The a new polymorph of the title compound is reported in which the C—H⋯O hydrogen bonds and π-π stacking interactions link molecules into the layers in the crystal.
Keywords: crystal structure, azo compounds, polymorphism, C—H⋯O interactions, Hirshfeld surface analysis
Abstract
A new polymorph of the title compound, C14H8Br3N3O2, (form-2) was obtained in the same manner as the previously reported form-1 [Akkurt et al. (2022 ▸). Acta Cryst. E78, 732–736]. The structure of the new polymorph is stabilized by a C—H⋯O hydrogen bond that links molecules into chains. These chains are linked by face-to-face π–π stacking interactions, resulting in a layered structure. Short inter-molecular Br⋯O contacts and van der Waals interactions between the layers aid in the cohesion of the crystal packing. In the previously reported form-1, C—H⋯Br interactions connect molecules into zigzag chains, which are linked by C—Br⋯π interactions into layers, whereas the van der Waals interactions between the layers stabilize the crystal packing of form-2. Hirshfeld molecular surface analysis was used to compare the intermolecular interactions of the polymorphs.
1. Chemical context
Aromatic azo compounds provide ubiquitous motifs in organic chemistry and are widely used as indicators, organic dyes, pigments, radical reaction initiators, food additives, therapeutic agents, etc. (Zollinger 1994 ▸, 1995 ▸; Gurbanov et al., 2020a
▸,b
▸). Moreover, in azo dyes the ligands play a crucial role in coordination chemistry and in the construction of functional materials, such as ionophores, self-assembled layers, catalysts, antimicrobial agents, liquid crystals and semiconductors (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2010 ▸, 2013 ▸). Depending on the attached functional groups, the chemical and physical properties of azo dyes and their transition-metal complexes can be improved. The azo-to-hydrazo tautomerization as well as E/Z isomerization of azo dyes are key phenomena in the synthesis and design of new functional materials (Shixaliyev et al., 2013 ▸, 2014 ▸). Moreover, an attachment of donor or acceptor centres of non-covalent bonds to the azo compounds can be applied as a synthetic strategy in the improvement of functional properties of their metal complexes (Mahmudov et al., 2020 ▸, 2021 ▸, 2022 ▸). Thus, we have attached bromine and nitro substituents to the aryl rings leading to a new azo dye, (E)-1-(2,2-dibromo-1-(3-nitrophenyl)vinyl)-2-(4-bromophenyl)diazene, which can participate in intermolecular halogen and hydrogen bonds as well as in π-interactions.
2. Structural commentary
A view of the molecule of the new polymorph (henceforth referred to as form-2) is shown in Fig. 1 ▸. The central fragment of the molecule, C1/C2/N2/N3/C3/C9/Br1/Br2, is almost planar with the largest deviation from mean plane being 0.101 (1) Å for Br1. This plane forms dihedral angles of 13.51 (7) and 61.26 (7)° with the planes of the bromine- and nitro-substituted aromatic rings, respectively. In the previously reported polymorph (form-1), the corresponding angles were 26.35 (15) and 72.57 (14)° (Akkurt et al., 2022 ▸). All bond lengths and angles in the title compound are in agreement with those reported for the related azo compounds discussed in the Database survey section.
Figure 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
3. Supramolecular features and Hirshfeld surface analysis
The crystal packing of the new polymorph is stabilized by a C—H⋯O hydrogen bond that links molecules into chains along the b-axis direction (Table 1 ▸, Figs. 2 ▸–4 ▸
▸). These chains are joined by zigzag face-to-face π–π stacking interactions along the [100] direction [Cg1⋯Cg1(−
+ x, y,
− z) = 3.7305 (11) Å, slippage: 2.057 Å; Cg1⋯Cg1(
+ x, y,
− z) = 3.7305 (11) Å, slippage: 0.9775 Å; where Cg1 is the centroid of the nitrophenyl ring], resulting in the layers parallel to (001) (Fig. 4 ▸). Short inter-molecular Br1⋯O2 contacts (Table 2 ▸) and van der Waals interactions between the layers help to keep the crystal packing together. In the previously reported form-1 of the title compound (Akkurt et al., 2022 ▸), C—H⋯Br interactions connect molecules, generating zigzag C(8) chains along the [100] direction, which are linked by C—Br⋯π interactions into layers parallel to (001), and van der Waals interactions between layers contribute to the crystal cohesion.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C8—H8⋯O1i | 0.95 | 2.56 | 3.394 (2) | 146 |
Symmetry code: (i)
.
Figure 2.
View down the a-axis of the C—H⋯O and π–π interactions (dashed lines) in the title compound.
Figure 3.
View down the b-axis of the C—H⋯O and π–π interactions (dashed lines) in the title compound.
Figure 4.
View down the c-axis of the C—H⋯O and π–π interactions (dashed lines) in the title compound.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
H4⋯C13 | 2.67 | −1 + x, y, z |
H8⋯O1 | 2.56 | −x, −
![]() ![]() |
H7⋯N3 | 2.78 | −
![]() ![]() |
Br1⋯O2 | 3.137 (2) | −
![]() ![]() |
Br1⋯H14 | 2.98 |
![]() ![]() |
Br2⋯H13 | 3.15 |
![]() ![]() |
Br3⋯H10 | 3.02 |
![]() ![]() |
C13⋯Br3 | 3.569 (2) | 2 − x, 1 − y, 1 − z |
Crystal Explorer 17.5 (Turner et al., 2017 ▸) was used to perform a Hirshfeld surface analysis of form-2 and to generate the related two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1471 (red) to +1.1715 (blue) a.u. (Fig. 5 ▸). The red areas on the surface present short contacts and negative d norm values, which correspond to the C—H⋯O hydrogen bonds mentioned above (Table 1 ▸). The red patch that appears around O1 is due to the C8—H8⋯O1 interaction, which is critical for the molecular packing of the title compound. In form-1, the C—H⋯Br interactions are also prominent (Akkurt et al., 2022 ▸).
Figure 5.
(a) Front and (b) back views of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1471 to 1.1715 a.u.
The overall two-dimensional fingerprint plot for form-2 is given in Fig. 6 ▸ a, and those delineated into Br⋯H/H⋯Br (26.5%), H⋯H (12.8%), C⋯H/H⋯C (11.5%) and O⋯H/H⋯O (10.6%) contacts are shown in Fig. 6 ▸ b–e, while the numerical details for the shortest contacts are given in Table 2 ▸. Other contacts, such as Br⋯C/C⋯Br (7.7%), C⋯C (6.0%), Br⋯Br (5.8%), Br⋯O/O⋯Br (5.3%), N⋯H/H⋯N (5.3%), O⋯C/C⋯O (2.5%), Br⋯N/N⋯Br (2.3%), O⋯N/N⋯O (1.7%), O⋯O (1.3%) and N⋯C/C⋯N (0.8%), have little influence on the molecular packing. For form-1, the set includes only four types of interactions, viz. Br⋯H/H⋯Br, H⋯H, C⋯H/H⋯C and O⋯H/H⋯O contacts (Akkurt et al., 2022 ▸). The predominant interactions in both cases are Br⋯H/H⋯Br and H⋯H, constituting 26.5% and 12.8%, respectively, in form-2 vs 20.9% and 15.2% in form-1.
Figure 6.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) Br⋯H/H⋯Br, (c) H⋯H, (d) C⋯H/H⋯C, and (e) O⋯H/H⋯O interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016 ▸) for similar structures with the (E)-1-(2,2-dibromo)-2-(4-bromophenyl)diazene unit showed that the ten closest are those of CSD refcodes HEHKEO (I) (Akkurt et al., 2022 ▸), TAZDIL (II) (Atioğlu et al., 2022 ▸), PAXDOL (III) (Çelikesir et al., 2022 ▸), GUPHIL (IV) (Özkaraca et al., 2020b ▸), HONBUK (V) (Akkurt et al., 2019 ▸), HONBOE (VI) (Akkurt et al., 2019 ▸), HODQAV (VII) (Shikhaliyev et al., 2019 ▸), XIZREG (VIII) (Atioğlu et al., 2019 ▸), LEQXOX (IX) (Shikhaliyev et al., 2018 ▸) and LEQXIR (X) (Shikhaliyev et al., 2018 ▸).
C—H⋯Br interactions connect the molecules in the crystal of the form-1 polymorph of the title compound, (I), resulting in zigzag C(8) chains along the [100] direction. These chains are connected by C—Br⋯π interactions into layers parallel to (001). van der Waals interactions between the layers contribute to the crystal cohesion.
The molecules in (II) are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as π–π stacking interactions, strengthen the crystal packing
The molecules in the crystal of (III) are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and π–π stacking interactions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed.
In the crystal of (IV), the molecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)° compared to the van der Waals radii sum of 3.50 Å for two chlorine atoms]. No other directional contacts could be identified, and the shortest aromatic ring-centroid separation is greater than 5.25 Å.
In the crystals of (V) and (VI), the molecules are linked through weak X⋯Cl contacts [X = Cl for (V) and Br for (VI)], C—H⋯Cl and C—Cl⋯π interactions into sheets lying parallel to (001).
In the crystal of (VII), the molecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts.
In (VIII), molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions.
In (IX), C—H⋯N and short Cl⋯Cl contacts are observed, and in (X), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.
5. Synthesis and crystallization
This dye was synthesized according to the reported method (Akkurt et al., 2019 ▸; Maharramov et al., 2018 ▸; Özkaraca et al., 2020a ▸,b ▸). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(4-bromophenyl)-2-(3-nitrobenzylidene)hydrazine (1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3 h (until TLC analysis showed complete consumption of corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Red solid (62%); m.p. 391 K. Analysis calculated for C14H8Br3N3O2 (M = 489.95): C 34.32, H 1.65, N 8.58; found: C 34.29, H 1.66, N 8.55%. 1H NMR (300 MHz, CDCl3) δ 7.90–7.44 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 150.88, 148.57, 148.12, 132.81, 132.47, 132.25, 130.04, 126.40, 125.30, 124.53, 123.57, 94.10. ESI-MS: m/z: 490.91 [M + H]+.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were positioned geometrically and allowed to ride on their parent atoms (C—H = 0.95 Å) with U iso(H) = 1.2U eq(C).
Table 3. Experimental details.
Crystal data | |
Chemical formula | C14H8Br3N3O2 |
M r | 489.96 |
Crystal system, space group | Orthorhombic, P b c a |
Temperature (K) | 100 |
a, b, c (Å) | 6.6579 (1), 15.7683 (3), 29.0301 (6) |
V (Å3) | 3047.69 (10) |
Z | 8 |
Radiation type | Mo Kα |
μ (mm−1) | 7.95 |
Crystal size (mm) | 0.34 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Bruker AXS D8 QUEST, Photon III detector |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸). |
T min, T max | 0.020, 0.058 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 67179, 5538, 4620 |
R int | 0.033 |
(sin θ/λ)max (Å−1) | 0.758 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.024, 0.064, 1.05 |
No. of reflections | 5538 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.52 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007113/yk2172sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007113/yk2172Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022007113/yk2172Isup3.cml
CCDC reference: 2189348
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The author’s contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, NAM and GVB; supervision, NQS, MA and AB.
supplementary crystallographic information
Crystal data
C14H8Br3N3O2 | Dx = 2.136 Mg m−3 |
Mr = 489.96 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9783 reflections |
a = 6.6579 (1) Å | θ = 2.7–34.8° |
b = 15.7683 (3) Å | µ = 7.95 mm−1 |
c = 29.0301 (6) Å | T = 100 K |
V = 3047.69 (10) Å3 | Needle, red |
Z = 8 | 0.34 × 0.06 × 0.05 mm |
F(000) = 1872 |
Data collection
Bruker AXS D8 QUEST, Photon III detector diffractometer | 5538 independent reflections |
Radiation source: fine-focus sealed X-Ray tube | 4620 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 7.31 pixels mm-1 | θmax = 32.6°, θmin = 2.6° |
φ and ω shutterless scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015). | k = −23→23 |
Tmin = 0.020, Tmax = 0.058 | l = −43→43 |
67179 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0318P)2 + 2.0035P] where P = (Fo2 + 2Fc2)/3 |
5538 reflections | (Δ/σ)max = 0.002 |
199 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Br1 | −0.15339 (3) | 0.13530 (2) | 0.34586 (2) | 0.02722 (5) | |
Br2 | 0.15481 (3) | 0.10023 (2) | 0.42549 (2) | 0.02936 (5) | |
Br3 | 1.20530 (3) | 0.41027 (2) | 0.48664 (2) | 0.02853 (5) | |
O1 | −0.0475 (3) | 0.54340 (9) | 0.25282 (6) | 0.0379 (3) | |
O2 | 0.0602 (3) | 0.54406 (9) | 0.32311 (5) | 0.0353 (3) | |
N1 | 0.0276 (2) | 0.50824 (10) | 0.28639 (6) | 0.0272 (3) | |
N2 | 0.3641 (2) | 0.25393 (10) | 0.38915 (6) | 0.0238 (3) | |
N3 | 0.4595 (2) | 0.31953 (10) | 0.37700 (5) | 0.0237 (3) | |
C1 | 0.0855 (3) | 0.16829 (11) | 0.37477 (6) | 0.0238 (3) | |
C2 | 0.1967 (3) | 0.23522 (11) | 0.36103 (6) | 0.0226 (3) | |
C3 | 0.1509 (2) | 0.28572 (11) | 0.31884 (6) | 0.0215 (3) | |
C4 | 0.1146 (3) | 0.37242 (11) | 0.32230 (6) | 0.0221 (3) | |
H4 | 0.115991 | 0.400016 | 0.351386 | 0.027* | |
C5 | 0.0763 (3) | 0.41751 (11) | 0.28225 (6) | 0.0224 (3) | |
C6 | 0.0770 (3) | 0.38058 (12) | 0.23897 (6) | 0.0236 (3) | |
H6 | 0.050338 | 0.413167 | 0.212131 | 0.028* | |
C7 | 0.1178 (3) | 0.29485 (13) | 0.23606 (6) | 0.0250 (3) | |
H7 | 0.121139 | 0.268071 | 0.206755 | 0.030* | |
C8 | 0.1540 (3) | 0.24729 (11) | 0.27555 (6) | 0.0228 (3) | |
H8 | 0.180911 | 0.188307 | 0.273038 | 0.027* | |
C9 | 0.6294 (3) | 0.33715 (12) | 0.40511 (6) | 0.0233 (3) | |
C10 | 0.7117 (3) | 0.27990 (12) | 0.43672 (7) | 0.0254 (3) | |
H10 | 0.650813 | 0.226090 | 0.441376 | 0.030* | |
C11 | 0.8820 (3) | 0.30204 (12) | 0.46115 (7) | 0.0267 (3) | |
H11 | 0.940184 | 0.263540 | 0.482488 | 0.032* | |
C12 | 0.9671 (3) | 0.38174 (12) | 0.45398 (6) | 0.0239 (3) | |
C13 | 0.8856 (3) | 0.43973 (12) | 0.42367 (6) | 0.0257 (3) | |
H13 | 0.944333 | 0.494183 | 0.419849 | 0.031* | |
C14 | 0.7154 (3) | 0.41659 (12) | 0.39883 (6) | 0.0248 (3) | |
H14 | 0.657723 | 0.455267 | 0.377500 | 0.030* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02466 (8) | 0.02296 (8) | 0.03404 (10) | −0.00303 (6) | −0.00384 (7) | 0.00397 (7) |
Br2 | 0.02669 (9) | 0.02915 (9) | 0.03225 (10) | 0.00022 (7) | −0.00123 (7) | 0.01012 (7) |
Br3 | 0.02656 (9) | 0.02931 (9) | 0.02972 (9) | −0.00397 (7) | −0.00470 (7) | 0.00276 (7) |
O1 | 0.0417 (9) | 0.0284 (7) | 0.0437 (9) | 0.0056 (6) | −0.0074 (7) | 0.0110 (7) |
O2 | 0.0422 (8) | 0.0260 (7) | 0.0378 (8) | 0.0048 (6) | 0.0005 (7) | −0.0047 (6) |
N1 | 0.0234 (7) | 0.0231 (7) | 0.0352 (8) | 0.0012 (6) | 0.0018 (6) | 0.0035 (6) |
N2 | 0.0218 (6) | 0.0251 (7) | 0.0246 (7) | −0.0002 (5) | 0.0002 (6) | 0.0006 (6) |
N3 | 0.0220 (6) | 0.0243 (7) | 0.0248 (7) | 0.0003 (5) | −0.0002 (5) | 0.0003 (6) |
C1 | 0.0222 (7) | 0.0227 (7) | 0.0264 (8) | 0.0017 (6) | −0.0009 (6) | 0.0028 (6) |
C2 | 0.0223 (7) | 0.0222 (7) | 0.0232 (8) | 0.0019 (6) | −0.0003 (6) | 0.0003 (6) |
C3 | 0.0188 (7) | 0.0219 (7) | 0.0237 (8) | 0.0000 (6) | 0.0000 (6) | 0.0010 (6) |
C4 | 0.0212 (7) | 0.0215 (7) | 0.0237 (8) | 0.0007 (6) | 0.0006 (6) | 0.0006 (6) |
C5 | 0.0185 (7) | 0.0214 (7) | 0.0274 (8) | 0.0001 (6) | 0.0003 (6) | 0.0016 (6) |
C6 | 0.0177 (7) | 0.0290 (8) | 0.0242 (8) | −0.0007 (6) | 0.0004 (6) | 0.0036 (6) |
C7 | 0.0210 (7) | 0.0307 (9) | 0.0232 (8) | −0.0013 (6) | 0.0006 (6) | −0.0031 (7) |
C8 | 0.0200 (7) | 0.0223 (7) | 0.0262 (8) | −0.0001 (6) | −0.0013 (6) | −0.0026 (6) |
C9 | 0.0235 (7) | 0.0235 (8) | 0.0230 (8) | 0.0007 (6) | 0.0002 (6) | −0.0008 (6) |
C10 | 0.0245 (8) | 0.0241 (8) | 0.0275 (8) | −0.0015 (6) | −0.0015 (7) | 0.0032 (7) |
C11 | 0.0274 (8) | 0.0252 (8) | 0.0275 (9) | 0.0002 (7) | −0.0035 (7) | 0.0030 (7) |
C12 | 0.0225 (7) | 0.0263 (8) | 0.0227 (8) | −0.0011 (6) | −0.0006 (6) | −0.0012 (6) |
C13 | 0.0281 (8) | 0.0232 (8) | 0.0259 (8) | −0.0024 (7) | −0.0004 (7) | 0.0004 (6) |
C14 | 0.0266 (8) | 0.0235 (8) | 0.0244 (8) | 0.0014 (6) | −0.0004 (6) | 0.0028 (6) |
Geometric parameters (Å, º)
Br1—C1 | 1.8723 (18) | C6—C7 | 1.381 (3) |
Br2—C1 | 1.8796 (18) | C6—H6 | 0.9500 |
Br3—C12 | 1.9016 (18) | C7—C8 | 1.391 (3) |
O1—N1 | 1.227 (2) | C7—H7 | 0.9500 |
O2—N1 | 1.226 (2) | C8—H8 | 0.9500 |
N1—C5 | 1.472 (2) | C9—C14 | 1.389 (3) |
N2—N3 | 1.264 (2) | C9—C10 | 1.399 (3) |
N2—C2 | 1.413 (2) | C10—C11 | 1.382 (3) |
N3—C9 | 1.422 (2) | C10—H10 | 0.9500 |
C1—C2 | 1.349 (2) | C11—C12 | 1.394 (3) |
C2—C3 | 1.493 (2) | C11—H11 | 0.9500 |
C3—C4 | 1.392 (2) | C12—C13 | 1.380 (3) |
C3—C8 | 1.395 (3) | C13—C14 | 1.392 (3) |
C4—C5 | 1.386 (2) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.385 (3) | ||
O2—N1—O1 | 123.67 (17) | C6—C7—H7 | 119.6 |
O2—N1—C5 | 118.68 (16) | C8—C7—H7 | 119.6 |
O1—N1—C5 | 117.64 (17) | C7—C8—C3 | 120.37 (17) |
N3—N2—C2 | 113.96 (15) | C7—C8—H8 | 119.8 |
N2—N3—C9 | 113.53 (15) | C3—C8—H8 | 119.8 |
C2—C1—Br1 | 123.43 (14) | C14—C9—C10 | 120.46 (17) |
C2—C1—Br2 | 122.92 (14) | C14—C9—N3 | 115.35 (16) |
Br1—C1—Br2 | 113.64 (9) | C10—C9—N3 | 124.18 (17) |
C1—C2—N2 | 115.18 (16) | C11—C10—C9 | 119.65 (17) |
C1—C2—C3 | 123.21 (16) | C11—C10—H10 | 120.2 |
N2—C2—C3 | 121.60 (15) | C9—C10—H10 | 120.2 |
C4—C3—C8 | 119.61 (16) | C10—C11—C12 | 118.98 (17) |
C4—C3—C2 | 120.02 (16) | C10—C11—H11 | 120.5 |
C8—C3—C2 | 120.30 (16) | C12—C11—H11 | 120.5 |
C5—C4—C3 | 118.36 (17) | C13—C12—C11 | 122.18 (17) |
C5—C4—H4 | 120.8 | C13—C12—Br3 | 119.28 (14) |
C3—C4—H4 | 120.8 | C11—C12—Br3 | 118.53 (14) |
C6—C5—C4 | 122.99 (17) | C12—C13—C14 | 118.48 (17) |
C6—C5—N1 | 118.92 (16) | C12—C13—H13 | 120.8 |
C4—C5—N1 | 118.07 (16) | C14—C13—H13 | 120.8 |
C7—C6—C5 | 117.88 (17) | C9—C14—C13 | 120.23 (17) |
C7—C6—H6 | 121.1 | C9—C14—H14 | 119.9 |
C5—C6—H6 | 121.1 | C13—C14—H14 | 119.9 |
C6—C7—C8 | 120.75 (17) | ||
C2—N2—N3—C9 | −179.14 (15) | C4—C5—C6—C7 | 0.1 (3) |
Br1—C1—C2—N2 | 175.57 (13) | N1—C5—C6—C7 | −178.28 (16) |
Br2—C1—C2—N2 | −3.5 (2) | C5—C6—C7—C8 | 0.9 (3) |
Br1—C1—C2—C3 | −5.5 (3) | C6—C7—C8—C3 | −0.4 (3) |
Br2—C1—C2—C3 | 175.44 (13) | C4—C3—C8—C7 | −1.0 (3) |
N3—N2—C2—C1 | −176.40 (16) | C2—C3—C8—C7 | −177.89 (16) |
N3—N2—C2—C3 | 4.6 (2) | N2—N3—C9—C14 | −168.04 (16) |
C1—C2—C3—C4 | 121.4 (2) | N2—N3—C9—C10 | 13.1 (3) |
N2—C2—C3—C4 | −59.7 (2) | C14—C9—C10—C11 | −1.3 (3) |
C1—C2—C3—C8 | −61.7 (2) | N3—C9—C10—C11 | 177.51 (18) |
N2—C2—C3—C8 | 117.13 (19) | C9—C10—C11—C12 | 0.6 (3) |
C8—C3—C4—C5 | 1.9 (2) | C10—C11—C12—C13 | 0.8 (3) |
C2—C3—C4—C5 | 178.81 (16) | C10—C11—C12—Br3 | −178.42 (15) |
C3—C4—C5—C6 | −1.5 (3) | C11—C12—C13—C14 | −1.5 (3) |
C3—C4—C5—N1 | 176.87 (15) | Br3—C12—C13—C14 | 177.71 (14) |
O2—N1—C5—C6 | −167.63 (17) | C10—C9—C14—C13 | 0.6 (3) |
O1—N1—C5—C6 | 13.8 (2) | N3—C9—C14—C13 | −178.32 (17) |
O2—N1—C5—C4 | 13.9 (2) | C12—C13—C14—C9 | 0.8 (3) |
O1—N1—C5—C4 | −164.68 (17) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1i | 0.95 | 2.56 | 3.394 (2) | 146 |
Symmetry code: (i) −x, y−1/2, −z+1/2.
Funding Statement
This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).
References
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
- Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736. [DOI] [PMC free article] [PubMed]
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 530–535. [DOI] [PMC free article] [PubMed]
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
- Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. [DOI] [PubMed]
- Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.
- Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.http://hirshfeldsuface.net
- Zollinger, H. (1994). Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. New York: Wiley.
- Zollinger, H. (1995). Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. Weinheim: VCH.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007113/yk2172sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007113/yk2172Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022007113/yk2172Isup3.cml
CCDC reference: 2189348
Additional supporting information: crystallographic information; 3D view; checkCIF report