (2)
C5—C6—H6 119.4 C13—C14—H14 119.6
C1—C6—H6 119.4 C9—C14—H14 119.6
O1—C7—N1 124.23 (19) O2—C15—N5 124.02 (19)
O1—C7—C8 122.15 (17) O2—C15—C16 121.86 (18)
N1—C7—C8 113.61 (16) N5—C15—C16 114.10 (16)
N2—C8—C7 110.25 (17) N6—C16—C15 107.63 (17)
N2—C8—H8A 109.6 N6—C16—H16A 110.2
C7—C8—H8A 109.6 C15—C16—H16A 110.2
N2—C8—H8B 109.6 N6—C16—H16B 110.2
C7—C8—H8B 109.6 C15—C16—H16B 110.2
H8A—C8—H8B 108.1 H16A—C16—H16B 108.5
C7—N1—C1—C2 22.8 (3) C15—N5—C9—C10 23.2 (3)
C7—N1—C1—C6 −158.76 (19) C15—N5—C9—C14 −158.3 (2)
C6—C1—C2—C3 1.5 (3) C14—C9—C10—C11 1.4 (3)
N1—C1—C2—C3 179.95 (18) N5—C9—C10—C11 179.8 (2)
C1—C2—C3—C4 −0.4 (3) C9—C10—C11—C12 −0.3 (4)
C2—C3—C4—F1 179.9 (2) C10—C11—C12—C13 −1.2 (5)
C2—C3—C4—C5 −1.3 (4) C10—C11—C12—F2 180.0 (2)
F1—C4—C5—C6 −179.38 (19) F2—C12—C13—C14 −179.6 (3)
C3—C4—C5—C6 1.8 (4) C11—C12—C13—C14 1.6 (5)
C4—C5—C6—C1 −0.6 (3) C12—C13—C14—C9 −0.5 (4)
C2—C1—C6—C5 −1.0 (3) C10—C9—C14—C13 −1.0 (4)
N1—C1—C6—C5 −179.57 (18) N5—C9—C14—C13 −179.5 (2)
C1—N1—C7—O1 −0.3 (3) C9—N5—C15—O2 −0.3 (3)
C1—N1—C7—C8 −178.95 (18) C9—N5—C15—C16 178.13 (18)
N3—N2—C8—C7 −106.1 (2) N7—N6—C16—C15 −175.4 (2)
O1—C7—C8—N2 24.7 (3) O2—C15—C16—N6 −13.6 (3)
N1—C7—C8—N2 −156.63 (18) N5—C15—C16—N6 168.00 (19)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.17 2.921 (2) 146
N5—H5A···O2i 0.86 2.13 2.885 (2) 146
C4—F1···Cg1ii 1.35 (1) 3.76 (1) 3.563 (2) 72 (1)
C12—F2···Cg2iii 1.36 (1) 3.98 (1) 3.942 (2) 79 (1)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+2.

Funding Statement

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

  1. Ahmed, S. & Abdallah, N. A. (2019). J. Pharm. Biomed. Anal. 165, 357–365. [DOI] [PubMed]
  2. Allen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405–3415. [DOI] [PubMed]
  3. Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Cecioni, S., Praly, J.-P., Matthews, S. E., Wimmerová, M., Imberty, A. & Vidal, S. (2012). Chem. Eur. J. 18, 6250–6263. [DOI] [PubMed]
  7. Cheng, D., Liu, J., Han, D., Zhang, G., Gao, W., Hsieh, M. H. N., Ng, N., Kasibhatla, S., Tompkins, C., Li, J., Steffy, A., Sun, F., Li, C., Seidel, H. M., Harris, J. L. & Pan, S. (2016). ACS Med. Chem. Lett. 7, 676–680. [DOI] [PMC free article] [PubMed]
  8. Contin, M., Sepúlveda, C., Fascio, M., Stortz, C. A., Damonte, E. B. & D’Accorso, N. B. (2019). Bioorg. Med. Chem. Lett. 29, 556–559. [DOI] [PubMed]
  9. Cortes Eduardo, C., Simon, H., Apan Teresa, R., Camacho Antonio, N. V., Lijanova, I. & Marcos, M. (2012). Anticancer Agents Med. Chem. 12, 611–618. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Madhusudhanan, M. C., Balan, H., Werz, D. B. & Sureshan, K. M. (2021). Angew. Chem. Int. Ed. 60, 22797–22803. [DOI] [PubMed]
  14. Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022e). IUCrData, 7, x220621. [DOI] [PMC free article] [PubMed]
  15. Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.
  16. Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022d). Acta Cryst. E78, 687–690. [DOI] [PMC free article] [PubMed]
  17. Missioui, M., Lgaz, H., Guerrab, W., Lee, H.-G., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132.
  18. Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.
  19. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595. [DOI] [PMC free article] [PubMed]
  20. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420.
  21. Okamura, T., Ushijima, Y., Omi, Y. & Onitsuka, K. (2013). Inorg. Chem. 52, 381–394. [DOI] [PubMed]
  22. Pattabiraman, V. R. & Bode, J. W. (2011). Nature, 480, 471–479. [DOI] [PubMed]
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  27. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  28. Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631. [DOI] [PubMed]
  29. Yassine, H., Hafid, A., Khouili, M., Mentre, O. & Ketatni, E. M. (2016a). IUCrData, 1, x161155.
  30. Yassine, H., Khouili, M., Hafid, A., Mentre, O. & Ketatni, E. M. (2016b). IUCrData, 1, x161454.
  31. Zheng, X., Wang, L., Wang, B., Miao, K., Xiang, K., Feng, S., Gao, L., Shen, H. C. & Yun, H. (2016). ACS Med. Chem. Lett. 7, 558–562. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022006764/vm2266sup1.cif

e-78-00855-sup1.cif (390.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006764/vm2266Isup3.hkl

e-78-00855-Isup3.hkl (257.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006764/vm2266Isup3.cml

CCDC reference: 2183049

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES