Abstract
Objective
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin lymphoma. Due to its genetic heterogeneity and abnormal metabolism, many DLBCL patients have a poor prognosis. This study investigated the key metabolism-related genes and potential mechanisms.
Methods
Differentially expressed genes, differentially expressed transcription factors (TFs), and differentially expressed metabolism-related genes (DEMRGs) of glucose and lipid metabolic processes were identified using the edgeR package. Key DEMRGs were screened by Lasso regression, and a prediction model was constructed. The cell type identification by estimating relative subsets of RNA transcripts algorithm was utilized to assess the fraction of immune cells, and Gene Set Enrichment Analysis was used to determine immune-related pathways. A regulatory network was constructed with significant co-expression interactions among TFs, DEMRGs, immune cells/pathways, and hallmark pathways.
Results
A total of 1551 DEMRGs were identified. A prognostic model with a high applicability (area under the curve=0.921) was constructed with 13 DEMRGs. Tumorigenesis of DLBCL was highly related to the neutrophil count. Four DEMRGs (PRXL2AB, CCN1, DECR2 and PHOSPHO1) with 32 TF—DEMRG, 36 DEMRG—pathway, 14 DEMRG—immune-cell, 9 DEMRG—immune-gene-set, and 67 DEMRG—protein-chip interactions were used to construct the regulatory network.
Conclusion
We provided a prognostic prediction model based on 13 DEMRGs for DLBCL. We found that phosphatase, orphan 1 (PHOSPHO1) is positively regulated by regulatory factor X5 (RFX5) and mediates MYC proto-oncogene (MYC) targeting the V2 pathway and neutrophils.
Key words: diffuse large B-cell lymphoma, metabolism-related gene, immune microenvironment, regulatory network, PHOSPHO1
Acknowledgments
We are grateful for the use of the data provided by The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Portal (GTEx), and the Sequence Read Archive (SRA) database.
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Footnotes
This study was supported in part by the National Natural Science Foundation of China (No. 81702849).
Change history
4/24/2023
An Erratum to this paper has been published: 10.1007/s11596-023-2710-0
Contributor Information
Tian-rui Chen, Email: chentr@smmu.edu.cn.
Hai-feng Lan, Email: lanhf2013@163.com.
Li-na Jin, Email: jinln2008@163.com.
References
- 1.Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–690. doi: 10.1038/s41591-018-0016-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Naresh KN. Genetics of Diffuse Large B-Cell Lymphoma. New Engl J Med. 2018;379(5):493. doi: 10.1056/NEJMc1806191. [DOI] [PubMed] [Google Scholar]
- 3.Gribben JG, Fowler N, Morschhauser F. Mechanisms of Action of Lenalidomide in B-Cell Non-Hodgkin Lymphoma. J Clin Oncol. 2015;33(25):2803–2811. doi: 10.1200/JCO.2014.59.5363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. New Engl J Med. 2002;346(4):235–242. doi: 10.1056/NEJMoa011795. [DOI] [PubMed] [Google Scholar]
- 5.Glass B, Ziepert M, Reiser M, et al. High-dose therapy followed by autologous stem-cell transplantation with and without rituximab for primary treatment of high-risk diffuse large B-cell lymphoma. Ann Oncol. 2010;21(11):2255–2261. doi: 10.1093/annonc/mdq235. [DOI] [PubMed] [Google Scholar]
- 6.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. [DOI] [PubMed] [Google Scholar]
- 7.Baenke F, Peck B, Miess H, et al. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6(6):1353–1363. doi: 10.1242/dmm.011338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015;19(1A):A68–A77. doi: 10.5114/wo.2014.47136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Ardlie KG, DeLuca DS, Segre AV, et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348(6235):648–660. doi: 10.1126/science.1262110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Liberzon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Zheng R, Wan C, Mei S, et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019;47(D1):D729–D735. doi: 10.1093/nar/gky1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32:D258–D261. doi: 10.1093/nar/gkh036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Meng T, Huang R, Jin J, et al. A comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro-oncology. 2021;23(10):709–722. doi: 10.1093/neuonc/noab156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Yu GC, Wang LG, Han YY, et al. ClusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Guo H, Wang S, Ju M, et al. Identification of Stemness-Related Genes for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma by Integrated Bioinformatics Analysis. Front Cell Dev Biol. 2021;9:642724. doi: 10.3389/fcell.2021.642724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Subramanian A, Narayan R, Corsello SM, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 2017;171(6):1437–1452. doi: 10.1016/j.cell.2017.10.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419. [DOI] [PubMed] [Google Scholar]
- 18.Snel B, Lehmann G, Bork P, et al. STRING: a webserver to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28(18):3442–3444. doi: 10.1093/nar/28.18.3442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Blazewicz SJ, Barnard RL, Daly RA, et al. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. Isme J. 2013;7(11):2061–2068. doi: 10.1038/ismej.2013.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Brandman O, Hegde RS. Ribosome-associated protein quality control. Nat Struct Mol Biol. 2016;23(1):7–15. doi: 10.1038/nsmb.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Poulos TL. Heme enzyme structure and function. Chem Rev. 2014;114(7):3919–3962. doi: 10.1021/cr400415k. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem. 2014;289(25):17406–17415. doi: 10.1074/jbc.R113.546218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Duncan T, Trewick SC, Koivisto P, et al. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA. 2002;99(26):16660–16665. doi: 10.1073/pnas.262589799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Di Stefano L, Jensen MR, Helin K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 2003;22(23):6289–6298. doi: 10.1093/emboj/cdg613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Garcia-Morales E, Lazaro-Martinez JL, Martinez-Hernandez D, et al. Impact of diabetic foot related complications on the Health Related Quality of Life (HRQol) of patients—a regional study in Spain. Int J Low Extrem Wounds. 2011;10(1):6–11. doi: 10.1177/1534734611400257. [DOI] [PubMed] [Google Scholar]
- 26.Brand K. Glutamine and Glucose-Metabolism during Thymocyte Proliferation - Pathways of Glutamine and Glutamate Metabolism. Biochem J. 1985;228(2):353–361. doi: 10.1042/bj2280353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Adams HJ, de Klerk JM, Fijnheer R, et al. Brain glucose metabolism in diffuse large B-cell lymphoma patients as assessed with FDG-PET: impact on outcome and chemotherapy effects. Acta Radiol. 2016;57(6):733–741. doi: 10.1177/0284185115598809. [DOI] [PubMed] [Google Scholar]
- 28.Currie E, Schulze A, Zechner R, et al. Cellular Fatty Acid Metabolism and Cancer. Cell Metab. 2013;18(2):153–161. doi: 10.1016/j.cmet.2013.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Kobayashi T, Lam PY, Jiang H, et al. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood. 2020;136(26):3004–3017. doi: 10.1182/blood.2020005602. [DOI] [PubMed] [Google Scholar]
- 30.Scholl T, Mahanta SK, Strominger JL. Specific complex formation between the type II bare lymphocyte syndrome-associated transactivators CIITA and RFX5. P Natl Acad Sci USA. 1997;94(12):6330–6334. doi: 10.1073/pnas.94.12.6330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Chen DB, Xie XW, Zhao YJ, et al. RFX5 promotes the progression of hepatocellular carcinoma through transcriptional activation of KDM4A. Sci Rep. 2020;10(1):14538. doi: 10.1038/s41598-020-71403-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Rimsza L, Roberts R, Miller T, et al. Loss of MHC class II gene and protein expression in diffuse large B cell lymphoma is related to decreased tumor immumosurveillance and poor patient survival: A follow-up study to the NIH director’s challenge leukemia and lymphoma molecular profiling project (LLMPP) Blood. 2004;103(11):4251–4258. doi: 10.1182/blood-2003-07-2365. [DOI] [PubMed] [Google Scholar]
- 33.Stewart AJ, Schmid R, Blindauer CA, et al. Comparative modelling of human PHOSPHO1 reveals a new group of phosphatases within the haloacid dehalogenase superfamily. Protein Eng. 2003;16(12):889–895. doi: 10.1093/protein/gzg126. [DOI] [PubMed] [Google Scholar]
- 34.Roberts SJ, Stewart AJ, Sadler PJ, et al. Human PHOSPHO1 exhibits high specific phosphoethanolamine and phosphocholine phosphatase activities. Biochem J. 2004;382:59–65. doi: 10.1042/BJ20040511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Houston B, Seawright E, Jefferies D, et al. Identification and cloning of a novel phosphatase expressed at high levels in differentiating growth plate chondrocytes. Bba-Mol Cell Res. 1999;1448(3):500–506. doi: 10.1016/s0167-4889(98)00153-0. [DOI] [PubMed] [Google Scholar]
- 36.Gohil VM, Zhu L, Baker CD, et al. Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism. J Biolog Chem. 2013;288(49):35387–35395. doi: 10.1074/jbc.M113.489237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Arias-Mendoza F, Payne GS, Zakian K, et al. Noninvasive phosphorus magnetic resonance spectroscopic imaging predicts outcome to first-line chemotherapy in newly diagnosed patients with diffuse large B-cell lymphoma. Acad Radiol. 2013;20(9):1122–1129. doi: 10.1016/j.acra.2013.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Dang CV, O’Donnell KA, Zeller KI, et al. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253–264. doi: 10.1016/j.semcancer.2006.07.014. [DOI] [PubMed] [Google Scholar]
- 39.Zhang J, Meng L, Jiang W, et al. Identification of clinical molecular targets for childhood Burkitt lymphoma. Transl Oncol. 2020;13(12):100855. doi: 10.1016/j.tranon.2020.100855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Deng M, Xu-Monette ZY, Pham LV, et al. Aggressive B-cell Lymphoma with MYC/TP53 Dual Alterations Displays Distinct Clinicopathobiological Features and Response to Novel Targeted Agents. Mol Cancer Res. 2021;19(2):249–260. doi: 10.1158/1541-7786.MCR-20-0466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Lou X, Fu J, Zhao X, et al. MiR-7e-5p downregulation promotes transformation of low-grade follicular lymphoma to aggressive lymphoma by modulating an immunosuppressive stroma through the upregulation of FasL in M1 macrophages. J Exp Clin Cancer Res. 2020;39(1):237. doi: 10.1186/s13046-020-01747-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Klapproth K, Wirth T. Advances in the understanding of MYC-induced lymphomagenesis. Brit J Haematol. 2010;149(4):484–497. doi: 10.1111/j.1365-2141.2010.08159.x. [DOI] [PubMed] [Google Scholar]
- 44.Marconato L, Polton GA, Sabattini S, et al. Conformity and controversies in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature. Vet Comp Oncol. 2017;15(3):1029–1040. doi: 10.1111/vco.12244. [DOI] [PubMed] [Google Scholar]
- 45.Marconato L, Frayssinet P, Rouquet N, et al. Randomized, placebo-controlled, double-blinded chemoimmunotherapy clinical trial in a pet dog model of diffuse large B-cell lymphoma. Clin Cancer Res. 2014;20(3):668–677. doi: 10.1158/1078-0432.CCR-13-2283. [DOI] [PubMed] [Google Scholar]
- 46.Carbone A, Tripodo C, Carlo-Stella C, et al. The role of inflammation in lymphoma. Adv Exp Med Biol. 2014;816:315–333. doi: 10.1007/978-3-0348-0837-8_12. [DOI] [PubMed] [Google Scholar]
- 47.Howard R, Kanetsky PA, Egan KM. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci Rep. 2019;9(1):19673. doi: 10.1038/s41598-019-56218-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Marconato L, Martini V, Stefanello D, et al. Peripheral blood lymphocyte/monocyte ratio as a useful prognostic factor in dogs with diffuse large B-cell lymphoma receiving chemoimmunotherapy. Vet J. 2015;206(2):226–230. doi: 10.1016/j.tvjl.2015.07.009. [DOI] [PubMed] [Google Scholar]