Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Jul 26;78(Pt 8):840–845. doi: 10.1107/S2056989022007472

Syntheses and crystal structures of 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate and 4-(4-nitro­phen­yl)piperazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate

Holehundi J Shankara Prasad a, Devaraju a, Vinaya b, Hemmige S Yathirajan b,*, Sean R Parkin c, Christopher Glidewell d
Editor: W T A Harrisone
PMCID: PMC9361384  PMID: 35974828

Two new salts of the 4-(4-nitro­phen­yl)piperazin-1-ium cation have been prepared by co-crystallization with aromatic carb­oxy­lic acids. The supra­molecular assembly in the benzoate salt, which crystallizes as a mono-hydrate, is two dimensional, while that in the 2-carb­oxy-4,6-di­nitro­phenolate salt is three dimensional.

Keywords: piperazine, synthesis, crystal structure, mol­ecular structure, hydrogen bonding, supra­molecular assembly

Abstract

Crystal structures are reported for two mol­ecular salts containing the 4-(4-nitro­phen­yl)piperazin-1-ium cation. Co-crystallization from methanol/ethyl acetate solution of N-(4-nitro­phen­yl)piperazine with benzoic acid gives the benzoate salt, which crystallizes as a monohydrate, C10H14N3O2·C7H5O2·H2O, (I), and similar co-crystallization with 3,5-di­nitro­salicylic acid yields the 2-carb­oxy-4,6-di­nitro­phenolate salt, C10H14N3O2·C7H3N2O7, (II). In the structure of (I), a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds links the components into sheets, while in the structure of (II), the supra­molecular assembly, generated by hydrogen bonds of the same types as in (I), is three dimensional. Comparisons are made with the structures of some related compounds.

1. Chemical context

Piperazines and substituted piperazines are important pharmacophores, which can be found in many biologically active compounds (Berkheij, 2005) such as anti­fungal (Upadhayaya et al., 2004), anti-bacterial, anti-malarial and anti-psychotic agents (Chaudhary et al., 2006). Both the general pharmacological and specific anti­microbial activities of piperazine derivatives have been reviewed in recent years (Elliott, 2011; Kharb et al., 2012). Among specific examples of piperazine derivatives, N-(4-nitro­phen­yl)piperazine has found use in the control of potassium channels (Lu, 2007). The crystal structures of a number of 4-(4-nitro­phen­yl)piperazin-1-ium salts have been reported (Lu, 2007; Mahesha et al., 2022), and here we report the mol­ecular and supra­molecular structures of two further representatives of this family of salts, namely 4-(4-nitro­phen­yl)piperazin-1-ium benzoate monohydrate, C10H14N3O2·C7H5O2·H2O, (I), and 4-(4-nitro­phen­yl)pip­erazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate, C10H14N3O2·C7H3N2O7, (II).

2. Structural commentary

In each of compounds (I) and (II) (Figs. 1 and 2), the piperazine ring adopts a chair conformation, with the ring-puckering angle θ (Cremer & Pople, 1975) calculated for the atom sequence (N11/C12/C13/N14/C15/C16) close to the ideal value of zero (Boeyens, 1978): θ = 6.42 (11) for (I) and 8.75 (11)° for (II). However, in (I), the nitro­phenyl substituent occupies an equatorial site, whereas in (II) this substituent occupies an axial site. In each compound, the N-nitro­phenyl unit shows the pattern of distances typical of 4-nitro­aniline derivatives, namely both C—N distances are short for their types (Allen et al., 1987), while the nitro N—O distances are long for their type. In addition, the distances C141—C142 and C141—C146 lie in the range 1.4049 (16) to 1.4132 (15) Å whereas the remaining C—C distances for this ring are smaller, falling in the range 1.3764 (17) to 1.3881 (15) Å. These variations are most simply inter­preted in terms of some 1,4-quinonoid type bond fixation, moderated by the high electronegativity of the nitro group, generally regarded as similar to that of a fluoro substituent (Huheey, 1966; Mullay, 1985). 2.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing hydrogen bonds (drawn as dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level.

In the anion of compound (II), the C21—O21 distance, 1.2788 (13) Å is more typical of those in ketones than those in phenols (Allen et al., 1987); the distances C21—C22 and C21—C26, 1.4394 (15) and 1.4340 (15) Å are longer than the remaining C—C distances in the ring, which are in the range 1.3747 (15) to 1.3869 (15). These observations, taken together, indicate that the negative charge in this anion is delocalized over atoms C22–C26 rather than being localized on atom O21 (see Scheme).

3. Supra­molecular features

In each of compounds (I) and (II), the supra­molecular assembly involves a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, augmented in the case of (I) by a single C—H⋯π(arene) hydrogen bond: however, aromatic π–π stacking inter­actions are absent from both structures.

The supra­molecular assembly in (I) is di-periodic and the formation of the sheet structure is readily analysed in terms of two mono-periodic sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). Within the selected asymmetric unit for (I) (Fig. 1), the ionic components are linked by an asymmetric bifurcated (three-centre) N—H⋯(O,O) hydrogen bond (Table 1), while the water mol­ecule is linked to the anion by an O—H⋯O hydrogen bond. In one of the two sub-structures, a combination of one two-centre N—H⋯O hydrogen bond and a second O—H⋯O hydrogen bond links these three-component aggregates (Fig. 1) into a chain of rings running parallel to the [100] direction (Fig. 3) in which there are two different types of Inline graphic (12) ring (Bernstein et al., 1995), centred at (n, 0.5, 0.5) and (n + 0.5, 0.5, 0.5), respectively, where n represents an integer in each case. The second sub-structure, which includes the C—H⋯O hydrogen bond (Table 1, Fig. 4), takes the form of another chain of rings in which Inline graphic (12) rings centred at (n + 0.5, n + 0.5, 0.5) alternate with Inline graphic (10) rings centred at (n, n, 0.5), where n again represents an integer, so forming a chain of rings running parallel to the [110] direction (Fig. 4). The combination of chains along [100] and [110] generates a sheet structure lying parallel to (001). The single C—H⋯π(arene) hydrogen bond (Table 1) lies within this sheet, and so has no influence on the dimensionality of the assembly.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O271 0.926 (14) 2.564 (14) 3.1009 (13) 117.4 (10)
N11—H11⋯O272 0.926 (14) 1.857 (14) 2.7781 (12) 172.9 (13)
N11—H12⋯O31i 0.920 (15) 1.884 (15) 2.7965 (14) 171.0 (12)
O31—H31⋯O271 0.892 (18) 1.757 (18) 2.6486 (13) 179 (3)
O31—H32⋯O272ii 0.908 (17) 1.862 (17) 2.7581 (12) 168.8 (16)
C12—H12B⋯O272iii 0.99 2.45 3.3751 (15) 156
C146—H146⋯Cg1iv 0.95 2.67 3.4363 (13) 138

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 3.

Figure 3

Part of the crystal structure of compound (I) showing the formation of a chain of hydrogen-bonded rings running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Figure 4.

Figure 4

Part of the crystal structure of compound (I) showing the formation of a chain of hydrogen-bonded rings running parallel to the [110] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

The supra­molecular assembly for compound (II), by contrast, is tri-periodic (three dimensional) and, as for (I), the formation of the framework is readily analysed in terms of simple sub-structures. Within the selected asymmetric unit (Fig. 2), there is an intra­molecular O—H⋯O hydrogen bond in the anion, and the hydroxyl H atom plays no part in the supra­molecular assembly. The two independent components are linked by a very asymmetric bifurcated N—H⋯(O,O) hydrogen bond (Table 2), and a two-centre N—H⋯O hydrogen bond links these ion pairs into a chain of rings running parallel to the [010] direction (Fig. 5). There are four C—H⋯O hydrogen bonds in the structure of (II) and that involving atom C145 (Table 2) links the ion pairs into a second chain, this time running parallel to the [101] direction (Fig. 6). The two C—H⋯O hydrogen bonds involving atoms C12 and C16 link inversion-related pairs of cations into a centrosymmetric motif containing Inline graphic (8) rings (Fig. 7), and the aggregates of this type are further linked by the final C—H⋯O hydrogen bond, that involves atom C146, to form a complex chain of rings running parallel to the [001] direction (Fig. 8). The combination of hydrogen-bonded chains parallel to [010], [001] and [101] generates a three-dimensional network. We also note a fairly short nitro–nitro contact, 2.823 (4) Å, between atom O142 at (x, y, z) and atom N24 at (1 + x, y, 1 + z): this probably represents a dipolar attraction between negatively charged O and positively charged N atoms.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O21 0.894 (14) 1.869 (14) 2.7356 (12) 162.8 (13)
N11—H11⋯O262 0.894 (14) 2.396 (14) 2.8937 (13) 115.4 (11)
N11—H12⋯O271i 0.910 (14) 1.874 (14) 2.7668 (12) 166.2 (12)
O272—H272⋯O21 1.000 (17) 1.549 (17) 2.5020 (12) 157.4 (15)
C12—H12B⋯O142ii 0.99 2.41 3.3921 (14) 173
C16—H16A⋯O141ii 0.99 2.54 3.4906 (14) 161
C145—H145⋯O242iii 0.95 2.46 3.3927 (15) 168
C146—H146⋯O241iv 0.95 2.55 3.4227 (15) 153

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 5.

Figure 5

Part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain of rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Figure 6.

Figure 6

Part of the crystal structure of compound (II) showing the formation of a chain of hydrogen-bonded rings running parallel to the [101] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

Figure 7.

Figure 7

Part of the crystal structure of compound (II) showing the linkage of an inversion-related pair of cations by two independent C—H⋯O hydrogen bonds, drawn as dashed lines. For the sake of clarity, the anions, the H atoms bonded to those C atoms that are not involved in the motif shown, and the unit-cell outline have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 2 − z).

Figure 8.

Figure 8

Part of the crystal structure of compound (II) showing the formation of a chain of hydrogen-bonded rings running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms that are not involved in the motif shown have been omitted.

4. Database survey

The first structure report on a salt of N-(4-nitro­phen­yl)piperazine concerned the chloride salt, which crystallizes as a monohydrate (Lu, 2007); despite the presence of hydrogen bonds of N—H⋯O, N—H⋯Cl and O—H⋯Cl types, the supra­molecular assembly is only mono-periodic. The structures of six salts of N-(4-nitro­phen­yl)piperazine with aromatic carb­oxy­lic acids have recently been reported (Mahesha et al., 2022): in all but one of these, the supra­molecular assembly is mono-periodic, although it is di-periodic in the 4-eth­oxy­benzoate salt. This may be contrasted with the triperiodic assembly found here for compound (II).

In addition, we note that structures have been reported for a wide variety of salts derived from N-(4-fluoro­phen­yl)piperazine (Harish Chinthal, Yathirajan, Archana et al., 2020; Harish Chinthal, Yathirajan, Kavitha et al., 2020), and from N-(4-meth­oxy­phen­yl)piperazine (Kiran Kumar et al., 2019, 2020). Finally, the structure of 4-(2-meth­oxy­phen­yl)piperazin-1-ium 3,5-di­nitro­salicylate has been reported, but without any description of discussion of the geometry of the anion (Subha et al., 2022).

5. Synthesis and crystallization

For the preparation of compounds (I) and (II), a solution of N-(4-nitro­phen­yl)piperazine (100 mg, 0.483 mmol) in methanol (10 ml) was mixed with a solution of either benzoic acid (59 mg, 0.483 mmol) for (I) or 3,5-di­nitro­salicylic acid (110 mg, 0.483 mmol) for (II) in methanol/ethyl acetate (1:1 v/v, 20 ml). The solutions of the base and the corresponding acid were mixed, stirred at ambient temperature for 15 min, and then set aside to crystallize at ambient temperature and in the presence of air. After one week, crystals suitable for single-crystal X-ray diffraction were collected by filtration and dried in air: compound (I), pale yellow, m.p. 410–413 K; compound (II), orange, m.p. 446–448 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 3. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (aromatic) or 0.99 Å (CH2), and with U iso(H) = 1.2U eq(C). For the H atoms bonded to N or O atoms, the atomic coordinates were refined with U iso(H) = 1.2U eq(N) or 1.5U eq(O), giving the N—H and O—H distances shown in Tables 1 and 2.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C10H14N3O2 +·C7H5O2 ·H2O C10H14N3O2 +·C7H3N2O7
M r 347.37 435.35
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 90 90
a, b, c (Å) 6.0768 (3), 7.4427 (4), 18.4737 (9) 7.9599 (4), 8.5391 (4), 14.2227 (5)
α, β, γ (°) 78.894 (2), 85.870 (3), 83.668 (2) 90.426 (2), 105.273 (1), 98.538 (2)
V3) 813.77 (7) 921.15 (7)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.13
Crystal size (mm) 0.24 × 0.22 × 0.17 0.22 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.912, 0.971 0.919, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 27142, 3737, 3164 38287, 4212, 3662
R int 0.066 0.043
(sin θ/λ)max−1) 0.651 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.091, 1.04 0.029, 0.077, 1.04
No. of reflections 3737 4212
No. of parameters 238 289
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20 0.28, −0.18

Computer programs: APEX3 (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989022007472/hb8030sup1.cif

e-78-00840-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007472/hb8030Isup2.hkl

e-78-00840-Isup2.hkl (298KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022007472/hb8030IIsup3.hkl

e-78-00840-IIsup3.hkl (335.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007472/hb8030Isup4.cml

Supporting information file. DOI: 10.1107/S2056989022007472/hb8030IIsup5.cml

CCDC references: 2191691, 2191690

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HJS is grateful to the University of Mysore for research facilities.

supplementary crystallographic information

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Crystal data

C10H14N3O2+·C7H5O2·H2O Z = 2
Mr = 347.37 F(000) = 368
Triclinic, P1 Dx = 1.418 Mg m3
a = 6.0768 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.4427 (4) Å Cell parameters from 3737 reflections
c = 18.4737 (9) Å θ = 2.3–27.6°
α = 78.894 (2)° µ = 0.11 mm1
β = 85.870 (3)° T = 90 K
γ = 83.668 (2)° Block, pale yellow
V = 813.77 (7) Å3 0.24 × 0.22 × 0.17 mm

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Data collection

Bruker D8 Venture diffractometer 3737 independent reflections
Radiation source: microsource 3164 reflections with I > 2σ(I)
Multilayer mirror monochromator Rint = 0.066
φ and ω scans θmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −7→7
Tmin = 0.912, Tmax = 0.971 k = −9→9
27142 measured reflections l = −23→23

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.030P)2 + 0.2902P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3737 reflections Δρmax = 0.25 e Å3
238 parameters Δρmin = −0.20 e Å3
0 restraints

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.22281 (16) 0.29238 (14) 0.44679 (5) 0.0163 (2)
H11 0.172 (2) 0.2234 (19) 0.4908 (8) 0.020*
H12 0.255 (2) 0.403 (2) 0.4565 (7) 0.020*
C12 0.04640 (18) 0.33021 (16) 0.39257 (6) 0.0175 (2)
H12A −0.0854 0.3983 0.4129 0.021*
H12B 0.0020 0.2124 0.3839 0.021*
C13 0.12736 (18) 0.44242 (16) 0.32002 (6) 0.0172 (2)
H13A 0.0112 0.4575 0.2838 0.021*
H13B 0.1524 0.5664 0.3278 0.021*
N14 0.33332 (15) 0.35614 (13) 0.28973 (5) 0.0147 (2)
C15 0.50502 (18) 0.30670 (16) 0.34411 (6) 0.0163 (2)
H15A 0.5561 0.4205 0.3546 0.020*
H15B 0.6336 0.2365 0.3230 0.020*
C16 0.42143 (19) 0.19258 (16) 0.41561 (6) 0.0177 (2)
H16A 0.3830 0.0734 0.4063 0.021*
H16B 0.5394 0.1671 0.4515 0.021*
C141 0.40488 (18) 0.44038 (15) 0.21853 (6) 0.0149 (2)
C142 0.26572 (19) 0.57118 (16) 0.17307 (6) 0.0199 (2)
H142 0.1188 0.6040 0.1906 0.024*
C143 0.3394 (2) 0.65311 (16) 0.10304 (6) 0.0213 (3)
H143 0.2432 0.7399 0.0725 0.026*
C144 0.5535 (2) 0.60750 (16) 0.07820 (6) 0.0189 (2)
C145 0.6944 (2) 0.47632 (16) 0.12051 (6) 0.0199 (2)
H145 0.8406 0.4442 0.1021 0.024*
C146 0.61972 (19) 0.39295 (16) 0.18972 (6) 0.0178 (2)
H146 0.7152 0.3015 0.2186 0.021*
N144 0.63672 (18) 0.70469 (14) 0.00703 (6) 0.0242 (2)
O141 0.50758 (17) 0.81136 (14) −0.03222 (5) 0.0352 (2)
O142 0.83458 (17) 0.67621 (15) −0.01004 (6) 0.0421 (3)
C21 0.13555 (18) 0.09842 (14) 0.71032 (6) 0.0156 (2)
C22 −0.05414 (19) 0.01147 (15) 0.73666 (6) 0.0170 (2)
H22 −0.1565 −0.0072 0.7030 0.020*
C23 −0.0937 (2) −0.04784 (16) 0.81206 (6) 0.0207 (2)
H23 −0.2239 −0.1058 0.8299 0.025*
C24 0.0564 (2) −0.02246 (16) 0.86119 (6) 0.0229 (3)
H24 0.0297 −0.0636 0.9127 0.027*
C25 0.2458 (2) 0.06303 (16) 0.83528 (7) 0.0236 (3)
H25 0.3494 0.0793 0.8691 0.028*
C26 0.2842 (2) 0.12465 (16) 0.76032 (7) 0.0203 (2)
H26 0.4127 0.1852 0.7429 0.024*
C27 0.18134 (19) 0.16532 (15) 0.62878 (6) 0.0179 (2)
O271 0.32916 (15) 0.27141 (13) 0.61005 (5) 0.0293 (2)
O272 0.06693 (14) 0.11185 (11) 0.58360 (4) 0.02171 (19)
O31 0.70609 (15) 0.35347 (12) 0.53628 (5) 0.02152 (19)
H31 0.579 (3) 0.325 (2) 0.5608 (9) 0.032*
H32 0.813 (3) 0.268 (2) 0.5570 (9) 0.032*

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0197 (5) 0.0150 (5) 0.0136 (5) −0.0029 (4) 0.0017 (4) −0.0017 (4)
C12 0.0152 (5) 0.0199 (6) 0.0168 (5) −0.0021 (4) 0.0012 (4) −0.0027 (4)
C13 0.0147 (5) 0.0189 (5) 0.0165 (5) 0.0002 (4) 0.0009 (4) −0.0011 (4)
N14 0.0129 (4) 0.0170 (5) 0.0133 (4) −0.0004 (4) 0.0003 (3) −0.0016 (3)
C15 0.0142 (5) 0.0186 (5) 0.0153 (5) 0.0005 (4) −0.0002 (4) −0.0023 (4)
C16 0.0189 (6) 0.0174 (5) 0.0154 (5) 0.0014 (4) −0.0004 (4) −0.0015 (4)
C141 0.0166 (5) 0.0138 (5) 0.0149 (5) −0.0035 (4) 0.0003 (4) −0.0038 (4)
C142 0.0173 (6) 0.0229 (6) 0.0178 (6) 0.0004 (5) 0.0000 (4) −0.0011 (4)
C143 0.0238 (6) 0.0203 (6) 0.0181 (6) 0.0008 (5) −0.0032 (5) −0.0002 (4)
C144 0.0267 (6) 0.0166 (5) 0.0138 (5) −0.0061 (5) 0.0018 (4) −0.0023 (4)
C145 0.0203 (6) 0.0205 (6) 0.0186 (6) −0.0023 (5) 0.0036 (4) −0.0048 (4)
C146 0.0181 (6) 0.0167 (5) 0.0174 (5) 0.0009 (4) 0.0003 (4) −0.0020 (4)
N144 0.0324 (6) 0.0222 (5) 0.0170 (5) −0.0051 (4) 0.0035 (4) −0.0018 (4)
O141 0.0423 (6) 0.0372 (6) 0.0203 (5) −0.0024 (5) −0.0027 (4) 0.0089 (4)
O142 0.0364 (6) 0.0463 (6) 0.0329 (5) 0.0013 (5) 0.0165 (4) 0.0092 (5)
C21 0.0167 (5) 0.0110 (5) 0.0180 (5) 0.0009 (4) 0.0008 (4) −0.0019 (4)
C22 0.0169 (5) 0.0158 (5) 0.0186 (5) −0.0011 (4) 0.0002 (4) −0.0043 (4)
C23 0.0226 (6) 0.0172 (6) 0.0209 (6) −0.0024 (5) 0.0060 (5) −0.0026 (4)
C24 0.0348 (7) 0.0164 (6) 0.0158 (5) 0.0018 (5) 0.0008 (5) −0.0021 (4)
C25 0.0302 (7) 0.0180 (6) 0.0236 (6) 0.0003 (5) −0.0100 (5) −0.0047 (5)
C26 0.0190 (6) 0.0142 (5) 0.0271 (6) −0.0019 (4) −0.0013 (5) −0.0024 (4)
C27 0.0171 (5) 0.0130 (5) 0.0211 (6) 0.0017 (4) 0.0036 (4) −0.0004 (4)
O271 0.0260 (5) 0.0318 (5) 0.0282 (5) −0.0127 (4) 0.0070 (4) 0.0012 (4)
O272 0.0275 (5) 0.0213 (4) 0.0157 (4) −0.0036 (3) 0.0013 (3) −0.0020 (3)
O31 0.0203 (4) 0.0214 (4) 0.0228 (4) −0.0045 (4) 0.0042 (3) −0.0044 (3)

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Geometric parameters (Å, º)

N11—C16 1.4857 (14) C144—C145 1.3841 (17)
N11—C12 1.4870 (14) C144—N144 1.4581 (14)
N11—H11 0.925 (14) C145—C146 1.3780 (16)
N11—H12 0.921 (15) C145—H145 0.9500
C12—C13 1.5167 (15) C146—H146 0.9500
C12—H12A 0.9900 N144—O141 1.2226 (14)
C12—H12B 0.9900 N144—O142 1.2268 (14)
C13—N14 1.4671 (14) C21—C26 1.3911 (16)
C13—H13A 0.9900 C21—C22 1.3953 (16)
C13—H13B 0.9900 C21—C27 1.5084 (15)
N14—C141 1.4044 (14) C22—C23 1.3896 (16)
N14—C15 1.4688 (14) C22—H22 0.9500
C15—C16 1.5134 (15) C23—C24 1.3840 (18)
C15—H15A 0.9900 C23—H23 0.9500
C15—H15B 0.9900 C24—C25 1.3869 (18)
C16—H16A 0.9900 C24—H24 0.9500
C16—H16B 0.9900 C25—C26 1.3838 (17)
C141—C142 1.4049 (16) C25—H25 0.9500
C141—C146 1.4081 (16) C26—H26 0.9500
C142—C143 1.3853 (16) C27—O271 1.2476 (14)
C142—H142 0.9500 C27—O272 1.2692 (14)
C143—C144 1.3764 (17) O31—H31 0.893 (17)
C143—H143 0.9500 O31—H32 0.909 (17)
C16—N11—C12 109.33 (9) C141—C142—H142 119.5
C16—N11—H11 110.2 (8) C144—C143—C142 119.36 (11)
C12—N11—H11 110.3 (8) C144—C143—H143 120.3
C16—N11—H12 111.3 (8) C142—C143—H143 120.3
C12—N11—H12 108.0 (8) C143—C144—C145 121.48 (11)
H11—N11—H12 107.6 (12) C143—C144—N144 119.32 (11)
N11—C12—C13 110.80 (9) C145—C144—N144 119.16 (11)
N11—C12—H12A 109.5 C146—C145—C144 119.05 (11)
C13—C12—H12A 109.5 C146—C145—H145 120.5
N11—C12—H12B 109.5 C144—C145—H145 120.5
C13—C12—H12B 109.5 C145—C146—C141 121.42 (10)
H12A—C12—H12B 108.1 C145—C146—H146 119.3
N14—C13—C12 112.32 (9) C141—C146—H146 119.3
N14—C13—H13A 109.1 O141—N144—O142 123.28 (11)
C12—C13—H13A 109.1 O141—N144—C144 118.78 (11)
N14—C13—H13B 109.1 O142—N144—C144 117.94 (10)
C12—C13—H13B 109.1 C26—C21—C22 119.26 (10)
H13A—C13—H13B 107.9 C26—C21—C27 119.54 (10)
C141—N14—C13 115.67 (9) C22—C21—C27 121.19 (10)
C141—N14—C15 115.77 (9) C23—C22—C21 120.20 (11)
C13—N14—C15 112.34 (9) C23—C22—H22 119.9
N14—C15—C16 112.12 (9) C21—C22—H22 119.9
N14—C15—H15A 109.2 C24—C23—C22 119.98 (11)
C16—C15—H15A 109.2 C24—C23—H23 120.0
N14—C15—H15B 109.2 C22—C23—H23 120.0
C16—C15—H15B 109.2 C23—C24—C25 120.06 (11)
H15A—C15—H15B 107.9 C23—C24—H24 120.0
N11—C16—C15 110.12 (9) C25—C24—H24 120.0
N11—C16—H16A 109.6 C26—C25—C24 120.10 (11)
C15—C16—H16A 109.6 C26—C25—H25 119.9
N11—C16—H16B 109.6 C24—C25—H25 119.9
C15—C16—H16B 109.6 C25—C26—C21 120.38 (11)
H16A—C16—H16B 108.2 C25—C26—H26 119.8
N14—C141—C142 121.85 (10) C21—C26—H26 119.8
N14—C141—C146 120.53 (10) O271—C27—O272 124.07 (11)
C142—C141—C146 117.62 (10) O271—C27—C21 117.57 (11)
C143—C142—C141 121.01 (11) O272—C27—C21 118.35 (10)
C143—C142—H142 119.5 H31—O31—H32 106.4 (14)
C16—N11—C12—C13 −58.34 (12) C144—C145—C146—C141 −0.95 (17)
N11—C12—C13—N14 54.53 (12) N14—C141—C146—C145 −178.85 (10)
C12—C13—N14—C141 172.83 (9) C142—C141—C146—C145 2.33 (17)
C12—C13—N14—C15 −51.20 (12) C143—C144—N144—O141 −7.29 (17)
C141—N14—C15—C16 −171.67 (9) C145—C144—N144—O141 175.18 (11)
C13—N14—C15—C16 52.40 (12) C143—C144—N144—O142 171.98 (12)
C12—N11—C16—C15 59.27 (12) C145—C144—N144—O142 −5.55 (17)
N14—C15—C16—N11 −56.67 (12) C26—C21—C22—C23 0.09 (16)
C13—N14—C141—C142 −13.70 (15) C27—C21—C22—C23 −179.53 (10)
C15—N14—C141—C142 −148.15 (11) C21—C22—C23—C24 −0.69 (17)
C13—N14—C141—C146 167.53 (10) C22—C23—C24—C25 0.35 (18)
C15—N14—C141—C146 33.07 (14) C23—C24—C25—C26 0.59 (18)
N14—C141—C142—C143 179.86 (11) C24—C25—C26—C21 −1.19 (17)
C146—C141—C142—C143 −1.33 (17) C22—C21—C26—C25 0.85 (17)
C141—C142—C143—C144 −1.02 (18) C27—C21—C26—C25 −179.52 (10)
C142—C143—C144—C145 2.49 (18) C26—C21—C27—O271 −12.91 (16)
C142—C143—C144—N144 −174.99 (11) C22—C21—C27—O271 166.71 (11)
C143—C144—C145—C146 −1.51 (18) C26—C21—C27—O272 167.61 (10)
N144—C144—C145—C146 175.97 (10) C22—C21—C27—O272 −12.77 (16)

4-(4-Nitrophenyl)piperazin-1-ium benzoate monohydrate (I). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C21–C26 ring.

D—H···A D—H H···A D···A D—H···A
N11—H11···O271 0.926 (14) 2.564 (14) 3.1009 (13) 117.4 (10)
N11—H11···O272 0.926 (14) 1.857 (14) 2.7781 (12) 172.9 (13)
N11—H12···O31i 0.920 (15) 1.884 (15) 2.7965 (14) 171.0 (12)
O31—H31···O271 0.892 (18) 1.757 (18) 2.6486 (13) 179 (3)
O31—H32···O272ii 0.908 (17) 1.862 (17) 2.7581 (12) 168.8 (16)
C12—H12B···O272iii 0.99 2.45 3.3751 (15) 156
C146—H146···Cg1iv 0.95 2.67 3.4363 (13) 138

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+1.

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Crystal data

C10H14N3O2+·C7H3N2O7 Z = 2
Mr = 435.35 F(000) = 452
Triclinic, P1 Dx = 1.570 Mg m3
a = 7.9599 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5391 (4) Å Cell parameters from 4212 reflections
c = 14.2227 (5) Å θ = 2.4–27.5°
α = 90.426 (2)° µ = 0.13 mm1
β = 105.273 (1)° T = 90 K
γ = 98.538 (2)° Block, orange
V = 921.15 (7) Å3 0.22 × 0.18 × 0.12 mm

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Data collection

Bruker D8 Venture diffractometer 4212 independent reflections
Radiation source: microsource 3662 reflections with I > 2σ(I)
Multilayer mirror monochromator Rint = 0.043
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.919, Tmax = 0.971 k = −11→11
38287 measured reflections l = −18→17

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.029P)2 + 0.3527P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4212 reflections Δρmax = 0.28 e Å3
289 parameters Δρmin = −0.18 e Å3
0 restraints

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.30883 (12) 0.10386 (11) 0.64405 (7) 0.01693 (19)
H11 0.2967 (17) 0.1840 (17) 0.6040 (10) 0.020*
H12 0.2796 (17) 0.0129 (17) 0.6057 (10) 0.020*
C12 0.17915 (14) 0.10314 (13) 0.70340 (8) 0.0188 (2)
H12A 0.0579 0.0733 0.6608 0.023*
H12B 0.1890 0.2107 0.7328 0.023*
C13 0.21403 (14) −0.01389 (13) 0.78350 (8) 0.0187 (2)
H13A 0.1321 −0.0092 0.8248 0.022*
H13B 0.1931 −0.1229 0.7541 0.022*
N14 0.39625 (12) 0.02405 (11) 0.84356 (6) 0.01699 (19)
C15 0.51561 (14) 0.00483 (13) 0.78325 (8) 0.0170 (2)
H15A 0.4884 −0.1043 0.7536 0.020*
H15B 0.6388 0.0215 0.8245 0.020*
C16 0.49616 (14) 0.12299 (13) 0.70345 (8) 0.0172 (2)
H16A 0.5334 0.2322 0.7330 0.021*
H16B 0.5729 0.1055 0.6610 0.021*
C141 0.44287 (14) 0.13710 (12) 0.91966 (7) 0.0156 (2)
C142 0.31639 (14) 0.18318 (13) 0.96323 (8) 0.0185 (2)
H142 0.1955 0.1406 0.9370 0.022*
C143 0.36498 (14) 0.28859 (13) 1.04300 (8) 0.0182 (2)
H143 0.2783 0.3179 1.0717 0.022*
C144 0.54137 (14) 0.35176 (12) 1.08126 (7) 0.0161 (2)
C145 0.66886 (14) 0.31362 (13) 1.03852 (8) 0.0173 (2)
H145 0.7887 0.3601 1.0640 0.021*
C146 0.62025 (14) 0.20794 (13) 0.95897 (8) 0.0174 (2)
H146 0.7078 0.1821 0.9299 0.021*
N144 0.59245 (12) 0.46290 (11) 1.16455 (6) 0.01728 (19)
O141 0.47859 (11) 0.49209 (10) 1.20379 (6) 0.02406 (19)
O142 0.74805 (11) 0.52457 (10) 1.19410 (6) 0.02329 (18)
C21 0.24532 (14) 0.43648 (13) 0.46951 (8) 0.0171 (2)
C22 0.20094 (14) 0.59329 (12) 0.45355 (8) 0.0168 (2)
C23 0.15472 (14) 0.65011 (13) 0.36161 (8) 0.0163 (2)
H23 0.1308 0.7557 0.3537 0.020*
C24 0.14290 (14) 0.55395 (13) 0.28038 (8) 0.0164 (2)
C25 0.17807 (14) 0.40041 (13) 0.28998 (8) 0.0165 (2)
H25 0.1656 0.3340 0.2339 0.020*
C26 0.23134 (14) 0.34521 (12) 0.38199 (8) 0.0162 (2)
O21 0.28898 (12) 0.38660 (9) 0.55580 (6) 0.02378 (19)
C27 0.20933 (15) 0.70160 (13) 0.53734 (8) 0.0199 (2)
O271 0.16416 (12) 0.83252 (9) 0.52573 (6) 0.02424 (19)
O272 0.26860 (13) 0.65093 (10) 0.62536 (6) 0.0294 (2)
H272 0.288 (2) 0.540 (2) 0.6144 (12) 0.044*
N24 0.09824 (12) 0.61730 (11) 0.18421 (7) 0.01767 (19)
O241 0.08439 (11) 0.75980 (9) 0.17920 (6) 0.02152 (18)
O242 0.07873 (11) 0.52884 (10) 0.11242 (6) 0.02219 (18)
N26 0.27842 (12) 0.18676 (11) 0.38689 (7) 0.01824 (19)
O261 0.20718 (11) 0.09218 (9) 0.31673 (6) 0.02451 (19)
O262 0.38998 (12) 0.15381 (10) 0.45879 (6) 0.02596 (19)

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0230 (5) 0.0128 (4) 0.0146 (4) 0.0040 (4) 0.0037 (4) −0.0003 (4)
C12 0.0177 (5) 0.0181 (5) 0.0198 (5) 0.0037 (4) 0.0032 (4) −0.0033 (4)
C13 0.0188 (5) 0.0191 (5) 0.0171 (5) −0.0008 (4) 0.0051 (4) −0.0030 (4)
N14 0.0184 (4) 0.0179 (4) 0.0142 (4) 0.0015 (4) 0.0045 (3) −0.0018 (3)
C15 0.0195 (5) 0.0162 (5) 0.0159 (5) 0.0045 (4) 0.0048 (4) −0.0012 (4)
C16 0.0194 (5) 0.0157 (5) 0.0175 (5) 0.0030 (4) 0.0066 (4) −0.0006 (4)
C141 0.0210 (5) 0.0132 (5) 0.0128 (5) 0.0032 (4) 0.0044 (4) 0.0028 (4)
C142 0.0163 (5) 0.0207 (5) 0.0176 (5) 0.0029 (4) 0.0030 (4) 0.0004 (4)
C143 0.0192 (5) 0.0199 (5) 0.0173 (5) 0.0064 (4) 0.0063 (4) 0.0020 (4)
C144 0.0218 (5) 0.0130 (5) 0.0133 (5) 0.0031 (4) 0.0039 (4) 0.0005 (4)
C145 0.0175 (5) 0.0168 (5) 0.0170 (5) 0.0012 (4) 0.0045 (4) 0.0015 (4)
C146 0.0190 (5) 0.0176 (5) 0.0169 (5) 0.0031 (4) 0.0071 (4) 0.0011 (4)
N144 0.0211 (5) 0.0150 (4) 0.0161 (4) 0.0033 (4) 0.0054 (4) 0.0013 (3)
O141 0.0240 (4) 0.0273 (4) 0.0229 (4) 0.0058 (3) 0.0092 (3) −0.0061 (3)
O142 0.0213 (4) 0.0234 (4) 0.0230 (4) −0.0029 (3) 0.0058 (3) −0.0057 (3)
C21 0.0188 (5) 0.0154 (5) 0.0162 (5) 0.0013 (4) 0.0039 (4) −0.0003 (4)
C22 0.0183 (5) 0.0142 (5) 0.0172 (5) 0.0014 (4) 0.0042 (4) −0.0017 (4)
C23 0.0156 (5) 0.0146 (5) 0.0187 (5) 0.0024 (4) 0.0043 (4) −0.0001 (4)
C24 0.0151 (5) 0.0189 (5) 0.0146 (5) 0.0018 (4) 0.0034 (4) 0.0011 (4)
C25 0.0143 (5) 0.0176 (5) 0.0174 (5) −0.0001 (4) 0.0054 (4) −0.0042 (4)
C26 0.0164 (5) 0.0131 (5) 0.0196 (5) 0.0024 (4) 0.0059 (4) −0.0013 (4)
O21 0.0394 (5) 0.0160 (4) 0.0151 (4) 0.0071 (3) 0.0044 (3) 0.0009 (3)
C27 0.0252 (6) 0.0158 (5) 0.0178 (5) 0.0013 (4) 0.0051 (4) −0.0015 (4)
O271 0.0347 (5) 0.0153 (4) 0.0218 (4) 0.0066 (3) 0.0046 (3) −0.0032 (3)
O272 0.0541 (6) 0.0178 (4) 0.0151 (4) 0.0096 (4) 0.0051 (4) −0.0019 (3)
N24 0.0141 (4) 0.0220 (5) 0.0168 (4) 0.0022 (4) 0.0043 (3) 0.0004 (4)
O241 0.0228 (4) 0.0206 (4) 0.0216 (4) 0.0054 (3) 0.0056 (3) 0.0050 (3)
O242 0.0224 (4) 0.0284 (4) 0.0151 (4) 0.0022 (3) 0.0049 (3) −0.0038 (3)
N26 0.0207 (5) 0.0153 (4) 0.0209 (5) 0.0031 (4) 0.0093 (4) −0.0007 (4)
O261 0.0267 (4) 0.0178 (4) 0.0285 (4) 0.0023 (3) 0.0074 (3) −0.0087 (3)
O262 0.0329 (5) 0.0245 (4) 0.0226 (4) 0.0132 (4) 0.0061 (3) 0.0031 (3)

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Geometric parameters (Å, º)

N11—C16 1.4919 (14) C145—C146 1.3765 (15)
N11—C12 1.4951 (14) C145—H145 0.9500
N11—H11 0.894 (14) C146—H146 0.9500
N11—H12 0.910 (14) N144—O142 1.2315 (12)
C12—C13 1.5187 (15) N144—O141 1.2355 (12)
C12—H12A 0.9900 C21—O21 1.2788 (13)
C12—H12B 0.9900 C21—C26 1.4340 (15)
C13—N14 1.4635 (14) C21—C22 1.4394 (15)
C13—H13A 0.9900 C22—C23 1.3747 (15)
C13—H13B 0.9900 C22—C27 1.4844 (15)
N14—C141 1.3812 (13) C23—C24 1.3869 (15)
N14—C15 1.4625 (14) C23—H23 0.9500
C15—C16 1.5169 (15) C24—C25 1.3811 (15)
C15—H15A 0.9900 C24—N24 1.4498 (13)
C15—H15B 0.9900 C25—C26 1.3750 (15)
C16—H16A 0.9900 C25—H25 0.9500
C16—H16B 0.9900 C26—N26 1.4540 (14)
C141—C142 1.4125 (15) C27—O271 1.2236 (14)
C141—C146 1.4133 (15) C27—O272 1.3171 (14)
C142—C143 1.3774 (15) O272—H272 1.003 (18)
C142—H142 0.9500 N24—O242 1.2277 (12)
C143—C144 1.3881 (15) N24—O241 1.2389 (12)
C143—H143 0.9500 N26—O262 1.2303 (12)
C144—C145 1.3875 (15) N26—O261 1.2343 (12)
C144—N144 1.4437 (13)
C16—N11—C12 113.90 (8) C144—C143—H143 120.2
C16—N11—H11 108.4 (9) C145—C144—C143 120.87 (10)
C12—N11—H11 108.3 (9) C145—C144—N144 119.43 (10)
C16—N11—H12 111.0 (8) C143—C144—N144 119.67 (10)
C12—N11—H12 108.3 (9) C146—C145—C144 119.48 (10)
H11—N11—H12 106.8 (12) C146—C145—H145 120.3
N11—C12—C13 110.16 (9) C144—C145—H145 120.3
N11—C12—H12A 109.6 C145—C146—C141 121.42 (10)
C13—C12—H12A 109.6 C145—C146—H146 119.3
N11—C12—H12B 109.6 C141—C146—H146 119.3
C13—C12—H12B 109.6 O142—N144—O141 122.45 (9)
H12A—C12—H12B 108.1 O142—N144—C144 118.77 (9)
N14—C13—C12 109.99 (9) O141—N144—C144 118.78 (9)
N14—C13—H13A 109.7 O21—C21—C26 124.86 (10)
C12—C13—H13A 109.7 O21—C21—C22 120.75 (9)
N14—C13—H13B 109.7 C26—C21—C22 114.38 (9)
C12—C13—H13B 109.7 C23—C22—C21 121.89 (10)
H13A—C13—H13B 108.2 C23—C22—C27 117.59 (10)
C141—N14—C15 121.02 (9) C21—C22—C27 120.49 (10)
C141—N14—C13 121.10 (9) C22—C23—C24 120.26 (10)
C15—N14—C13 109.06 (8) C22—C23—H23 119.9
N14—C15—C16 110.28 (9) C24—C23—H23 119.9
N14—C15—H15A 109.6 C25—C24—C23 120.99 (10)
C16—C15—H15A 109.6 C25—C24—N24 119.55 (9)
N14—C15—H15B 109.6 C23—C24—N24 119.43 (10)
C16—C15—H15B 109.6 C26—C25—C24 118.95 (10)
H15A—C15—H15B 108.1 C26—C25—H25 120.5
N11—C16—C15 109.87 (9) C24—C25—H25 120.5
N11—C16—H16A 109.7 C25—C26—C21 123.45 (10)
C15—C16—H16A 109.7 C25—C26—N26 115.98 (9)
N11—C16—H16B 109.7 C21—C26—N26 120.55 (9)
C15—C16—H16B 109.7 O271—C27—O272 121.14 (10)
H16A—C16—H16B 108.2 O271—C27—C22 121.85 (10)
N14—C141—C142 121.47 (10) O272—C27—C22 117.01 (10)
N14—C141—C146 121.20 (10) C27—O272—H272 105.0 (10)
C142—C141—C146 117.30 (10) O242—N24—O241 123.40 (9)
C143—C142—C141 121.27 (10) O242—N24—C24 118.92 (9)
C143—C142—H142 119.4 O241—N24—C24 117.67 (9)
C141—C142—H142 119.4 O262—N26—O261 122.85 (9)
C142—C143—C144 119.59 (10) O262—N26—C26 119.17 (9)
C142—C143—H143 120.2 O261—N26—C26 117.95 (9)
C16—N11—C12—C13 −50.40 (12) C26—C21—C22—C23 −1.93 (15)
N11—C12—C13—N14 56.08 (11) O21—C21—C22—C27 1.51 (16)
C12—C13—N14—C141 84.07 (12) C26—C21—C22—C27 −179.98 (10)
C12—C13—N14—C15 −63.61 (11) C21—C22—C23—C24 2.55 (16)
C141—N14—C15—C16 −83.73 (12) C27—C22—C23—C24 −179.35 (10)
C13—N14—C15—C16 63.98 (11) C22—C23—C24—C25 −0.39 (16)
C12—N11—C16—C15 50.41 (11) C22—C23—C24—N24 −178.48 (9)
N14—C15—C16—N11 −56.47 (11) C23—C24—C25—C26 −2.25 (16)
C15—N14—C141—C142 164.67 (10) N24—C24—C25—C26 175.84 (9)
C13—N14—C141—C142 20.80 (15) C24—C25—C26—C21 2.85 (16)
C15—N14—C141—C146 −17.23 (15) C24—C25—C26—N26 −175.67 (9)
C13—N14—C141—C146 −161.10 (10) O21—C21—C26—C25 177.64 (10)
N14—C141—C142—C143 175.90 (10) C22—C21—C26—C25 −0.79 (16)
C146—C141—C142—C143 −2.27 (16) O21—C21—C26—N26 −3.90 (17)
C141—C142—C143—C144 0.36 (16) C22—C21—C26—N26 177.67 (9)
C142—C143—C144—C145 1.84 (16) C23—C22—C27—O271 5.49 (17)
C142—C143—C144—N144 179.67 (10) C21—C22—C27—O271 −176.38 (10)
C143—C144—C145—C146 −2.02 (16) C23—C22—C27—O272 −174.21 (10)
N144—C144—C145—C146 −179.86 (10) C21—C22—C27—O272 3.93 (16)
C144—C145—C146—C141 0.00 (16) C25—C24—N24—O242 5.79 (14)
N14—C141—C146—C145 −176.08 (10) C23—C24—N24—O242 −176.09 (9)
C142—C141—C146—C145 2.09 (16) C25—C24—N24—O241 −173.14 (9)
C145—C144—N144—O142 1.91 (15) C23—C24—N24—O241 4.98 (14)
C143—C144—N144—O142 −175.95 (10) C25—C26—N26—O262 150.18 (10)
C145—C144—N144—O141 −177.77 (10) C21—C26—N26—O262 −28.38 (15)
C143—C144—N144—O141 4.37 (15) C25—C26—N26—O261 −27.86 (14)
O21—C21—C22—C23 179.56 (10) C21—C26—N26—O261 153.57 (10)

4-(4-Nitrophenyl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N11—H11···O21 0.894 (14) 1.869 (14) 2.7356 (12) 162.8 (13)
N11—H11···O262 0.894 (14) 2.396 (14) 2.8937 (13) 115.4 (11)
N11—H12···O271i 0.910 (14) 1.874 (14) 2.7668 (12) 166.2 (12)
O272—H272···O21 1.000 (17) 1.549 (17) 2.5020 (12) 157.4 (15)
C12—H12B···O142ii 0.99 2.41 3.3921 (14) 173
C16—H16A···O141ii 0.99 2.54 3.4906 (14) 161
C145—H145···O242iii 0.95 2.46 3.3927 (15) 168
C146—H146···O241iv 0.95 2.55 3.4227 (15) 153

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z+1; (iv) −x+1, −y+1, −z+1.

Funding Statement

HSY thanks the UGC for a BSR Faculty fellowship for three years.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Hiemstra, H., Iwema Bakker, W. I., van den Hoogenband, A. & van Maarseveen, J. H. (2005). Tetrahedron Lett. 46, 2369–2371.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  5. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Elliott, S. (2011). Drug Test. Anal. 3, 430–438. [DOI] [PubMed]
  9. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  10. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  11. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  12. Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841–847. [DOI] [PMC free article] [PubMed]
  13. Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 1179–1186. [DOI] [PMC free article] [PubMed]
  14. Huheey, J. E. (1966). J. Phys. Chem. 70, 2086–2092.
  15. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.
  16. Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506. [DOI] [PMC free article] [PubMed]
  17. Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495. [DOI] [PMC free article] [PubMed]
  18. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  19. Lu, Y.-X. (2007). Acta Cryst. E63, o3611.
  20. Mahesha, N., Kiran Kumar, H., Yathirajan, H. S., Foro, S., Abdelbaky, M. S. M. & Garcia-Granda, S. (2022). Acta Cryst. E78, 510–518. [DOI] [PMC free article] [PubMed]
  21. Mullay, J. (1985). J. Am. Chem. Soc. 107, 7271–7275.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Subha, V., Seethalakshmi, T., Balakrishnan, T., Percino, M. J. & Venkatesan, P. (2022). Acta Cryst. E78, 774–778. [DOI] [PMC free article] [PubMed]
  26. Upadhayaya, P. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989022007472/hb8030sup1.cif

e-78-00840-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007472/hb8030Isup2.hkl

e-78-00840-Isup2.hkl (298KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989022007472/hb8030IIsup3.hkl

e-78-00840-IIsup3.hkl (335.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007472/hb8030Isup4.cml

Supporting information file. DOI: 10.1107/S2056989022007472/hb8030IIsup5.cml

CCDC references: 2191691, 2191690

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES