Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jul 28;66(1):127–136. doi: 10.1007/s11427-021-2137-3

Expression of phenylalanine ammonia lyase as an intracellularly free and extracellularly cell surface-immobilized enzyme on a gut microbe as a live biotherapeutic for phenylketonuria

Yu Jiang 1,#, Bingbing Sun 2,3,#, Fenghui Qian 3, Feng Dong 3, Chongmao Xu 3, Wuling Zhong 4, Rui Huang 4, Qiwei Zhai 4, Yu Jiang 1,, Sheng Yang 2,
PMCID: PMC9362719  PMID: 35907113

Abstract

Phenylketonuria (PKU), a disease resulting in the disability to degrade phenylalanine (Phe) is an inborn error with a 1 in 10,000 morbidity rate on average around the world which leads to neurotoxicity. As an potential alternative to a protein-restricted diet, oral intake of engineered probiotics degrading Phe inside the body is a promising treatment, currently at clinical stage II (Isabella, et al., 2018). However, limited transmembrane transport of Phe is a bottleneck to further improvement of the probiotic’s activity. Here, we achieved simultaneous degradation of Phe both intracellularly and extracellularly by expressing genes encoding the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL) as an intracellularly free and a cell surface-immobilized enzyme in Escherichia coli Nissle 1917 (EcN) which overcomes the transportation problem. The metabolic engineering strategy was also combined with strengthening of Phe transportation, transportation of PAL-catalyzed trans-cinnamic acid and fixation of released ammonia. Administration of our final synthetic strain TYS8500 with PAL both displayed on the cell surface and expressed inside the cell to the PahF263S PKU mouse model reduced blood Phe concentration by 44.4% compared to the control EcN, independent of dietary protein intake. TYS8500 shows great potential in future applications for PKU therapy.

Supporting Information

The supporting information is available online at 10.1007/s11427-021-2137-3. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Keywords: phenylalanine ammonia lyase, cell surface display, phenylketonuria, TYS8500, oral administration

Electronic supplementary material

11427_2021_2137_MOESM1_ESM.docx (41.3KB, docx)

Supplementary material, approximately 44 KB.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21825804, 31921006), the National Science & Technology Major Project “Key New Drug Creation and Manufacturing Program”, China (2018ZX09711002-019), the Shanghai Municipal Science and Technology Major Project and the National Key Research and Development Program of China (2018YFA0800603). The authors would like to acknowledge Dr. Shuming Yin and Prof. Dali Li from Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University for providing PKU animal models in the early stage of the project. We also thank Dr. Xinwen Huang from The Children’s Hospital, Zhejiang University School of Medicine for helpful discussion on the clinical potential of the project. We also thank Jieze Zhang from the Department of Chemistry, University of Southern California for language editing of the manuscript.

Footnotes

Compliance and ethics

The author(s) declare that they have no conflict of interest. Shanghai Taoyusheng Biotechology Co., Ltd. has commercial interest in the project. All animal work conformed to the regulations of the animal ethics committee and was approved by Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences for Animal Research.

Contributed equally to this work

Contributor Information

Yu Jiang, Email: yjiang@cibt.ac.cn.

Sheng Yang, Email: syang@sibs.ac.cn.

References

  1. Adolfsen KJ, Callihan I, Monahan CE, Greisen Per J, Spoonamore J, Momin M, Fitch LE, Castillo MJ, Weng L, Renaud L, et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat Commun. 2021;12:1–3. doi: 10.1038/s41467-021-26524-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatrics. 2015;4:304–317. doi: 10.3978/j.issn.2224-4336.2015.10.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilder DA, Kobori JA, Cohen-Pfeffer JL, Johnson EM, Jurecki E R, Grant ML. Neuropsychiatric comorbidities in adults with phenylketonuria: a retrospective cohort study. Mol Genet Metab. 2017;121:1–8. doi: 10.1016/j.ymgme.2017.03.002. [DOI] [PubMed] [Google Scholar]
  4. Bourget L, Chang TMS. Effects of oral administration of artificial cells immobilized phenylalanine ammonia-lyase on intestinal amino acids of phenylketonuric rats. Biomater Artif Cells Artif Organs. 1989;17:161–181. doi: 10.3109/10731198909118278. [DOI] [PubMed] [Google Scholar]
  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cao Y, Song M, Li F, Li C, Lin X, Chen Y, Chen Y, Xu J, Ding Q, Song H. A synthetic plasmid toolkit for Shewanella oneidensis MR-1. Front Microbiol. 2019;10:410. doi: 10.3389/fmicb.2019.00410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang TMS. Therapeutic applications of polymeric artificial cells. Nat Rev Drug Discov. 2005;4:221–235. doi: 10.1038/nrd1659. [DOI] [PubMed] [Google Scholar]
  8. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS ONE. 2017;12:e0176286. doi: 10.1371/journal.pone.0176286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duydu Y, SÜZen S, Vural N, Erdem N, Uysal H. A modified method for determination of hippuric acid in urine by HPLC. Ankara Universitesi Eczacilik Fakultesi Dergisi. 1999;28:37–46. doi: 10.1501/Eczfak_0000000330. [DOI] [Google Scholar]
  10. Goormans AR, Snoeck N, Decadt H, Vermeulen K, Peters G, Coussement P, Van Herpe D, Beauprez JJ, De Maeseneire SL, Soetaert WK. Comprehensive study on Escherichia coli genomic expression: does position really matter? Metab Eng. 2020;62:10–19. doi: 10.1016/j.ymben.2020.07.007. [DOI] [PubMed] [Google Scholar]
  11. Hoskins JA, Gray J. Phenylalanine ammonia lyase in the management of phenylketonuria: the relationship between ingested cinnamate and urinary hippurate in humans. Res Commun Chem Pathol Pharmacol. 1982;35:275–282. [PubMed] [Google Scholar]
  12. Hoskins JA, Holliday SB, Greenway AM. The metabolism of cinnamic acid by healthy and phenylketonuric adults: a kinetic study. Biol Mass Spectrom. 1984;11:296–300. doi: 10.1002/bms.1200110609. [DOI] [PubMed] [Google Scholar]
  13. Hoskins JA, Jack G, Peiris RJD, Starr DJT, Wade HE, Wright E C, Stern J. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet. 1980;315:392–394. doi: 10.1016/S0140-6736(80)90944-7. [DOI] [PubMed] [Google Scholar]
  14. Huisman, G.W., Agard, N.J., Mijts, B., Vroom, J., Zhang, X., Huisman, G., and Agard, N. (2014). New engineered polypeptide useful in pharmaceutical composition for treating phenylketonuria, has phenylalanine ammonia-lyase (PAL) activity, comprises specific amino acid sequence. US Patent, 2014314843-A1.
  15. Hydery, T., and Coppenrath, V.A. (2019). A comprehensive review of pegvaliase, an enzyme substitution therapy for the treatment of phenylketonuria. Drug Target Insights 13. [DOI] [PMC free article] [PubMed]
  16. Hyun MW, Yun YH, Kim JY, Kim SH. Fungal and plant phenylalanine ammonia-lyase. Mycobiology. 2011;39:257–265. doi: 10.5941/MYCO.2011.39.4.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, Anderson CL, Li N, Fisher AB, West KA, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36:857–864. doi: 10.1038/nbt.4222. [DOI] [PubMed] [Google Scholar]
  18. Kang DG, Li L, Ha JH, Choi SS, Cha HJ. Efficient cell surface display of organophosphorous hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Korean J Chem Eng. 2008;25:804–807. doi: 10.1007/s11814-008-0132-0. [DOI] [Google Scholar]
  19. Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau M R, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11:eaau797. doi: 10.1126/scitranslmed.aau7975. [DOI] [PubMed] [Google Scholar]
  20. Lee SY, Choi JH, Xu Z. Microbial cell-surface display. Trends Biotechnol. 2003;21:45–52. doi: 10.1016/S0167-7799(02)00006-9. [DOI] [PubMed] [Google Scholar]
  21. Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab. 2018;124:223–229. doi: 10.1016/j.ymgme.2018.06.002. [DOI] [PubMed] [Google Scholar]
  22. Li Q, Sun B, Chen J, Zhang Y, Jiang Y, Yang S. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochim Biophys Sin. 2021;53:620–627. doi: 10.1093/abbs/gmab036. [DOI] [PubMed] [Google Scholar]
  23. Liang B, Li L, Mascin M, Liu A. Construction of xylose dehydrogenase displayed on the surface of bacteria using ice nucleation protein for sensitive D-xylose detection. Anal Chem. 2012;84:275–282. doi: 10.1021/ac202513u. [DOI] [PubMed] [Google Scholar]
  24. Markham A. Pegvaliase: first global approval. BioDrugs. 2018;32:391–395. doi: 10.1007/s40259-018-0292-3. [DOI] [PubMed] [Google Scholar]
  25. Mays ZJ, Mohan K, Trivedi VD, Chappell TC, Nair NU. Directed evolution of Anabaena variabilis phenylalanine ammonia-lyase (PAL) identifies mutants with enhanced activities. Chem Commun. 2020;56:5255–5258. doi: 10.1039/D0CC00783H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A. Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol. 2006;70:564–572. doi: 10.1007/s00253-005-0111-x. [DOI] [PubMed] [Google Scholar]
  27. Puurunen MK, Vockley J, Searle SL, Sacharow SJ, Phillips Iii JA, Denney WS, Goodlett BD, Wagner DA, Blankstein L, Castillo MJ, et al. Safety and pharmacodynamics of an engineered E. coli Nissle for the treatment of phenylketonuria: a first-in-human phase 1/2a study. Nat Metab. 2021;3:1125–1132. doi: 10.1038/s42255-021-00430-7. [DOI] [PubMed] [Google Scholar]
  28. Qu W, Xue Y, Ding Q. Display of fungi xylanase on Escherichia coli cell surface and use of the enzyme in xylan biodegradation. Curr Microbiol. 2015;70:779–785. doi: 10.1007/s00284-015-0781-2. [DOI] [PubMed] [Google Scholar]
  29. Ravirala RS, Barabote RD, Wheeler DM, Reverchon S, Tatum O, Malouf J, Liu H, Pritchard L, Hedley PE, Birch PRJ, et al. Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. Mol Plant Microbe Interact. 2007;20:313–320. doi: 10.1094/MPMI-20-3-0313. [DOI] [PubMed] [Google Scholar]
  30. Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, Chang T MS, Scriver CR. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci USA. 1999;96:2339–2344. doi: 10.1073/pnas.96.5.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith N, Longo N, Levert K, Hyland K, Blau N. Phase I clinical evaluation of CNSA-001 (sepiapterin), a novel pharmacological treatment for phenylketonuria and tetrahydrobiopterin deficiencies, in healthy volunteers. Mol Genet Metab. 2019;126:406–412. doi: 10.1016/j.ymgme.2019.02.001. [DOI] [PubMed] [Google Scholar]
  32. Sonnenborn U. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett. 2016;363:fnw212. doi: 10.1093/femsle/fnw212. [DOI] [PubMed] [Google Scholar]
  33. Yin S, Ma L, Shao T, Zhang M, Guan Y, Wang L, Hu Y, Chen X, Han H, Shen N, et al. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Sci China Life Sci. 2022;65:718–730. doi: 10.1007/s11427-020-1744-6. [DOI] [PubMed] [Google Scholar]
  34. van Spronsen FJ. Phenylketonuria: a 21st century perspective. Nat Rev Endocrinol. 2010;6:509–514. doi: 10.1038/nrendo.2010.125. [DOI] [PubMed] [Google Scholar]
  35. Zhang Y, Jia X, Wang L, Liu J, Ma G. Preparation of Ca-Alginate microparticles and its application for phenylketonuria oral therapy. Ind Eng Chem Res. 2011;50:4106–4112. doi: 10.1021/ie101973h. [DOI] [Google Scholar]
  36. Zhang Z, Tang R, Bian L, Mei M, Li C, Ma X, Yi L, Ma L. Surface immobilization of human arginase-1 with an engineered ice nucleation protein display system in E. coli. PLoS ONE. 2016;11:e0160367. doi: 10.1371/journal.pone.0160367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11427_2021_2137_MOESM1_ESM.docx (41.3KB, docx)

Supplementary material, approximately 44 KB.


Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES