Abstract
Transthyretin (TTR) is a small liver-secreted plasma protein that shows close correlations with changes in lean body mass (LBM) during the entire human lifespan and agglomerates the bulk of nitrogen (N)-containing substrates, hence constituting the cornerstone of body building. Amino acids (AAs) dietary restriction causes inhibition of TTR production and impairs the accretion of LBM reserves. Inflammatory disorders result in cytokine-induced abrogation of TTR synthesis and urinary leakage of nitrogenous catabolites. Taken together, the data indicate that malnutrition and inflammation may similarly suppress the production of TTR through distinct and unrelated pathophysiological mechanisms while operating in concert to downsize LBM stores. The hepatic synthesis of TTR integrates both machineries, acting as a marker of reduced LBM resources still available for defense and repair processes. TTR operates as a universal surrogate analyte that allows for the grading of residual LBM capacity to reflect disease burden. Measurement of TTR is a simple, rapid, and inexpensive micro-method that may be reproduced on a daily basis, hence ideally suited for the follow-up of the most intricated clinical situations and as a reliable predictor of any morbidity outcome.
Keywords: lean body mass, nutritional status, transthyretin, malnutrition, inflammation, amyloidosis
Footnotes
Compliance with ethics guidelines
Yves Ingenbleek declares no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.
References
- 1.Quetelet A. Issue on Man and Development of his Faculties. Paris: Bachelier; 1835. [Google Scholar]
- 2.Williams CD. A nutritional disease of childhood associated with a maize diet. Arch Dis Child. 1933;8(48):423–433. doi: 10.1136/adc.8.48.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Brock JF, Autret M. Kwashiorkor in Africa. Bull World Health Organ. 1952;5(1):1–71. [PMC free article] [PubMed] [Google Scholar]
- 4.Anderson CG, Altmann A. The electrophoretic serum-protein pattern in malignant malnutrition. Lancet. 1951;257(6648):203–204. doi: 10.1016/S0140-6736(51)93357-0. [DOI] [PubMed] [Google Scholar]
- 5.Chase HP, Kumar V, Caldwell RT, O’Brien D. Kwashiorkor in the United States. Pediatrics. 1980;66(6):972–976. doi: 10.1542/peds.66.6.972. [DOI] [PubMed] [Google Scholar]
- 6.Akombi BJ, Agho KE, Hall JJ, Wali N, Renzaho AMN, Merom D. Stunting, wasting and underweight in sub-saharian Africa: a systematic review. Int J Environ Res Public. 2017;14(8):863–880. doi: 10.3390/ijerph14080863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Bistrian BR, Blackburn GL, Vitale J, Cochran D, Naylor J. Prevalence of malnutrition in general medical patients. JAMA. 1976;235(15):1567–1570. doi: 10.1001/jama.1976.03260410023017. [DOI] [PubMed] [Google Scholar]
- 8.Hill GL, Blackett RL, Pickford I, Burkinshaw L, Young GA, Warren JV, Schorah CJ, Morgan DB. Malnutrition in surgical patients. An unrecognised problem. Lancet. 1977;309(8013):689–692. doi: 10.1016/S0140-6736(77)92127-4. [DOI] [PubMed] [Google Scholar]
- 9.Ingenbleek Y, De Nayer P, De Visscher M. Thyroxine-binding globulin in infant protein-calorie malnutrition. J Clin Endocrinol Metab. 1974;39(1):178–180. doi: 10.1210/jcem-39-1-178. [DOI] [PubMed] [Google Scholar]
- 10.Ingenbleek Y, De Visscher M, De Nayer P. Measurement of prealbumin as index of protein-calorie malnutrition. Lancet. 1972;300(7768):106–109. doi: 10.1016/S0140-6736(72)91596-6. [DOI] [PubMed] [Google Scholar]
- 11.Ingenbleek Y. Protein-calorie malnutrition in the child of lower age. Repercussions on thyroid function and serum carrier proteins. Belgium: Catholic University of Louvain; 1977. [Google Scholar]
- 12.Forbes GB. Human Body Composition. Berlin: Springer-Verlag; 1987. [Google Scholar]
- 13.Cohn SH, Vartsky D, Yasumura S, Vaswani AN, Ellis KJ. Indexes of body cell mass: nitrogen versus potassium. Am J Physiol. 1983;244(3):E305–E310. doi: 10.1152/ajpendo.1983.244.3.E305. [DOI] [PubMed] [Google Scholar]
- 14.Brožek J, Grande F. Body composition and basal metabolism in man: correlation analysis versus physiological approach. Hum Biol. 1955;27(1):22–31. [PubMed] [Google Scholar]
- 15.Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–88. doi: 10.1152/jappl.2000.89.1.81. [DOI] [PubMed] [Google Scholar]
- 16.Heymsfield SB, Müller MJ, Bosy-Westphal A, Thomas D, Shen W. Human brain mass: similar body composition associations as observed across mammals. Am J Hum Biol. 2012;24(4):479–485. doi: 10.1002/ajhb.22249. [DOI] [PubMed] [Google Scholar]
- 17.Nakshabendi IM, McKee R, Downie S, Russell RI, Rennie MJ. Rates of small intestinal mucosal protein synthesis in human jejunum and ileum. Am J Physiol. 1999;277(6):E1028–1031. doi: 10.1152/ajpendo.1999.277.6.E1028. [DOI] [PubMed] [Google Scholar]
- 18.McNurlan MA, Sandgren A, Hunter K, Essén P, Garlick PJ, Wernerman J. Protein synthesis rates of skeletal muscle, lymphocytes, and albumin with stress hormone infusion in healthy man. Metabolism. 1996;45(11):1388–1394. doi: 10.1016/S0026-0495(96)90120-1. [DOI] [PubMed] [Google Scholar]
- 19.Heymsfield SB, Peterson CM, Bourgeois B, Thomas DM, Gallagher D, Strauss B, Müller MJ, Bosy-Westphal A. Human energy expenditure: advances in organ-tissue prediction models. Obes Rev. 2018;19(9):1177–1188. doi: 10.1111/obr.12718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Elia M. Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN, editors. Energy Metabolism: Tissue Determinants and Cellular Corollaries. New York: Raven Press; 1992. pp. 61–79. [Google Scholar]
- 21.Power DM, Elias NP, Richardson SJ, Mendes J, Soares CM, Santos CR. Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol. 2000;119(3):241–255. doi: 10.1006/gcen.2000.7520. [DOI] [PubMed] [Google Scholar]
- 22.Wallace MR, Naylor SL, Kluve-Beckerman B, Long GL, McDonald L, Shows TB, Benson MD. Localization of the human prealbumin gene to chromosome 18. Biochem Biophys Res Commun. 1985;129(3):753–758. doi: 10.1016/0006-291X(85)91956-4. [DOI] [PubMed] [Google Scholar]
- 23.Kanda Y, Goodman DS, Canfield RE, Morgan FJ. The amino acid sequence of human plasma prealbumin. J Biol Chem. 1974;249(21):6796–6805. doi: 10.1016/S0021-9258(19)42128-5. [DOI] [PubMed] [Google Scholar]
- 24.Kanai M, Raz A, Goodman DS. Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Invest. 1968;47(9):2025–2044. doi: 10.1172/JCI105889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Monaco HL. The transthyretin-retinol binding protein complex. In: Richardson SJ, Cody V, editors. Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Berlin: Springer-Verlag; 2009. pp. 123–143. [Google Scholar]
- 26.Socolow EL, Woeber KA, Purdy RH, Holloway MT, Ingbar SH. Preparation of I-131-labeled human serum prealbumin and its metabolism in normal and sick patients. J Clin Invest. 1965;44(10):1600–1609. doi: 10.1172/JCI105266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Peterson PA, Nilsson SF, Ostberg L, Rask L, Vahlquist A. Aspects of the metabolism of retinol-binding protein and retinol. Vitam Horm. 1975;32:181–214. doi: 10.1016/S0083-6729(08)60012-6. [DOI] [PubMed] [Google Scholar]
- 28.Ingenbleek Y, Van Den Schrieck HG, De Nayer P, De Visscher M. The role of retinol-binding protein in protein-calorie malnutrition. Metabolism. 1975;24(5):633–641. doi: 10.1016/0026-0495(75)90143-2. [DOI] [PubMed] [Google Scholar]
- 29.Kabat EA, Moore DH, Landow H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to serum proteins. J Clin Invest. 1942;21(5):571–577. doi: 10.1172/JCI101335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Schönenberger M, Schultze HE, Schwick G. A prealbumin of human serum. Biochem Z. 1956;328(4):267–284. [PubMed] [Google Scholar]
- 31.Andreoli M, Robbins J. Serum proteins and thyroxineprotein interaction in early human fetuses. J Clin Invest. 1962;41(5):1070–1077. doi: 10.1172/JCI104557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Vahlquist A, Rask L, Peterson PA, Berg T. The concentrations of retinol-binding protein, prealbumin, and transferrin in the sera of newly delivered mothers and children of various ages. Scand J Clin Lab Invest. 1975;35(6):569–575. doi: 10.3109/00365517509095782. [DOI] [PubMed] [Google Scholar]
- 33.Veldhuis JDL, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev. 2005;26(1):114–146. doi: 10.1210/er.2003-0038. [DOI] [PubMed] [Google Scholar]
- 34.Bienvenu J, Jeppson JO, Ingenbleek Y. Transthyretin & retinol-binding protein. In: Ritchie RF, Navolotskaia O. Serum Proteins in Clinical Medicine. Foundation for Blood Research, Scarborough, Maine, 1996: 9.011–9.018
- 35.Young VR, Yu YM, Fugakawa NK. Energy and protein turnover. In: Kinney JM, Tucker HN, editors. Energy, Metabolism, Tissue Determinants and Cellular Corollaries. New York: Raven Press; 1992. pp. 439–466. [Google Scholar]
- 36.Pencharz PB. Protein and energy requirements for “optimal” catch-up growth. Eur J Clin Nutr. 2010;64(Suppl.1):S5–7. doi: 10.1038/ejcn.2010.39. [DOI] [PubMed] [Google Scholar]
- 37.de Jong FA, Schreiber G. Messenger RNA levels of plasma proteins in rat liver during protein depletion and refeeding. J Nutr. 1987;117(10):1795–1800. doi: 10.1093/jn/117.10.1795. [DOI] [PubMed] [Google Scholar]
- 38.Straus DS, Marten NW, Hayden JM, Burke EJ. Protein restriction specifically decreases the abundance of serum albumin and transthyretin nuclear transcripts in rat liver. J Nutr. 1994;124(7):1041–1051. doi: 10.1093/jn/124.7.1041. [DOI] [PubMed] [Google Scholar]
- 39.Ingenbleek Y, Young V. Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr. 1994;14(1):495–533. doi: 10.1146/annurev.nu.14.070194.002431. [DOI] [PubMed] [Google Scholar]
- 40.Moskowitz SR, Pereira G, Spitzer A, Heaf L, Amsel J, Watkins JB. Prealbumin as a biochemical marker of nutritional adequacy in premature infants. J Pediatr. 1983;102(5):749–753. doi: 10.1016/S0022-3476(83)80251-0. [DOI] [PubMed] [Google Scholar]
- 41.Thomas MR, Massoudi M, Byrne J, Mitchell MA, Eggert LD, Chan GM. Evaluation of transthyretin as a monitor of protein-energy intake in preterm and sick neonatal infants. J Parenter Enteral Nutr. 1988;12(2):162–166. doi: 10.1177/0148607188012002162. [DOI] [PubMed] [Google Scholar]
- 42.Ogunshina SO, Hussain MA. Plasma thyroxine binding prealbumin as an index of mild protein-energy malnutrition in Nigerian children. Am J Clin Nutr. 1980;33(4):794–800. doi: 10.1093/ajcn/33.4.794. [DOI] [PubMed] [Google Scholar]
- 43.Devoto G, Gallo F, Marchello C, Racchi O, Garbarini R, Bonassi S, Albalustri G, Haupt E. Prealbumin serum concentrations as a useful tool in the assessment of malnutrition in hospitalized patients. Clin Chem. 2006;52(12):2281–2285. doi: 10.1373/clinchem.2006.080366. [DOI] [PubMed] [Google Scholar]
- 44.Mühlethaler R, Stuck AE, Minder CE, Frey BM. The prognostic significance of protein-energy malnutrition in geriatric patients. Age Ageing. 1995;24(3):193–197. doi: 10.1093/ageing/24.3.193. [DOI] [PubMed] [Google Scholar]
- 45.Waterlow JC. Amount and rate of disappearance of liver fat in malnourished infants in Jamaica. Am J Clin Nutr. 1975;28(11):1330–1336. doi: 10.1093/ajcn/28.11.1330. [DOI] [PubMed] [Google Scholar]
- 46.Barbezat GO, Bowie MD, Kaschula RO, Hansen JD. Studies on the small intestinal mucosa of children with protein-calorie malnutrition. S Afr Med J. 1967;41(41):1031–1036. [PubMed] [Google Scholar]
- 47.Reid M, Badaloo A, Forrester T, Morlese JF, Heird WC, Jahoor F. The acute-phase protein response to infection in edematous and nonedematous protein-energy malnutrition. Am J Clin Nutr. 2002;76(6):1409–1415. doi: 10.1093/ajcn/76.6.1409. [DOI] [PubMed] [Google Scholar]
- 48.Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A, Rossi-Fanelli F. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition. 2000;16(10):843–857. doi: 10.1016/S0899-9007(00)00449-4. [DOI] [PubMed] [Google Scholar]
- 49.McMillan SA, Dickey W, Douglas JP, Hughes DF. Transthyretin values correlate with mucosal recovery in patients with coeliac disease taking a gluten free diet. J Clin Pathol. 2001;54(10):783–786. doi: 10.1136/jcp.54.10.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Watson F, Dick M. Distribution and inheritance of low serum thyroxine-binding globulin levels in Australian Aborigines: a new genetic variation. Med J Aust. 1980;2(7):385–387. doi: 10.5694/j.1326-5377.1980.tb131879.x. [DOI] [PubMed] [Google Scholar]
- 51.Bienvenu J, Monneret G, Fabien N, Revillard JP. The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med. 2000;38(4):267–285. doi: 10.1515/CCLM.2000.040. [DOI] [PubMed] [Google Scholar]
- 52.Ingenbleek Y, Bernstein L. The stressful condition as a nutritionally dependent adaptive dichotomy. Nutrition. 1999;15(4):305–320. doi: 10.1016/S0899-9007(99)00009-X. [DOI] [PubMed] [Google Scholar]
- 53.Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6):448–454. doi: 10.1056/NEJM199902113400607. [DOI] [PubMed] [Google Scholar]
- 54.Arnold J, Campbell IT, Samuels TA, Devlin JC, Green CJ, Hipkin LJ, MacDonald IA, Scrimgeour CM, Smith K, Rennie MJ. Increased whole body protein breakdown predominates over increased whole body protein synthesis in multiple organ failure. Clin Sci (Lond) 1993;84(6):655–661. doi: 10.1042/cs0840655. [DOI] [PubMed] [Google Scholar]
- 55.Murakami T, Ohnishi S, Nishiguchi S, Maeda S, Araki S, Shimada K. Acute-phase response of mRNAs for serum amyloid P component, C-reactive protein and prealbumin (transthyretin) in mouse liver. Biochem Biophys Res Commun. 1988;155(2):554–560. doi: 10.1016/S0006-291X(88)80530-8. [DOI] [PubMed] [Google Scholar]
- 56.Banks RE, Forbes MA, Storr M, Higginson J, Thompson D, Raynes J, Illingworth JM, Perren TJ, Selby PJ, Whicher JT. The acute phase protein response in patients receiving subcutaneous IL-6. Clin Exp Immunol. 1995;102(1):217–223. doi: 10.1111/j.1365-2249.1995.tb06659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Myron Johnson A, Merlini G, Sheldon J, Ichihara K, Scientific Division Committee on Plasma Proteins C-PP. International Federation of Clinical ChemistryLaboratory Medicine IFCC Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition. Clin Chem Lab Med. 2007;45(3):419–426. doi: 10.1515/CCLM.2007.051. [DOI] [PubMed] [Google Scholar]
- 58.Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, Compher C, Correia I, Higashiguchi T, Holst M, Jensen GL, Malone A, Muscaritoli M, Nyulasi I, Pirlich M, Rothenberg E, Schindler K, Schneider SM, de van der Schueren MA, Sieber C, Valentini L, Yu JC, Van Gossum A, Singer P. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49–64. doi: 10.1016/j.clnu.2016.09.004. [DOI] [PubMed] [Google Scholar]
- 59.Evans DC, Corkins MR, Malone A, Miller S, Mogensen KM, Guenter P, Jensen GL, ASPEN Malnutrition Committee The use of visceral proteins as nutrition markers: An ASPEN position paper. Nutr Clin Pract. 2021;36(1):22–28. doi: 10.1002/ncp.10588. [DOI] [PubMed] [Google Scholar]
- 60.Ingenbleek Y. Plasma transthyretin reflects the fluctuations of lean body mass. In: Richardson SJ, Cody V, editors. Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Berlin: Springer-Verlag; 2009. pp. 329–357. [Google Scholar]
- 61.Sergi G, Coin A, Enzi G, Volpato S, Inelmen EM, Buttarello M, Peloso M, Mulone S, Marin S, Bonometto P. Role of visceral proteins in detecting malnutrition in the elderly. Eur J Clin Nutr. 2006;60(2):203–209. doi: 10.1038/sj.ejcn.1602289. [DOI] [PubMed] [Google Scholar]
- 62.Blackburn GL, Bistrian BR, Maini BS, Schlamm HT, Smith MF. Nutritional and metabolic assessment of the hospitalized patient. J Parenter Enteral Nutr. 1977;1(1):11–22. doi: 10.1177/014860717700100101. [DOI] [PubMed] [Google Scholar]
- 63.Keller U. Nutritional laboratory markers in malnutrition. J Clin Med. 2019;8(6):775–785. doi: 10.3390/jcm8060775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Poulia KA, Yannakoulia M, Karageorgou D, Gamaletsou M, Panagiotakos DB, Sipsas NV, Zampelas A. Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly. Clin Nutr. 2012;31(3):378–385. doi: 10.1016/j.clnu.2011.11.017. [DOI] [PubMed] [Google Scholar]
- 65.Cederholm T, Jensen GL, Correia MITD, Gonzalez MC, Fukushima R, Higashigushi T, Baptista G, Barazzoni R, Blaauw R, Coats A, Crivelli A, Evans DC, Gramlich L, Fuchs-Tarlovsky V, Keller H, Llido L, Malone A, Mogensen KM, Morley JE, Muscaritoli M, Nyalusi I, Dirlich M, Pisprasert V, de van der Schueren MAE, Siltharm S, Singer P, Tappenden K, Velasco N, Waitzberg D, Yamwong P, Yu J, Van Gossum A, Compher C, GLIM Core Leadership Committee; GLIM Working Group GLIM criteria for the diagnosis of malnutrition. A consensus report from the global clinical nutrition community. Clin Nutr. 2019;38(1):1–9. doi: 10.1016/j.clnu.2018.08.002. [DOI] [PubMed] [Google Scholar]
- 66.Chiquete E, Ruiz-Sandoval JL, Ochoa-Guzmán A, Sánchez-Orozco LV, Lara-Zaragoza EB, Basaldúa N, Ruiz-Madrigal B, Martínez-López E, Román S, Godínez-Gutiérrez SA, Panduro A. The Quételet index revisited in children and adults. Endocrinol Nutr. 2014;61(2):87–92. doi: 10.1016/j.endonu.2013.06.001. [DOI] [PubMed] [Google Scholar]
- 67.Gavriilidou NN, Pihlsgård M, Elmståhl S. High degree of BMI misclassification of malnutrition among Swedish elderly population: age-adjusted height estimation using knee height and demispan. Eur J Clin Nutr. 2015;69(5):565–571. doi: 10.1038/ejcn.2014.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Tomiyama AJ, Hunger JM, Nguyen-Cuu J, Wells C. Misclassification of cardiometabolic health when using body mass index categories in NHANES 2005–2012. Int J Obes. 2016;40(5):883–886. doi: 10.1038/ijo.2016.17. [DOI] [PubMed] [Google Scholar]
- 69.Sedlmeier AM, Baumeister SE, Weber A, Fischer B, Thorand B, Ittermann T, Dörr M, Felix SB, Völzke H, Peters A, Leitzmann MF. Relation of body fat mass and fat-free mass to total mortality: results from 7 prospective cohort studies. Am J Clin Nutr. 2021;113(3):639–646. doi: 10.1093/ajcn/nqaa339. [DOI] [PubMed] [Google Scholar]
- 70.Gonzalez MC, Correia MITD, Heymsfield SB. A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care. 2017;20(5):314–321. doi: 10.1097/MCO.0000000000000395. [DOI] [PubMed] [Google Scholar]
- 71.Devakonda A, George L, Raoof S, Esan A, Saleh A, Bernstein LH. Transthyretin as a marker to predict outcome in critically ill patients. Clin Biochem. 2008;41(14–15):1126–1130. doi: 10.1016/j.clinbiochem.2008.06.016. [DOI] [PubMed] [Google Scholar]
- 72.Li JD, Xu XF, Han J, Wu H, Xing H, Li C, Yu JJ, Zhou YH, Gu WM, Wang H, Chen TH, Zeng YY, Lau WY, Wu MC, Shen F, Yang T. Preoperative prealbumin level as an independent predictor of long-term prognosis after liver resection for hepatocellular carcinoma: a multi-institutional study. HPB (Oxford) 2019;21(2):157–166. doi: 10.1016/j.hpb.2018.06.1803. [DOI] [PubMed] [Google Scholar]
- 73.Han WX, Chen ZM, Wei ZJ, Xu AM. Preoperative pre-albumin predicts prognosis of patients after gastrectomy for adenocarcinoma of esophagogastric junction. World J Surg Oncol. 2016;14(1):279–285. doi: 10.1186/s12957-016-1035-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Ho SY, Guo HR, Chen HH, Peng CJ. Nutritional predictors of survival in terminally ill cancer patients. J Formos Med Assoc. 2003;102(8):544–550. [PubMed] [Google Scholar]
- 75.Isono N, Imamura Y, Ohmura K, Ueda N, Kawabata S, Furuse M, Kuroiwa T. Transthyretin concentrations in acute stroke patients predict convalescent rehabilitation. J Stroke Cerebrovasc Dis. 2017;26(6):1375–1382. doi: 10.1016/j.jstrokecerebrovasdis.2017.02.020. [DOI] [PubMed] [Google Scholar]
- 76.Dellière S, Pouga L, Neveux N, Hernvann A, De Bandt JP, Cynober L. Assessment of transthyretin cut-off values for a better screening of malnutrition: retrospective determination and prospective validation. Clin Nutr. 2021;40(3):907–911. doi: 10.1016/j.clnu.2020.06.017. [DOI] [PubMed] [Google Scholar]
- 77.Dramaix M, Brasseur D, Donnen P, Bawhere P, Porignon D, Tonglet R, Hennart P. Prognostic indices for mortality of hospitalized children in central Africa. Am J Epidemiol. 1996;143(12):1235–1243. doi: 10.1093/oxfordjournals.aje.a008711. [DOI] [PubMed] [Google Scholar]
- 78.Ingenbleek Y. Plasma transthyretin as a biomarker of sarcopenia in elderly subjects. Nutrients. 2019;11(4):895–912. doi: 10.3390/nu11040895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Liu P, Hao Q, Hai S, Wang H, Cao L, Dong B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: a systematic review and meta-analysis. Maturitas. 2017;103(9):16–22. doi: 10.1016/j.maturitas.2017.04.007. [DOI] [PubMed] [Google Scholar]
- 80.Chertow GM, Goldstein-Fuchs DJ, Lazarus JM, Kaysen GA. Prealbumin, mortality, and cause-specific hospitalization in hemodialysis patients. Kidney Int. 2005;68(6):2794–2800. doi: 10.1111/j.1523-1755.2005.00751.x. [DOI] [PubMed] [Google Scholar]
- 81.Bernstein LH, Ingenbleek Y. Transthyretin: its response to malnutrition and stress injury. clinical usefulness and economic implications. Clin Chem Lab Med. 2002;40(12):1344–1348. doi: 10.1515/CCLM.2002.232. [DOI] [PubMed] [Google Scholar]
- 82.Koike H, Iguchi Y, Sahashi K, Katsuno M. Significance of oligomeric and fibrillar species in amyloidosis: insights into pathophysiology and treatment. Molecules. 2021;26(16):5091–5101. doi: 10.3390/molecules26165091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Lewis WD, Skinner M, Simms RW, Jones LA, Cohen AS, Jenkins RL. Orthotopic liver transplantation for familial amyloidotic polyneuropathy. Clin Transplant. 1994;8(2):107–110. [PubMed] [Google Scholar]
- 84.Suhr OB, Conceição IM, Karayal ON, Mandel FS, Huertas PE, Ericzon BG. Post hoc analysis of nutritional status in patients with transthyretin familial amyloid polyneuropathy: impact of tafamidis. Neurol Ther. 2014;3(2):101–112. doi: 10.1007/s40120-014-0023-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13(4):236–249. doi: 10.1080/13506120600960882. [DOI] [PubMed] [Google Scholar]
- 86.Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, Perez J, Chiesa J, Warrington S, Tranter E, Munisamy M, Falzone R, Harrop J, Cehelsky J, Bettencourt BR, Geissler M, Butler JS, Sehgal A, Meyers RE, Chen Q, Borland T, Hutabarat RM, Clausen VA, Alvarez R, Fitzgerald K, Gamba-Vitalo C, Nochur SV, Vaishnaw AK, Sah DWY, Gollob JA, Suhr OB. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–829. doi: 10.1056/NEJMoa1208760. [DOI] [PubMed] [Google Scholar]
- 87.Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Planté-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH, 3rd, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceição I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31. doi: 10.1056/NEJMoa1716793. [DOI] [PubMed] [Google Scholar]
- 88.Magrinelli F, Fabrizi GM, Santoro L, Zanette G, Cavallaro T, Tamburin S. Pharmacological treatment for familial amyloid polyneuropathy. Cochrane Database. Syst Rev. 2020;4:1–72. doi: 10.1002/14651858.CD012395.pub2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Tomson R, Fridolin I, Luman M. Lean body mass assessment based on UV absorbance in spent dialysate and dual-energy X-ray absorptiometry. Int J Artif Organs. 2015;38(6):311–315. doi: 10.5301/ijao.5000415. [DOI] [PubMed] [Google Scholar]
- 90.Player EL, Morris P, Thomas T, Chan WY, Vyas R, Dutton J, Tang J, Alexandre L, Forbes A. Bioelectrical impedance analysis (BIA)-derived phase angle (PA) is a practical aid to nutritional assessment in hospital in-patients. Clin Nutr. 2019;38(4):1700–1706. doi: 10.1016/j.clnu.2018.08.003. [DOI] [PubMed] [Google Scholar]
- 91.Cui N, Tong H, Li Y, Ge Y, Shi Y, Lv P, Zhao X, Zhang J, Fu G, Zhou Y, Jiang K, Lin N, Bai T, Jin R, Wei S, Yang X, Li X. Role of prealbumin in predicting the prognosis of severely and critically ill Covid-19 patients. Am J Trop Med Hyg. 2021;105(3):718–726. doi: 10.4269/ajtmh.21-0234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Luo Y, Xue Y, Mao L, Yuan X, Lin Q, Tang G, Song H, Wang F, Sun Z. Prealbumin as a predictor of prognosis in patients with coronavirus disease 2019. Front Med (Lausanne) 2020;7(6):374–382. doi: 10.3389/fmed.2020.00374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Chen R, Li L, Li C, Su Y, Zhang Y, Pang X, Zheng J, Zeng Z, Chen MH, Zhang S. Prealbumin and retinol-binding protein 4: The promising inflammatory biomarkers for identifying endoscopic remission in Crohn’s disease. J Inflamm Res. 2021;14:7371–7379. doi: 10.2147/JIR.S343125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Fan Y, Sun Y, Man C, Lang Y. Perioperative serum prealbumin level and adverse prognosis in patients with hepatocellular carcinoma after hepatectomy: a meta-analysis. Front Oncol. 2021;11:775425. doi: 10.3389/fonc.2021.775425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Miura T, Amano K, Shirado A, Baba M, Ozawa T, Nakajima N, Suga A, Matsumoto Y, Shimizu M, Shimoyama S, Kuriyama T, Matsuda Y, Iwashita T, Mori I, Kinoshita H. Low transthyretin levels predict poor prognosis in cancer patients in palliative care settings. Nutr Cancer. 2018;70(8):1283–1289. doi: 10.1080/01635581.2018.1557213. [DOI] [PubMed] [Google Scholar]
- 96.Shimura T, Shibata M, Inoue T, Owada-Ozaki Y, Yamaura T, Muto S, Hasegawa T, Shio Y, Suzuki H. Prognostic impact of serum transthyretin in patients with non-small cell lung cancer. Mol Clin Oncol. 2019;10(6):597–604. doi: 10.3892/mco.2019.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Akashi M, Minami Y, Haruki S, Jujo K, Hagiwara N. Prognostic implications of prealbumin level on admission in patients with acute heart failure referred to a cardiac intensive care unit. J Cardiol. 2019;73(2):114–119. doi: 10.1016/j.jjcc.2018.08.003. [DOI] [PubMed] [Google Scholar]
- 98.Sato S, Shiozawa M, Nukada S, Iguchi K, Kazama K, Atsumi Y, Numata M, Tamagawa H, Tanaka K, Oshima T, Rino Y. Preoperatve pre-albumin concentration as a predictor of short-term outcomes in elderly patients with colorectal cancer. Anticancer Res. 2021;41(10):5195–5202. doi: 10.21873/anticanres.15338. [DOI] [PubMed] [Google Scholar]
- 99.Kumagai E, Hosohata K, Furumachi K, Takai S. Range of serum transthyretin levels in hemodialysis patients at a high risk of 1-year mortality: a retrospective cohort study. Ther Apher Dial 2021; [Epub ahead of print] doi:10.1111/1744-9987.13768 [DOI] [PubMed]
- 100.Yang HT, Yim H, Cho YS, Kim D, Hur J, Kim JH, Lee BC, Seo DK, Kim HS, Chun W. Prediction of clinical outcomes for massively-burned patients via serum transthyretin levels in the early postburn period. J Trauma Acute Care Surg. 2012;72(4):999–1005. doi: 10.1097/TA.0b013e3182413bd8. [DOI] [PubMed] [Google Scholar]
- 101.Lee KH, Cho JH, Kwon O, Kim SU, Kim RH, Cho YW, Jung HY, Choi JY, Kim CD, Kim YL, Park SH. Low prealbumin levels are independently associated with higher mortality in patients on peritoneal dialysis. Kidney Res Clin Pract. 2016;35(3):169–175. doi: 10.1016/j.krcp.2016.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Bae HJ, Lee HJ, Han DS, Suh YS, Lee YH, Lee HS, Cho JJ, Kong SH, Yang HK. Prealbumin levels as a useful marker for predicting infectious complications after gastric surgery. J Gastrointest Surg. 2011;15(12):2136–2144. doi: 10.1007/s11605-011-1719-z. [DOI] [PubMed] [Google Scholar]
- 103.Akbar MR, Pranata R, Wibowo A, Lim MA, Sihite TA, Martha JW. The association between serum prealbumin and poor outcome in COVID-19—systematic review and meta-analysis. Eur Rev Med Pharmacol Sci. 2021;25(10):3879–3885. doi: 10.26355/eurrev_202105_25955. [DOI] [PubMed] [Google Scholar]
- 104.Seesen M, Sirikul W, Ruangsuriya J, Griffiths J, Siviroj P. Cognitive frailty in Thai community-dwelling elderly: prevalence and its association with malnutrition. Nutrients. 2021;13(12):4239–4256. doi: 10.3390/nu13124239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Sugumar D, Arockiaraj J, Amritanand R, David KS, Krishnan V. Role of biochemical nutritional parameters as predictors of postoperative morbidity in major spine surgeries. Asian Spine J. 2021;15(4):504–511. doi: 10.31616/asj.2020.0180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Shahriari M, Rezaei E, Bakht LA, Abbasi S. Comparison of the effects of enteral feeding through the bolus and continuous methods on blood sugar and prealbumin levels in ICU inpatients. J Educ Health Promot. 2015;4(4):95–99. doi: 10.4103/2277-9531.171809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Zinellu A, Mangoni AA. Serum prealbumin concentrations, Covid-19 severity, and mortality: a systematic review and meta-analysis. Front Med (Lausanne) 2021;8:638529. doi: 10.3389/fmed.2021.638529. [DOI] [PMC free article] [PubMed] [Google Scholar]