Skip to main content
Environmental Epigenetics logoLink to Environmental Epigenetics
. 2022 Jul 5;8(1):dvac015. doi: 10.1093/eep/dvac015

European epidemiological patterns of cannabis- and substance-related congenital cardiovascular anomalies: geospatiotemporal and causal inferential study

Albert Stuart Reece 1,2,*, Gary Kenneth Hulse 3,4
PMCID: PMC9364688  PMID: 35966825

Abstract

As prenatal and community cannabis exposures have recently been linked with congenital heart disease (CHD), it was of interest to explore these associations in Europe in a causal framework and space-time context. Congenital anomaly data from Eurocat, drug-use data from the European Monitoring Centre for Drugs and Drug Addiction, and income from the World Bank. Countries with rising daily cannabis use had in general higher congenital anomaly rates over time than those without (time: status interaction: β-Est. = 0.0267, P = 0.0059). At inverse probability-weighted panel regression, cannabis terms were positive and significant for CHD, severe CHD, atrial septal defect, ventricular septal defect, atrioventricular septal defect, patent ductus arteriosus, tetralogy of Fallot, vascular disruptions, double outlet right ventricle, transposition of the great vessels, hypoplastic right heart, and mitral valve anomalies from 1.75 × 10−19, 4.20 × 10−11, <2.2 × 10−16, <2.2 × 10−16, 1.58 × 10−12, 4.30 × 10−9, 4.36 × 10−16, 3.50 × 10−8, 5.35 × 10−12, <2.2 × 10−16, 5.65 × 10−5 and 6.06 × 10−10. At spatial regression, terms including cannabis were positive and significant for this same list of anomalies from 0.0038, 1.05 × 10−10, 0.0215, 8.94 × 10−6, 1.23 × 10−5, 2.05 × 10−5, 1.07 × 10−6, 8.77 × 10−5, 9.11 × 10−6, 0.0001, 3.10 × 10−7 and 2.17 × 10−7. 92.6% and 75.2% of 149 E-value estimates and minimum E-values were in high zone >9; 100.0% and 98.7% >1.25. Data show many congenital cardiac anomalies exhibit strong bivariate relationships with metrics of cannabis exposure. Causal inferential modelling for the twelve anomalies selected demonstrated convincing evidence of robust relationships to cannabis which survived adjustment and fulfilled epidemiological criteria for causal relationships. Space-time regression was similarly confirmatory. Epigenomic pathways constitute viable potential mechanisms. Given exponential genotoxic dose-response effects, careful and astute control of cannabinoid penetration is indicated.

Keywords: tobacco, alcohol, cannabis, cannabinoid, cancer, cancerogenesis, mutagenesis, oncogenesis, genotoxicity, epigenotoxicity, transgenerational inheritance

Introduction

Cardiovascular anomalies form the commonest group of congenital anomalies (CAs) [1–3]. Following on from recent reports in HI, CO, Canada, Australia and the USA [4–8], as well as preliminary reports from Europe [9], it was of interest to study how the European pattern of cardiac congenital anomalies (CCAs) would behave when investigated in a formal causal inferential analytical framework and in the space-time context from which the native data were drawn.

The earliest report of this association from HI, USA identified hypoplastic left heart syndrome, tetralogy of Fallot, pulmonary valve stenosis or atresia, ventricular septal defect (VSD) and atrial septal defect (ASD) as being significantly related to prenatal cannabis exposure [4]. In Canada, the total cardiovascular defects were linked with community cannabis consumption [7]. In CO, USA, pulmonary artery anomalies, ASD, patent ductus arteriosus (PDA) and VSD were significantly cannabis related [5]. In Australia, ASD, VSD, PDA and tetralogy of Fallot were more common in a high cannabis using area, while the transposition of the great vessels was of borderline significance [6]. In the report from the USA, interrupted aortic arch, hypoplastic left heart syndrome, aortic valve stenosis, VSD, pulmonary valve atresia, total anomalous pulmonary return, tetralogy of Fallot, coarctation of the aorta, ASD and single ventricle were all related to Δ9-tetrahydrocannabinol (THC) exposure, and the transposition of the great vessels was related to cannabidiol exposure [8, 10].

Morphogenesis of the heart and great vessels is very complex. The heart at first forms from the fusion of the two dorsal aortae which become pulsatile. This fused dorsal heart tube then folds, twists and turns to provide the somewhat twisted shape of the adult heart. The heart forms from cells in six cardiogenic fields, the primary, secondary and lateral heart fields, the proepicardium, the neural crest and parts of the great vessels are formed from the somites of the pharyngeal arches [11].

Genes that are important to heart development and are known as the core regulatory network are MEF2, NKX2, GATA, Tbx and Hand-1 and Hand-2 [11]. Impairment of Hand-1 expression leads to left ventricular anomalies. Impairments of Hand-2 lead to right ventricular anomalies [11]. Genes that are important in arteriogenesis include sonic hedgehog/vascular endothelial growth factor/notch/Eph-4/Ephrin-B2 [11] Genes that are important in venogenesis include COUP-TFII/notch/Eph-4.

Moreover, the recent availability of detailed epigenomic resources describing lists of genes altered both in cannabis dependence and in cannabis withdrawal [12] indicates that it should be possible to gain a fair degree of mechanistic insight into the pathways which may be acting to generate the observed profile of teratological disturbances.

Cannabis is used widely by young people in the reproductive age group. Indeed, one recent study reported that 24% of pregnant Californian teenagers recently tested positive for cannabis [13], a situation that appears to have deteriorated since the COVID-19 pandemic commenced [14]. It was recently reported that an estimated 169 000 American women used cannabis while pregnant [15–18]. Moreover, it was recently reported that 69% of Coloradan cannabis dispensaries actively recommended cannabis preparations for many of the side effects of pregnancy, such as insomnia, tiredness, anxiety and nausea [19], which interestingly is the identical group of indications for which thalidomide was also recommended in about 1958 [20].

The European Network of Population-Based Registries for the Epidemiological Surveillance of Congenital Anomalies (EUROCAT) [21] database tracks 95 birth defects across time which provides unusual detail and depth to analyses of body systems. It also provides a category for system-wide anomalies such as total congenital heart disease (CHD). Importantly, the total CA rate (CAR) includes live births, stillbirths and cases where early termination for anomaly was practised, all combined together so that it represents a total overall picture across all classes of births. The European Monitoring Centre for Drugs and Drug Addiction has a very detailed dataset of various metrics of cannabis use, which combined with a recent epidemiological analysis of cannabis use patterns across Europe [22] means that in-depth and detailed analyses can be conducted in this population.

One of our particular concerns going into this analysis was that many cannabinoids have shown a very clear exponential genotoxic dose–response relationship relating to diverse mutagenic and DNA-damaging activities [23–33], as well as the basic metabolic reactions on which genomic and epigenomic stability depends [34–39]. Moreover, recent epidemiological studies have confirmed that at the highest environmental doses of cannabis, a sharp jump is observed in the rates of many CAs [10]. Since a number of European countries have recently experienced a major increase in all of cannabis use prevalence, daily cannabis use intensity and cannabinoid potency [22, 40] it would appear that community cannabinoid exposure has increased rapidly there in recent years. Furthermore, there is some indication that cannabinoids are entering the food chain in countries such as France based on large crops of cannabis grown in parts of that nation and accompanying teratological outbreaks of major limb deformities in both bovine and human babies [41–43]. For these reasons, we are concerned that the sharp increase in cannabinoid penetration into the community colliding with the well-defined genotoxic dose-response curve [25–29, 33, 38] may well lead to further major genotoxic outcomes reflected in patterns of disease in whole populations.

The present study set out to study the following hypotheses and study questions: (i) Is there a bivariate relationship between exposure to various metrics of cannabis exposure and some cardiac CAs? (ii) Are these relationships robust to multivariable adjustment? (iii) Do these relationships fulfill quantitative criteria for causality? (iv) Was this confirmed at space-time analysis? (v) To what extent do epigenomic mechanisms potentially explain these observations? These hypotheses were formulated prior to the study analysis being performed.

Methods

Data

Data on all available CARs were downloaded by each individual year for each of 14 nations from the EUROCAT website [21] and analysed. The total CAR includes anomaly rates among live births, stillbirths and cases where early termination for anomaly was practised, all combined together so that it represents a total overall picture across all classes of births. The nations selected were chosen on the basis of the availability of their CA data for most of the years 2010–2019. National tobacco (percent daily tobacco use prevalence) and alcohol (litres of pure alcohol consumed per capita annually) use data were downloaded from the World Health Organization [44]. Drug use data for cannabis, amphetamines and cocaine were taken from the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) [45]. Data relate to both sexes considered together. Last month cannabis use data were also supplemented by data on the THC content of cannabis herb and resin provided in recently published reports [22]. Data on daily cannabis use were also available from the EMCDDA and were collated in recent reports [22]. Median household income data (in $USD) were taken from the World Bank [46].

National Assignment

Nations were categorized as being either high and rising daily cannabis use or low and/or falling daily cannabis use based on a recent European epidemiological study (see Supplementary Fig. S4) [22]. Thus, Belgium, Croatia, France, Germany, Italy, Netherlands, Norway, Portugal and Spain were categorized as nations experiencing increasing daily use, while Bulgaria, Finland, Hungary, Poland and Sweden were nations which were experiencing low or falling levels of daily cannabis use.

Derived Data

The availability of several metrics of cannabis use, exposure and consumption made it possible to calculate various derived metrics. Hence, last month cannabis use prevalence data were multiplied by the THC content of cannabis herb and resin to derive compound metrics. These metrics were also multiplied by imputed daily cannabis use prevalence rates to derive further compound metrics for both cannabis herb and resin.

Data Imputation

Missing data were completed by linear interpolation. This was particularly the case for daily cannabis use. Fifty-nine data points on daily cannabis use from the EMCDDA were available for these 14 nations across this period. Linear interpolation expanded this dataset to 129 data points (further details are provided in the Results section). Data on cannabis resin THC concentration were not available for Sweden. However, it was noted that the resin to herb THC concentration was almost constant in nearby Norway at 17.7, so this ratio was applied to the Swedish cannabis herb THC concentration data to derive estimates of Swedish cannabis resin THC concentration. Similarly, data for the cannabis resin THC concentration in Poland were not available. The resin to herb THC concentration ratio of nearby Germany was used to estimate the resin THC content in Poland from the known Polish herb THC concentrations. Since geospatial analytical techniques do not tolerate missing data, the dataset was completed by the last observation carried forwards or backwards for Croatia in 2018 and 2019 and Netherlands in 2010. It was not appropriate to use multiple imputation methods for this dataset as multiple imputations cannot be applied in panel or spatial multivariable regression techniques.

Statistics

Data were processed in R Studio version 1.4.1717 based on R version 4.1.1 from the Comprehensive R Archive Network and the R Foundation for Statistical Computing [47]. The analysis was conducted in December 2021. Data were manipulated using dplyr from the tidyverse [48]. Data were log-transformed where appropriate to improve compliance with normality assumptions based on the results of the Shapiro–Wilks test. Graphs were drawn in ggplot2 from tidyverse. Maps were drawn using ggplot2, sf (simple features) [49] and both custom colour palettes and palettes taken from the viridis and viridisLite packages [50].

Bivariate maps were drawn with package colorplaner [51]. All illustrations are original and have not been published previously. Linear regression was conducted in Base R. Mixed-effects regression was performed using package nlme [52]. In all multivariable models, model reduction was by the classical technique of serial deletion of the least significant term to yield a final reduced model which is the model presented. Multiple linear models were processed in a single pass using combined techniques from R packages purrr and broom [48, 53, 54]. The overall effect of covariates in multivariable models may be quantified as the marginal effect. In this case, the overall marginal effect was calculated using the R package margins [55].

Covariate Selection

The presence of multiple different metrics for cannabis consumption and exposure created a problem for analysis as it was not clear which was the most appropriate metric to employ for any particular model. Indiscriminate use of excessive covariates in a multivariable model would unnecessarily consume degrees of freedom and thereby restrict the ability to assess interactions. This issue was formally addressed by the use of random forest regression using the R package ranger [56] with variable importance being formally assessed via the R package vip (variable importance plot) [57]. The most predictive covariates from this process were entered into the regression modelling equations. The tables from this analysis are presented in the Results section.

Panel and Geospatial Analysis

Panel analysis was conducted using R package plm [58] across both space and time simultaneously using the ‘twoways’ effect. The spatial weights matrix was calculated using the edge and corner ‘queen’ relationships using R package spdep (spatial dependency) [59]. Geospatial modelling was conducted using the spatial panel random effects maximum likelihood (spreml) function from the package spml which allows detailed modelling and correction of model error structures [60, 61]. Such models may produce four model coefficients of interest which are useful in determining the most appropriate error structure for the model. These coefficients are phi, the random error effect; psi, the serial correlation effect; rho, the spatial coefficient, and theta, the spatial autocorrelation coefficient. In each case, the most appropriate error structure was chosen for each spatial model generally taking care to preserve the model error specification across related models. The appropriate error structure was determined by the backward methods from the full general model to the most specific model, as has been described [62]. Both panel and geospatial models were temporally lagged as indicated by 1–2 years.

Causal Inference

The formal tools of causal inference were used in this analysis. Inverse probability weighting (ipw) is the technique of choice to convert a purely observational study into a pseudo-randomized study from which it is appropriate to make causal inferences [63]. All multivariable panel models presented herein were inverse probability weighted. ipw was performed using the R package ipw. Similarly, E-values (expected values) quantify the correlation required for some hypothetical unmeasured confounder covariate with both the exposure of concern and the outcome of interest in order to explain away some apparently causal relationship [64–66]. It therefore provides a quantitative measure of the robustness of the model to extraneous covariates which have not been accounted for within the measured parameters. E-values have a confidence interval associated with them and the 95% lower bound of this confidence interval is reported herein. E-value estimates >1.25 are said to indicate causality [67] with E-values >9 being described as high [68]. E-values were calculated from the R package E-value [69]. Both ipw and E-values are foundational and pivotal techniques used in formal causal inferential methods in order to allow causal relationships to be assessed from real-world observational studies.

Data Availability

Raw datasets, including 3800 lines of computation code in R, have been made freely available through the Mendeley data repository at the following URLs: 10.17632/tysn37t426.1 and 10.17632/nm3tgcvvzd.1. This study was not pre-registered in the Open Science Framework.

Ethics

Ethical approval for this study was provided by the Human Research Ethics Committee of the University of Western Australia number RA/4/20/4724 on 24 September 2021.

Results

Supplementary Table ST1 provides an overview of study data. As shown, total CAR data were derived from 14 nations for 24 cardiovascular anomalies for the years 2010–2019. The total CAR includes stillborn and early termination of pregnancy for anomaly rates in addition to babies born normally alive and is a critical metric required to properly assess trends in CARs. The total sample size of the whole Eurocat database for these nations was 77 410 rates. Drug and cannabis use and exposure rates are also shown in this table including various compound metrics. Median household income is also shown.

Daily cannabis use data across the various jurisdictions of Europe were largely incomplete as indicated in Supplementary Table ST2 where only 59 raw data points are shown. These data were completed by linear interpolation, as shown in Supplementary Table ST3, so that 129 points were finally available for analysis.

Figures 1–3 show the rates of the various CAs against the use of the different substances. Eight CAs are shown in each figure which has been split into three parts to accommodate all 24 CAs. From these figures, it is apparent that tobacco exposure is for the most part negatively related to CAR. Regression line slopes for alcohol are mostly flat or negative but generally weak. Regression line slopes for amphetamine are mostly flat or somewhat positive. The lines of best fit for cocaine are generally positive, and some, such as CHD, double outlet right ventricle and mitral valve anomalies, are quite strongly so. The cannabis exposure metric chosen in this graph is daily cannabis use interpolated. For most anomalies, the regression line is flat or weakly positive. However, for some anomalies such as CHD, double outlet right ventricle and mitral valve anomalies, the regression line indicates strong and robust obviously positive associations.

Figure 1:

Figure 1:

Panelled scatterplot of log (rates of selected CCAs) against rates of substance exposure—1

Figure 2:

Figure 2:

Panelled scatterplot of log (rates of selected CCAs) against rates of substance exposure—2

Figure 3:

Figure 3:

Panelled scatterplot of log (rates of selected CCAs) against rates of substance exposure—3

Figures 4–6 chart the bivariate relationships of the different cannabis metrics with the spectrum of CARs. Some of the steepest positively sloped lines are for atrioventricular septal defect (AVSD), severe CHD, double outlet right ventricle, pulmonary valve atresia, transposition of the great vessels and hypoplasia of the right heart which are all seen as a function of cannabis resin THC concentration.

Figure 4:

Figure 4:

Panelled scatterplot of log (rates of selected CCAs) against rates of cannabis metric exposure—1

Figure 5:

Figure 5:

Panelled scatterplot of log (rates of selected CCAs) against rates of cannabis metric exposure—2

Figure 6:

Figure 6:

Panelled scatterplot of log (rates of selected CCAs) against rates of cannabis metric exposure—3

Figure 7 shows a graphical map of the CHD rate across Europe during this decade. Many European nations are darkly shaded, indicating relatively high rates of CHD. Figure 8 depicts the rates of severe CHD which appears to have a more varied pattern. Figures 9–12 illustrate the rates for ASD, VSD, PDA and Ebstein’s anomaly, respectively.

Figure 7:

Figure 7:

Sequential map-graphs of log (rates of CHD) across selected European countries over time, 2010–2019

Figure 8:

Figure 8:

Sequential map-graphs of log (rates of severe CHD) across selected European countries over time, 2010–2019

Figure 9:

Figure 9:

Sequential map-graphs of log (rates of ASD) across selected European countries over time, 2010–2019

Figure 10:

Figure 10:

Sequential map-graphs of log (rates of VSD) across selected European countries over time, 2010–2019

Figure 11:

Figure 11:

Sequential map-graphs of log (rates of PDA) across selected European countries over time, 2010–2019

Figure 12:

Figure 12:

Sequential map-graphs of log (rates of Ebsteins anomaly) across selected European countries over time, 2010–2019

Patterns of daily cannabis use are illustrated in Fig. 13 which indicates increases in Spain, Netherlands, Belgium, France and Norway, reductions in Poland and little change in Bulgaria.

Figure 13:

Figure 13:

Sequential map-graphs of rates of daily cannabis use interpolated across selected European countries over time, 2010–2019

Figure 14 is a bivariate colorplane plot showing the bivariate relationship between CHD and the compound cannabis metric last month cannabis use × resin THC concentration × daily use interpolated. The areas covered by Spain and France are seen to obviously turn from tan and brown in 2010 to purple and crimson in 2019, indicating that they have moved up into the high cannabis metric—high CHD zone of the colorplane (shown in the key at the right hand side of the graph).

Figure 14:

Figure 14:

Bivariate colorplane sequential map-graphs of log (rates of CHD) by last month cannabis use: cannabis resin THC concentration: daily cannabis use interpolated across selected European countries over time, 2010–2019

A similar change occurs across France and Spain for severe CHD as indicated in Fig. 15.

Figure 15:

Figure 15:

Bivariate colorplane sequential map-graphs of log (rates of severe CHD) by last month cannabis use: cannabis resin THC concentration: daily cannabis use interpolated across selected European countries over time, 2010–2019

For the relationship between cannabis herb and CHD, the map is noted to have turned increasingly purple with time as nations more into the higher zone on both covariates (Fig. 16). Similar comments apply to the relationship between severe CHD and cannabis herb THC concentration, as shown in Fig. 17.

Figure 16:

Figure 16:

Bivariate colorplane sequential map-graphs of log (rates of CHD) by cannabis herb THC concentration across selected European countries over time, 2010–2019

Figure 17:

Figure 17:

Bivariate colorplane sequential map-graphs of log (rates of severe CHD) by cannabis herb THC concentration across selected European countries over time, 2010–2019

Figure 18 shows the bivariate relationship between severe CHD and cannabis resin THC concentration. Here, the map is noted to turn pink and purple across most countries across the decade.

Figure 18:

Figure 18:

Bivariate colorplane sequential map-graphs of log (rates of severe CHD) by cannabis resin THC concentration across selected European countries over time, 2010–2019

Figure 19 shows the relationship between AVSD and cannabis resin THC concentration. The area for France changes shades of purple across the period. The areas covered by Germany and Norway appear to change in their blue-purple hues across this period.

Figure 19:

Figure 19:

Bivariate colorplane sequential map-graphs of log (rates of AVSD) by cannabis resin THC concentration across selected European countries over time, 2010–2019

When the relationship between transposition of the great vessels and cannabis resin THC concentration is considered, the map is also noted to have become more purple generally (Fig. 20).

Figure 20:

Figure 20:

Bivariate colorplane sequential map-graphs of log (rates of transposition of the great vessels) by cannabis resin THC concentration across selected European countries over time, 2010–2019

Based on recent findings reported in major epidemiological reviews [22], it is possible to categorize European nations into increasing and high daily use and low or decreasing daily use groups. A panelled series of these defects across the decade are shown in Fig. 21. For most anomalies, there is a significant overlap between the areas covered by both sets of nations. However, for some anomalies, such as CHD, double outlet right ventricle, hypoplastic left heart syndrome, mitral valve anomalies and tricuspid valve stenosis or atresia, the rate in the nations with increasing daily use is higher than those which do not have this feature. Mixed-effects regression with anomaly as the random effect confirms that the time: daily use rate interaction is significantly higher in the countries with increasing cannabis use (β-Est. = 0.267, t = 2.756, P = 0.059; model AIC = 5317.51, LogLik. = −2652.75).

Figure 21:

Figure 21:

Log rates of CCAs by daily cannabis use status by CA. See Methods section for categorization of nations

The slopes of 275 of these regression lines for each anomaly and each substance are provided in Supplementary Table ST4 using a purrr-broom simultaneous multigroup analytical workflow. From this list, the 69 models with positive and significant regression coefficients were selected out and are shown in Table 1. The table is ordered in descending order of minimum E-values (mEV). It is of interest therefore that the first 30 terms in this table all relate to cannabis exposure metrics. Of the 69 terms, 15 relate to cocaine, 5 to amphetamines, 1 to alcohol and 48 (69.6%) to various cannabis metrics. It is noted that the E-value estimates descend from 1.35 × 1019, and the mEVs decline from 4.78 × 1010.

Table 1:

Significant positive slopes from bivariate regression

Anomaly Substance Mean Anomaly Rate Estimate Std. Error Sigma t-statistic P-Value E-Value Estimate E-Value Lower Bound
Mitral valve anomalies Daily.Interpol. 1.5003 33.8128 7.7588 0.7097 4.3580 3.07E-05 1.35E + 19 4.78E + 10
Congenital heart Daily.Interpol. 79.9062 18.6127 4.5313 0.4145 4.1076 7.94E-05 1.11968E + 18 3.96E + 09
Congenital heart Herb 79.9062 7.2519 1.1476 0.3801 6.3192 6.48E-09 6.95E + 07 3.22E + 05
Congenital heart LMCannabis_Herb 79.9062 7.4271 1.5650 0.4052 4.7459 6.58E-06 3.51E + 07 3.63E + 04
PV stenosis Daily.Interpol. 4.0360 24.2371 8.3771 0.7863 2.8933 0.0046 3.04046E + 12 1.77E + 04
Double outlet RV Herb 1.1079 7.1871 1.6528 0.5474 4.3485 3.18E-05 3.09E + 05 1.43E + 03
Mitral valve anomalies LMCannabis_Herb 1.5003 9.3952 2.8340 0.7337 3.3151 0.0013 2.30E + 05 236.98
Severe CHD Herb 21.6609 4.2206 1.0939 0.4253 3.8582 1.85E-04 1.67E + 04 171.06
Mitral valve anomalies Herb 1.5003 7.8448 2.1992 0.7283 3.5671 5.45E-04 3.61E + 04 166.84
Congenital heart LM_Cannabis 79.9062 5.9088 1.9991 0.4290 2.9557 0.0039 5.55E + 05 138.14
PDA Daily.Interpol. 2.6743 23.9286 10.1280 0.9506 2.3626 0.0199 17 732 087 319 102.52
Double outlet RV Daily.Interpol. 1.1079 14.5709 6.3435 0.5802 2.2970 0.0236 16 820 336 693 58.96
Double outlet RV LMCannabis_Herb 1.1079 6.3564 2.2113 0.5725 2.8745 0.0049 4.88E + 04 49.96
Transpos Grt Vess Herb 3.2853 5.1077 1.5361 0.5973 3.3251 0.0012 4.79E + 03 48.76
AVSD Resin 4.0167 3.7361 0.7343 0.6601 5.0878 1.59E-06 344.49 47.12
Severe CHD Resin 21.6609 2.1476 0.4264 0.3833 5.0361 1.98E-06 326.92 44.70
AVSD Herb 4.0167 5.3712 1.7549 0.6824 3.0607 0.0027 2.58E + 03 26.03
Mitral valve anomalies LM_Cannabis 1.5003 8.6035 3.4940 0.7498 2.4624 0.0154 6.85E + 04 16.60
Mitral valve anomalies LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 1.5003 3.1648 0.8621 0.7260 3.6710 3.82E-04 105.14 12.24
PDA Herb 2.6743 6.5630 2.3969 0.9320 2.7382 0.0071 1.21E + 03 11.95
Congenital heart LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 79.9062 1.7086 0.5033 0.4239 3.3947 9.71E-04 77.87 8.94
Hypoplastic right heart Resin 0.6757 1.7823 0.5256 0.4725 3.3908 9.83E-04 61.40 8.01
Vascular disruptions Herb 6.6675 4.0369 1.6751 0.5548 2.4100 0.0177 1.50E + 03 6.42
Aortic atresia ∼ Daily.Interpol. 0.5067 10.3538 4.9896 0.4564 2.0751 0.0404 1 849 078 395 5.99
Transpos Grt Vess LMCannabis_Herb 3.2853 4.9262 2.1275 0.6107 2.3155 0.0223 3.08E + 03 5.70
VSD Resin 41.6464 2.0114 0.7053 0.6341 2.8517 0.0052 35.36 4.39
PDA LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 2.6743 3.0256 1.1046 0.9430 2.7390 0.0072 36.56 4.04
PV stenosis LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 4.0360 2.4987 0.9251 0.7898 2.7009 0.0080 35.08 3.85
Severe CHD LMCannabis_Resin 21.6609 0.9713 0.3439 0.4118 2.8244 0.0057 16.59 3.28
Transpos Grt Vess Resin 3.2853 1.8158 0.6963 0.6259 2.6077 0.0104 27.51 3.28
Congenital heart Cocaine 79.9062 0.3536 0.0489 0.3649 7.2278 8.21E-11 4.26 3.21
AVSD LMCannabis_Resin 4.0167 1.6005 0.5954 0.7129 2.6883 0.0084 14.91 2.88
Tetralogy of Fallot LMCannabis_Herb 3.0532 4.5496 2.1449 0.6157 2.1211 0.0360 1.66E + 03 2.76
Vascular disruptions Resin 6.6675 1.5929 0.6530 0.5622 2.4393 0.0166 25.84 2.72
VSD Herb 41.6464 3.7183 1.7168 0.6675 2.1658 0.0323 317.46 2.65
PV stenosis LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 4.0360 1.1697 0.4095 0.7664 2.8562 0.0052 7.49 2.47
Double outlet RV Cocaine 1.1079 0.3591 0.0716 0.5341 5.0147 2.17E-06 3.09 2.26
Double outlet RV Resin 1.1079 1.5674 0.6900 0.5941 2.2715 0.0254 21.56 2.14
Mitral valve anomalies Cocaine 1.5003 0.4350 0.0943 0.7032 4.6137 1.12E-05 2.91 2.11
PV atresia Resin 1.0993 1.4785 0.6617 0.5948 2.2343 0.0276 18.69 1.98
Transpos Grt Vess Cocaine 3.2853 0.2772 0.0735 0.5902 3.7714 2.53E-04 2.44 1.76
Severe CHD Cocaine 21.6609 0.1970 0.0532 0.4272 3.7043 3.22E-04 2.41 1.74
VSD LMCannabis_Resin 41.6464 1.1863 0.5373 0.6434 2.2078 0.0294 10.18 1.72
Transpos Grt Vess LMCannabis_Resin 3.2853 1.1583 0.5274 0.6316 2.1961 0.0303 10.09 1.69
ASD Herb 21.0695 3.7614 1.8527 0.7204 2.0302 0.0445 230.98 1.66
Hypoplastic left heart Cocaine 2.3072 0.2725 0.0833 0.6689 3.2713 0.0014 2.25 1.59
PDA Cocaine 2.6743 0.3709 0.1147 0.9214 3.2329 0.0016 2.24 1.58
Hypoplastic right heart LMCannabis_Resin 0.6757 0.8725 0.4068 0.4871 2.1446 0.0343 9.68 1.58
PV atresia Cocaine 1.0993 0.2021 0.0710 0.5702 2.8465 0.0052 2.11 1.45
Vascular disruptions Log(Amphetamine) 6.6675 0.1969 0.0711 0.5502 2.7687 0.0067 2.12 1.43
Congenital heart LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 79.9062 0.5114 0.2390 0.4449 2.1397 0.0349 5.14 1.41
PV stenosis Cocaine 4.0360 0.2636 0.0969 0.7779 2.7213 0.0075 2.06 1.40
Tetralogy of Fallot Cocaine 3.0532 0.2061 0.0758 0.6087 2.7190 0.0075 2.06 1.40
Aortic atresia ∼ Cocaine 0.5067 0.1607 0.0604 0.4507 2.6583 0.0091 2.11 1.40
VSD LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 41.6464 0.7413 0.3499 0.6547 2.1188 0.0366 5.05 1.38
ASD Daily.Interpol. 21.0695 0.2363 0.0893 0.7122 2.6454 0.0093 2.04 1.38
Arterial truncus Log(Amphetamine) 0.9427 0.1964 0.0753 0.6009 2.6065 0.0103 2.03 1.37
Severe CHD Log(Amphetamine) 21.6609 0.1434 0.0550 0.4387 2.6060 0.0103 2.03 1.36
Aortic valve S/A Log(Amphetamine) 1.4907 0.1865 0.0751 0.5987 2.4842 0.0144 1.99 1.32
Coarctation aorta Cocaine 3.6130 0.2296 0.0926 0.7433 2.4804 0.0145 1.98 1.32
AVSD Cocaine 4.0167 0.2100 0.0861 0.6916 2.4383 0.0162 1.97 1.30
Vascular disruptions LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 6.6675 0.1776 0.0744 0.5550 2.3862 0.0188 2.01 1.29
Congenital heart Log(Amphetamine) 79.9062 0.1314 0.0563 0.4354 2.3341 0.0215 1.96 1.26
Mitral valve anomalies Annual_Alcohol 1.5003 0.1100 0.0383 0.7425 2.8744 0.0049 1.55 1.26
TV S/A Cocaine 0.5907 0.1273 0.0553 0.4438 2.3028 0.0230 1.92 1.24
VSD Cocaine 41.6464 0.1833 0.0831 0.6671 2.2071 0.0292 1.89 1.20
Tetralogy of Fallot LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 3.0532 0.7043 0.3548 0.6639 1.9850 0.0499 4.69 1.13
AVSD Log(Amphetamine) 4.0167 0.1810 0.0873 0.6961 2.0732 0.0403 1.85 1.13
Ebstein’s anomaly Cocaine 0.4327 0.0924 0.0460 0.3691 2.0101 0.0467 1.82 1.08

Table 1 lists both P-values and E-values. By analogy with the genomic and epigenomic literature, it is therefore possible to present these data for graphical consideration as a ‘volcano plot’ which plots the negative logarithm of the P-value against the fold change in the anomaly rate quantified by the E-value. Figure 22 presents such a plot for the E-value estimate itself, and Fig. 23 presents a similar plot for the mEV. In these figures, strong signals are indicated for CHD and mitral valve anomalies and many other CAs as indicated.

Figure 22:

Figure 22:

Volcano plot of negative log of P-values against log of E-value estimates for bivariate regressions

Figure 23:

Figure 23:

Volcano plot of negative log of P-values against log of mEV for bivariate regressions

Given these impressive results at bivariate analysis, it is of interest to investigate how all of these variables compare in multivariable regression techniques. Given that there are so many primary and compound cannabis metrics, it is not entirely clear which covariates are most suitable to use, given that the regression equations to be employed have a very finite number of degrees of freedom.

The issue of covariate selection was addressed formally using random Forrest regression in the ranger package in tandem with the variable importance package vip to create tables of relative variable importance. These tables are presented as Supplementary Tables S5–S16 for the 12 CAs in which we were most interested.

As the data are well suited to panel regression, this format was chosen to perform multiple regression analyses on these data. All panel regression models were inverse probability weighted which is an important step that transfers the analysis from merely an observational study into a pseudo-randomized analytical and interpretive context.

Supplementary Table S17 shows the result of panel regression of the CHD dataset against the group of covariates indicated in the table. Additive, interactive and models that lagged temporally to 1 and 2 years are presented. In each case, several terms including cannabis have positive regression coefficients and are highly statistically significant.

This same pattern of results is continued across all of the selected CAs, namely severe CHD, ASD, VSD, AVSDs, patient ductus arteriosus, tetralogy of Fallot, vascular disruption, double outlet right ventricle, transposition of the great arteries, hypoplastic right heart syndrome and mitral valve anomalies, as shown in Supplementary Tables S18–S28. In all cases, all multivariable panel models are inverse probability weighted to allow causal relationships to be formally assessed.

Having made the important above observations, the next issue was whether these relationships would persist when formal space-time modelling was undertaken in a fashion which allows random effects, serial correlation, spatial correlation and spatial autocorrelation in the error structure to be formally considered. Geospatial links were derived, edited and finalized, as indicated in Supplementary Fig. S1, and these formed the basis of the sparse spatial weights matrix which was then employed in the R package spml to conduct formal spatiotemporal regression.

Tables 2–13 present the results of final reduced models for each of the 12 anomalies cited in the preceding paragraphs immediately above. In virtually all models terms including cannabis metrics persist in the final models, have positive regression coefficients and are statistically significant usually at high levels.

Table 2:

Final multivariate geospatial regression models for CHD

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Herb + LM.Cannabis_x_Herb.THC + Amphetamines + Cocaine + Income
Herb.THC 2.09 (0.67, 3.5) 0.0038 psi 0.84099 <2.2E-16
Cocaine 0.17 (0.05, 0.29) 0.0045 rho −0.61126 3.03E-08
lambda 0.62061 4.97E-10
Interactive
Rate ∼ Tobacco * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * Herb + LM.Cannabis_x_Herb.THC + Alcohol + Amphetamines + Cocaine + Income
Herb.THC 2.09 (0.67, 3.5) 0.0038 psi 0.84099 <2.2E-16
Cocaine 0.17 (0.05, 0.29) 0.0045 rho −0.61126 3.03E-08
lambda 0.6261 4.97E-10
1 Lag
Rate ∼ Tobacco,1) * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol.,1) + Herb + LM.Cannabis_x_Herb.THC,1) + Alcohol,1) + Amphetamines,1) + Cocaine,1) + Income,1)
Herb.THC 2.17 (0.1, 4.23) 0.0401 psi 0.85902 <2.2E-16
rho 0.62929 1.20E-07
lambda −0.4748 0.0018
2 Lags
Rate ∼ Tobacco,2) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * LM.Cannabis_x_Herb.THC_x_Daily.Interpol.,2) + Herb + LM.Cannabis_x_Herb.THC,2) +Alcohol,2) + Amphetamines,2) + Cocaine,2) + Income,2)
Herb.THC 1.91 (0.25, 3.56) 0.0238 psi 0.88721 <2.2E-16
Cocaine −0.16 (−0.29, −0.03) 0.0158 rho −0.5633 2.83E-05
lambda 0.6436 2.11E-09

Table 3:

Final multivariate geospatial regression models for severe CHD

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb + LM.Cannabis_x_Resin.THC + Amphetamines + Cocaine + Income
Herb 4.22 (2.54, 5.9) 8.22E-07 psi 0.3942 1.34E-04
Income 0 (0, 0) 5.29E-05 rho −0.5169 1.10E-04
LM.Cannabis_x_Resin.THC 1.19 (0.56, 1.82) 0.0002 lambda 0.3181 0.0240
Tobacco 0.03 (0.02, 0.05) 0.0004
Cocaine 0.17 (0.06, 0.29) 0.0040
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −2.7 (−3.77, −1.63) 8.39E-07
Interactive
Rate ∼ Tobacco * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb * LM.Cannabis_x_Resin.THC + Alcohol + Herb + Amphetamines + Cocaine + Income
Herb 7.47 (5.2, 9.74) 1.05E-10 psi 0.3091 0.0042
Income 0 (0, 0) 1.42E-05 rho −0.3024 0.0058
LM.Cannabis_x_Resin.THC 2.95 (1.58, 4.32) 2.35E-05
Tobacco 0.04 (0.02, 0.06) 3.87E-05
Cocaine 0.21 (0.09, 0.32) 0.0005
Herb: LM.Cannabis_x_Resin.THC −18.6 (−33.38, −3.82) 0.0138
Tobacco: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −0.1 (−0.15, −0.05) 0.0003
1 Lag
Rate ∼ Tobacco,1) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * LM.Cannabis_x_Resin.THC,1) * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb,1) + Alcohol,1) + Amphetamines,1) + Cocaine,1) + Income,1)
Income 0 (0, 0) 9.59E-05 psi 0.7862 <2.2E-16
LM.Cannabis_x_Resin.THC: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 5.2 (1.57, 8.83) 0.0050 rho 0.6708 1.73E-15
Alcohol 0.09 (0.02, 0.15) 0.0091 lambda −0.5679 2.68E-08
Herb 2.43 (0.12, 4.74) 0.0391
LM.Cannabis_x_Resin.THC −1.45 (−2.42, −0.48) 0.0035
2 Lags
Rate ∼ Tobacco,2) * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC,2) + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb,2) + Alcohol,2) + Amphetamines,2) + Cocaine,2) + Income,2)
Tobacco 0.06 (0.04, 0.09) 1.08E-05 psi 0.4317 0.0004
Income 0 (0, 0) 7.82E-08
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 9.27 (3.23, 15.31) 0.0026
Herb 2.93 (0.42, 5.44) 0.0221
Tobacco: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −0.28 (−0.51, −0.06) 0.0143
LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −4.14 (−6.9, −1.38) 0.0032

Table 4:

Final multivariate geospatial regression models for ASD

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Herb + Amphetamines + Cocaine + Income
Herb 3.88 (−0.56, 8.31) 0.0865 psi 0.66684 <2.2E-16
Interactive
Rate ∼ Tobacco + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Daily.Interpol. + Herb + Alcohol + Amphetamines + Cocaine + Income
No significant parameters remaining in the final model
1 Lag
Rate ∼ Tobacco + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Daily.Interpol. + Herb + Alcohol + Amphetamines + Cocaine + Income
Tobacco: Daily.Interpol. 8.56 (1.29, 15.83) 0.0210 psi 0.80977 <2.2E-16
Daily.Interpol. −209.01 (−381.79, −36.23) 0.0177
2 Lags
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Tobacco 0.13 (0.04, 0.21) 0.0028 psi 0.78396 <2.2E-16
Income 0 (0, 0) 0.0053
Daily.Interpol. 210 (31.44, 388.56) 0.0215
Tobacco: Daily.Interpol. −7.99 (−15.32, −0.66) 0.0324
Cocaine −0.38 (−0.67, −0.08) 0.0135

Table 5:

Final multivariate geospatial regression models for VSD

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + Resin + Herb + Amphetamines + Cocaine + Income
Herb 4.95 (1.91, 8) 0.0014 psi 0.4909 7.62E-06
Cocaine 0.31 (0.12, 0.5) 0.0016 rho −0.6133 7.46E-07
Resin 1.76 (0.17, 3.35) 0.0296 lambda 0.5634 1.06E-06
Amphetamines −0.2 (−0.37, −0.03) 0.0209
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −0.98 (−1.71, −0.26) 0.0079
Interactive
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
LM.Cannabis_x_Herb.THC 17.3 (9.66, 24.94) 8.94E-06 psi 0.4735 6.35E-05
Income 0 (0, 0) 0.0058 rho −0.5867 4.97E-07
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −4.63 (−7.33, −1.93) 0.0008 lambda 0.5404 1.94E-06
1 Lag
Rate ∼ Tobacco,1) * Daily.Interpol.,1) + LM.Cannabis_x_Herb.THC,1) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol.,1) + Alcohol,1) + LM.Cannabis_x_Herb.THC_x_Daily.Interpol., 1) + Amphetamines,1) + Cocaine,1) + Income,1)
LM.Cannabis_x_Herb.THC 10.81 (4.89, 16.73) 0.0003 psi 0.5464 1.31E-10
rho 0.5562 3.30E-05
lambda 0.3306 0.0462
2 Lags
Rate ∼ Tobacco,2) + Daily.Interpol.,2) + LM.Cannabis_x_Herb.THC,2) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol.,2) + Alcohol,2) + LM.Cannabis_x_Herb.THC_x_Daily.Interpol., 2) + Amphetamines,2) + Cocaine,2) + Income,2)
Tobacco 0.04 (0, 0.07) 0.0352 psi 0.4333 0.0003
Daily.Interpol. 45.5 (9.24, 81.76) 0.0137 rho −0.5302 0.0004
LM.Cannabis_x_Herb.THC 18.6 (10.03, 27.17) 2.15E-05 lambda 0.5682 6.71E-06
Income 0 (0, 0) 0.0012
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −7.13 (−12.05, −2.21) 0.0046
Cocaine −0.42 (−0.7, −0.13) 0.0043
Alcohol −0.1 (−0.17, −0.03) 0.0032

Table 6:

Final multivariate geospatial regression models for AVSD

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + Resin + Herb + Amphetamines + Cocaine + Income)
Herb 4.95 (1.91, 8) 0.0014 psi 0.4909 7.62E-06
Cocaine 0.31 (0.12, 0.5) 0.0016 rho −0.6133 7.46E-07
Resin 1.76 (0.17, 3.35) 0.0296 lambda 0.5634 1.06E-06
Amphetamines −0.2 (−0.37, −0.03) 0.0209
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −0.98 (−1.71, −0.26) 0.0079
Interactive
Rate ∼ Tobacco * Resin * LM.Cannabis_x_Resin.THC + Alcohol + Amphetamines + Cocaine + Income
Tobacco: Resin 0.52 (0.29, 0.75) 1.23E-05 psi 0.401 1.49E-05
Income 0 (0, 0) 0.0015
Cocaine 0.37 (0.08, 0.67) 0.0133
Resin −6.16 (−11.98, −0.34) 0.0378
Tobacco: LM.Cannabis_x_Resin.THC −0.15 (−0.24, −0.06) 0.0013
2 Lags
Rate ∼ Tobacco,2) * Resin,2) + LM.Cannabis_x_Resin.THC,2) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol., 2) + Herb,2) + Daily.Interpol.,2) + Alcohol,2) + Amphetamines,2) + Cocaine,2) + Income,2)
Income 0 (0, 0) 0.0020 psi 0.4191 0.0006
Tobacco: Resin 0.25 (0.03, 0.47) 0.0289 rho 0.5425 0.0004
lambda −0.5980 8.42E-05

Table 7:

Final multivariate geospatial regression models for PDA

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis + Amphetamines + Cocaine + Income
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 5.83 (2.33, 9.32) 0.0011 psi 0.59171 1.43E-12
Cocaine 0.48 (0.17, 0.79) 0.0026 rho −0.61788 7.19E-08
LM.Cannabis −30.65 (−45.35, −15.94) 4.41E-05 lambda 0.6049 2.06E-09
Interactive
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis + Alcohol + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Amphetamines + Cocaine + Income
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 6.45 (3.45, 9.46) 2.50E-05 psi 0.36814 0.000342
Tobacco: Daily.Interpol. 7.94 (3.04, 12.85) 0.0015 rho −0.68835 5.12E-12
Daily.Interpol. −168.25 (−292.36, −44.13) 0.0079 lambda 0.66996 2.47E-15
Alcohol −0.16 (−0.25, −0.08) 0.0001
Tobacco −0.07 (−0.11, −0.04) 9.56E-05
LM.Cannabis −29.84 (−42.83, −16.84) 6.76E-06
1 Lag
Rate ∼ Tobacco,1) * Daily.Interpol.,1) + LM.Cannabis_x_Herb.THC,1) + LM.Cannabis,1) + LM.Cannabis_x_Herb.THC_x_Daily.Interpol.,1) + Alcohol,1) + Daily.Interpol.,1) + Amphetamines,1) + Cocaine,1) + Income,1)
Tobacco: Daily.Interpol. 9.38 (4.9, 13.86) 4.13E-05 psi 0.3964 0.000433
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 7.55 (2.63, 12.47) 0.0026 rho 0.72302 <2.2E-16
LM.Cannabis_x_Herb.THC −17.48 (−29.69, −5.28) 0.0050 lambda −0.63094 9.92E-11
Daily.Interpol. −220.55 (−334.75, −106.35) 0.0002
Tobacco −0.13 (−0.18, −0.09) 1.02E-09
2 Lags
Rate ∼ Tobacco,2) * Daily.Interpol.,2) + LM.Cannabis_x_Herb.THC,2) + LM.Cannabis,2) + LM.Cannabis_x_Herb.THC_x_Daily.Interpol.,2) + Alcohol,2) + Daily.Interpol.,2) + Amphetamines,2) + Cocaine,2) + Income,2)
Tobacco: Daily.Interpol. 2.52 (1.05, 3.99) 0.0008 psi 0.45343 2.48E-05
LM.Cannabis_x_Herb.THC 15.77 (3.67, 27.88) 0.0107 rho 0.71484 <2.2E-16
LM.Cannabis −32.01 (−49.41, −14.61) 0.0003 lambda −0.6013 5.76E-09
Alcohol −0.22 (−0.3, −0.14) 9.40E-08

Table 8:

Final multivariate geospatial regression models for tetralogy of Fallot

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Herb + Daily.Interpol. + Herb + Amphetamines + Cocaine + Income
Cocaine 0.25 (0.13, 0.37) 6.77E-05 rho −0.5927 6.13E-09
Herb 3.18 (1.06, 5.31) 0.0033 lambda 0.5414 3.29E-07
Tobacco −0.02 (−0.04, −0.01) 0.0023
Amphetamines −0.22 (−0.32, −0.12) 1.24E-05
Interactive
Rate ∼ Tobacco * Resin + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Tobacco: Resin 0.43 (0.23, 0.62) 1.44E-05 rho −0.6819 5.55E-14
Income 0 (0, 0) 7.88E-05 lambda 0.61208 6.66E-11
Alcohol −0.05 (−0.09, −0.01) 0.0232
Amphetamines −0.18 (−0.29, −0.08) 0.0004
Tobacco −0.08 (−0.12, −0.04) 0.0003
Resin −10.3 (−15.49, −5.11) 0.0001
1 Lag
Rate ∼ Tobacco,1) * Herb,1) + Resin,1) + Alcohol,1) + Amphetamines,1) + Cocaine,1) + Income,1)
Cocaine 0.27 (0.15, 0.39) 7.90E-06 psi −0.24715 0.0132
Tobacco: Herb 0.96 (0.49, 1.42) 5.26E-05
Amphetamines −0.16 (−0.27, −0.04) 0.0066
Herb −17.03 (−28.64, −5.42) 0.0040
Tobacco −0.12 (−0.17, −0.07) 1.80E-06
2 Lags
Rate ∼ Tobacco,2) * LM.Cannabis_x_Herb.THC,2) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol., 2) * LM.Cannabis_x_Herb.THC_x_Daily.Interpol., 2) + Alcohol,2) + Amphetamines,2) + Cocaine,2) + Income,2)
Tobacco: LM.Cannabis_x_Herb.THC 0.59 (0.35, 0.82) 1.07E-06 rho −0.6367 1.58E-08
Cocaine 0.29 (0.11, 0.46) 0.00115 lambda 0.5254 2.40E-05
Amphetamines −0.24 (−0.36, −0.13) 5.82E-05
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −5.14 (−7.5, −2.78) 2.00E-05
Tobacco −0.04 (−0.05, −0.02) 1.93E-06

Table 9:

Final multivariate geospatial regression models for vascular disruptions

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. +Resin + Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.12 (0.08, 0.16) 1.23E-08 rho 0.7048 <2.2E-16
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.1 (1.05, 3.15) 8.77E-05 lambda −0.4902 6.17E-06
Income 0 (0, 0) 0.0001
Cocaine 0.24 (0.09, 0.39) 0.0021
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −4.63 (−7.45, −1.81) 0.0013
Interactive
Rate ∼ Tobacco + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. * Resin + Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.12 (0.08, 0.16) 1.23E-08 rho 0.7048 <2.2E-16
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.1 (1.05, 3.15) 8.77E-05 lambda −0.4902 6.17E-06
Income 0 (0, 0) 0.0001
Cocaine 0.24 (0.09, 0.39) 0.0021
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −4.63 (−7.45, −1.81) 0.0013
1 Lag
Rate ∼ Tobacco + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Resin + Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Income 0 (0, 0) 1.04E-05 rho 0.66669 1.83E-12
Alcohol 0.1 (0.05, 0.14) 3.48E-05 lambda −0.5336 7.94E-06
Amphetamines 0.13 (0.03, 0.23) 0.0139
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.59 (0.06, 1.11) 0.0284
2 Lags
Rate ∼ Tobacco + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Resin + Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.11 (0.06, 0.16) 2.03E-05 rho 0.69361 2.72E-15
Income 0 (0, 0) 0.0001 lambda −0.5337 7.84E-06
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 1.13 (0.47, 1.79) 0.0008

Table 10:

Final multivariate geospatial regression models for double outlet right ventricle

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb + Resin + LM.Cannabis_x_Resin.THC + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Amphetamines + Cocaine + Income
Income 0 (0, 0) 5.64E-13 psi 0.19608 0.0393
LM.Cannabis_x_Herb.THC 5.13 (1.23, 9.03) 0.0099
Interactive
Rate ∼ Tobacco * LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Income 0 (0, 0) 6.71E-08 psi 0.1731 0.0712
LM.Cannabis_x_Herb.THC 29.6 (4.51, 54.69) 0.0208
Tobacco 0.05 (0, 0.1) 0.0497
Tobacco: LM.Cannabis_x_Herb.THC −1.01 (−2.02, 0) 0.0499
2 Lags
Rate ∼ Tobacco * LM.Cannabis_x_Herb.THC + Daily.Interpol. * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Income 0 (0, 0) <2.2E-16 psi −0.1072 0.331
LM.Cannabis_x_Herb.THC 12.8 (7.14, 18.46) 9.11E-06
Alcohol 0.06 (0.01, 0.11) 0.0207
Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −40.5 (−73.04, −7.96) 0.0146

Table 11:

Final multivariate geospatial regression models for transposition of the great vessels

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + Daily.Interpol. + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + Herb + Amphetamines + Cocaine + Income
Income 0 (0, 0) 5.64E-13 psi 0.1961 0.0393
LM.Cannabis_x_Herb.THC 5.13 (1.23, 9.03) 0.0099
Interactive
Rate ∼ Tobacco * LM.Cannabis_x_Resin.THC + Resin * Herb + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Herb 3.41 (1.49, 5.33) 0.0005 rho −0.7757 <2.2E-16
Cocaine 0.21 (0.09, 0.33) 0.0005 lambda 0.6425 1.99E-13
Income 0 (0, 0) 0.0235
Tobacco 0.02 (0, 0.05) 0.0455
Alcohol −0.07 (−0.11, −0.03) 0.0004
1 Lag
Rate ∼ Tobacco * LM.Cannabis_x_Resin.THC + Resin * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Income 0 (0, 0) 0.0020 rho −0.7509 <2.2E-16
Tobacco 0.03 (0, 0.06) 0.0308 lambda 0.6706 6.45E-14
Cocaine 0.15 (0.01, 0.28) 0.0343
Resin 0.94 (0.06, 1.82) 0.0370
Alcohol −0.07 (−0.12, −0.03) 0.0011
2 Lags
Rate ∼ Tobacco * LM.Cannabis_x_Resin.THC + Resin * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
LM.Cannabis_x_Resin.THC 1.16 (0.58, 1.74) 0.0001 rho −0.7579 6.87E-16
Alcohol −0.08 (−0.12, −0.04) 3.85E-05 lambda 0.6752 4.76E-15
Income 0 (0, 0) 9.61E-07

Table 12:

Final multivariate geospatial regression models for hypoplastic right heart

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value
Additive
Rate ∼ Tobacco + Alcohol + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + Amphetamines + Cocaine + Income
Alcohol 0.08 (0.04, 0.13) 0.0005 Least squares
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.68 (1.53, 3.83) 5.22E-06 SD 0.3951
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −7.03 (−9.93, −4.13) 2.10E-06
Cocaine 0.22 (0.06, 0.39) 0.0066
Income 0 (0, 0) 2.28E-05
Interactive
Rate ∼ Tobacco,1) * LM.Cannabis_x_Herb.THC_x_Daily.Interpol., 1) + LM.Cannabis_x_Herb.THC,1) + LM.Cannabis_x_Resin.THC_x_Daily.Interpol., 1) + Alcohol,1) + Daily.Interpol.,1) + Amphetamines,1) + Cocaine,1) + Income,1)
Income 0 (0, 0) 3.32E-08 Least squares
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.84 (1.75, 3.93) 3.10E-07 SD 0.3914
Alcohol 0.06 (0.02, 0.1) 0.0064
LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Herb.THC −57.4 (−79.74, −35.06) 5.02E-07
1 Lag
Rate ∼ Tobacco * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Daily.Interpol. + Amphetamines + Cocaine + Income
Income 0 (0, 0) 1.37E-06 Least squares
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.79 (1.28, 4.31) 0.0003 SD 0.4160
Alcohol 0.07 (0.02, 0.12) 0.0053
Daily.Interpol. 35.17 (9.24, 61.1) 0.0079
LM.Cannabis_x_Herb.THC 7.88 (0.62, 15.14) 0.0333
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −11.66 (−17.57, −5.75) 0.0001
2 Lag
Rate ∼ Tobacco * LM.Cannabis_x_Herb.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Daily.Interpol. + Amphetamines + Cocaine + Income
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 5.24 (3.12, 7.36) 1.09E-06 Least squares
Income 0 (0, 0) 4.19E-05 SD 0.4106
Daily.Interpol. 98.5 (50.87, 146.13) 5.10E-05
LM.Cannabis_x_Herb.THC 13.6 (4.53, 22.67) 0.0035
Cocaine −0.34 (−0.65, −0.03) 0.0295
LM.Cannabis_x_Herb.THC_x_Daily.Interpol. −22 (−30.55, −13.45) 4.22E-07

Table 13:

Final multivariate geospatial regression models for mitral valve anomalies

Parameter Values Model Parameters
Parameter Estimate (CI) P-Value Parameter Value Significance
Additive
Rate ∼ Tobacco + Alcohol + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + LM.Cannabis_x_Herb.THC + Daily.Interpol. + Amphetamines + Cocaine + Income
Income 0 (0, 0) 0.0005 psi 0.4569 2.28E-07
Alcohol 0.12 (0.05, 0.2) 0.0015 rho 0.6040 3.16E-06
lambda −0.7052 1.56E-10
Interactive
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis_x_Herb.THC + LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.25 (0.19, 0.31) 4.69E-16 rho 0.6192 9.08E-11
Tobacco: Daily.Interpol. 6.77 (4.21, 9.33) 2.17E-07 lambda −0.7536 <2.2E-16
Amphetamines 0.14 (0.02, 0.26) 0.0185
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −0.73 (−1.37, −0.09) 0.0260
Daily.Interpol. −130.64 (−193.93, −67.35) 5.22E-05
Tobacco −0.15 (−0.19, −0.11) <2.2E-16
1 Lag
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis_x_Herb.THC * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.25 (0.19, 0.31) 1.41E-15 rho 0.6812 6.99E-16
Tobacco: Daily.Interpol. 6.27 (3.6, 8.94) 4.14E-06 lambda −0.7776 <2.2E-16
Amphetamines 0.2 (0.08, 0.33) 0.0011
LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 30.04 (9.68, 50.4) 0.0038
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −3.04 (−4.78, −1.3) 0.0006
Daily.Interpol. −127.56 (−192.42, −62.7) 0.0001
Tobacco −0.15 (−0.19, −0.11) 1.41E-15
2 Lags
Rate ∼ Tobacco * Daily.Interpol. + LM.Cannabis_x_Herb.THC * LM.Cannabis_x_Resin.THC_x_Daily.Interpol. + Alcohol + Amphetamines + Cocaine + Income
Alcohol 0.25 (0.18, 0.32) 1.01E-12 rho 0.6404 2.70E-11
Tobacco: Daily.Interpol. 4.88 (1.58, 8.18) 0.0038 lambda −0.7388 <2.2E-16
Amphetamines 0.21 (0.07, 0.36) 0.0044
LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 40.2 (9.02, 71.37) 0.0115
Daily.Interpol. −90.59 (−171.28, −9.9) 0.0278
LM.Cannabis_x_Resin.THC_x_Daily.Interpol. −3.95 (−6.36, −1.53) 0.0014
Tobacco −0.14 (−0.18, −0.1) 2.04E-11

Tables 14 and 15 present the E-values to emerge from these positive and significant cannabis-related terms in the panel and spatial regression model sets, respectively.

Table 14:

E-values from panel models

No. Cardiovascular Anomaly Model Type Term P-Value E-Value Estimate Lower Bound E-Value
1 Cong. heart disease Additive Herb.THC 1.93E-16 3.38E + 12 1.26E + 10
2 Cong. heart disease Interactive Herb.THC 9.29E-10 3.95E + 14 2.95E + 10
3 Cong. heart disease Interactive LM.Cannabis_x_Herb.THC 6.23E-03 5.19E + 13 2.14E + 04
4 Cong. heart disease Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 1.91E-02 5.56E + 20 9.39E + 03
5 Cong. heart disease 1 Lag Herb.THC 1.75E-19 8.06E + 19 3.88E + 16
6 Cong. heart disease 2 Lags Herb.THC 1.15E-05 6.66E + 08 1.86E + 05
7 Cong. heart disease 2 Lags Herb.THC: LM.Cannabis_x_Herb.THC 4.14E-11 4.37E + 59 3.41E + 44
8 Severe cong. heart disease Additive LM.Herb.THC.Daily.Interpol 4.43E-02 4.92E + 00 1.24
9 Severe cong. heart disease Additive LM.Herb.Daily.Intpltd 4.74E-02 5.25E + 13 3.67
10 Severe Cong. Heart Disease Additive LM.Herb.THC 1.48E-03 7.57E + 06 850.24
11 Severe cong. heart disease Interactive LM.Resin.Daily.Interpol 4.20E-11 4.84E + 13 1.30E + 10
12 Severe cong. heart disease Interactive Herb.THC 1.31E-05 3.89E + 07 2.94E + 05
13 Severe cong. heart disease Interactive LM.Resin 9.62E-07 2.33E + 04 686.08
14 Severe cong. heart disease Interactive Tobacco: LM.Herb.THC.Daily.Interpol 3.85E-08 2.49 2.03
15 Severe cong. heart disease Interactive LM.Resin.Daily.Interpol: LM.Herb.THC.Daily.Interpol 1.22E-13 108.11 42.72
16 Severe cong. heart disease 1 Lag LM.Resin 0.0003 616.49 29.73
17 Severe cong. heart disease 1 Lag Herb.THC 0.0078 6.74E + 03 18.81
18 Severe cong. heart disease 1 Lag LM.Resin: LM.Herb.THC.Daily.Interpol 0.0005 1.80E + 06 1.03E + 03
19 Severe cong. heart disease 2 Lags LM.Resin 7.23E-06 1.31E + 03 91.92
20 Severe cong. heart disease 2 Lags Herb.THC 4.41E-02 3.46E + 03 2.10
21 Severe cong. heart disease 2 Lags LM.Resin.Daily.Interpol: LM.Resin 4.42E-02 4.08E + 05 2.76
22 ASD Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0133 4.91 1.81
23 ASD Additive Herb 0.0013 1.79E + 04 81.68
24 ASD Interactive Herb 2.32E-12 3.59E + 05 1.76E + 04
25 ASD 1 Lag LM.Cannabis_x_Herb.THC 8.72E-15 7.28E + 09 6.31E + 07
26 ASD 2 Lags LM.Cannabis_x_Herb.THC <2.2E-16 9.01E + 15 2.54E + 13
27 ASD 4 Lags LM.Cannabis_x_Herb.THC 0.0168 2.51E + 08 90.06
28 VSD Additive LM.Cannabis_x_Herb.THC <2.2E-16 2.38E + 06 1.96E + 05
29 VSD Interactive LM.Cannabis_x_Herb.THC <2.2E-16 2.38E + 06 1.96E + 05
30 VSD 1 Lag LM.Cannabis_x_Herb.THC <2.2E-16 3.04E + 06 2.58E + 05
31 VSD 2 Lags LM.Cannabis_x_Herb.THC 2.7E-14 1.60E + 21 4.97E + 16
32 AVSD Additive Resin 4.05E-10 897.5 155.66
33 AVSD Interactive LM.Cannabis_x_Resin.THC 8.05E-07 1.67E + 24 1.86E + 15
34 AVSD Interactive Tobacco: Resin 4.26E-07 5.56 3.48
35 AVSD Interactive Tobacco: Resin: LM.Cannabis_x_Resin.THC 0.0026 263.77 11.38
36 AVSD 1 Lag LM.Cannabis_x_Resin.THC 0.0042 4.17E + 08 1.18E + 03
37 AVSD 1 Lag Tobacco: Resin 1.11E-07 5.64 3.62
38 AVSD 2 Lags Tobacco: Resin 1.58E-12 1.54 1.44
39 PDA Additive Daily.Interpol. 4.3E-09 5.07E + 49 3.15E + 34
40 PDA Additive LM.Cannabis_x_Herb.THC 0.0158 2.80E + 03 8.07
41 PDA Interactive LM.Cannabis_x_Herb.THC 3.27E-05 3.64E + 05 1.52E + 03
42 PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 0.0449 1.48 1.07
43 PDA Interactive Tobacco: Daily.Interpol. 8.61E-10 243.5 59.42
44 PDA 1 Lag LM.Cannabis_x_Herb.THC 7.29E-14 8.51E + 14 4.28E + 11
45 PDA 1 Lag Tobacco: Daily.Interpol. 1.39E-08 2.93E + 08 7.61E + 05
46 PDA 2 Lags LM.Cannabis_x_Herb.THC 2.33E-07 7.34E + 11 6.85E + 07
47 PDA 2 Lags Tobacco: Daily.Interpol. 0.0042 3.30E + 05 111.26
48 Tetralogy of Fallot Additive Daily.Interpol. 5.96E-09 3.79E + 19 3.72E + 13
49 Tetralogy of Fallot Interactive Daily.Interpol. 2.1E-09 Infinty 4.28E + 135
50 Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC 0.0159 1.19E + 05 17.74
51 Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 4.68E-07 36.96 12.31
52 Tetralogy of Fallot 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 2.59E-10 1.24E + 04 1.08E + 03
53 Tetralogy of Fallot 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 4.36E-16 3.78E + 03 868.53
54 Tetralogy of Fallot 2 Lags Resin 0.0460 474.56 1.71
55 Tetralogy of Fallot 2 Lags LM.Cannabis_x_Herb.THC 3.86E-08 1.04E + 25 1.04E + 17
56 Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 4.85E-05 52.93 11.26
57 Vascular disruptions Additive Resin 9.68E-03 44.48 3.89
58 Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 1.56E-06 3.81E + 03 212.19
59 Vascular disruptions Interactive Resin 0.0038 62.36 5.91
60 Vascular disruptions Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: Resin 1.27E-05 4.00E + 17 1.77E + 10
61 Vascular disruptions 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 6.72E-04 1.09E + 05 255.77
62 Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC 9.61E-04 4.79E + 03 54.91
63 Vascular disruptions 2 Lags LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 1.76E-04 1.48E + 03 55.25
64 Vascular disruptions 2 Lags Resin 3.50E-08 6.79E + 04 2.43E + 03
65 Double outlet right ventricle Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0005 3.52E + 08 1.08E + 04
66 Double outlet right ventricle Interactive Herb 6.33E-05 1.34E + 05 740.60
67 Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC 9.88E-05 2.08E + 32 7.82E + 16
68 Double outlet right ventricle Interactive Tobacco: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 5.35E-12 4.53E + 04 3.72E + 03
69 Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC 0.0030 9.24E + 13 1.74E + 05
70 Double outlet right ventricle 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0052 3.92E + 03 22.14
71 Double outlet right ventricle 2 Lags Herb: Resin 0.0138 5.10E + 24 5.89E + 05
72 Transposition great vessels Additive Herb 0.0003 9.44E + 07 8.52
73 Transposition great vessels Additive LM.Cannabis_x_Resin.THC 0.0002 1.61E + 03 50.46
74 Transposition great vessels Interactive Herb 0.0013 5.06E + 04 121.42
75 Transposition great vessels Interactive Tobacco: Resin 0.0002 3.72 2.28
76 Transposition great vessels Interactive LM.Cannabis_x_Resin.THC: Resin 8.46E-05 7.77E + 39 7.81E + 20
77 Transposition great vessels 1 Lag Herb <2.2E-16 3.11E + 06 2.02E + 05
78 Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC 0.0034 1.41E + 03 19.41
79 Transposition great vessels 2 Lags Herb 0.0056 4.74E + 09 1.68E + 03
80 Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0437 54.68 1.59
81 Hypoplastic right heart Additive Resin 0.0050 1.11E + 03 14.31
82 Hypoplastic right heart Additive LM.Cannabis_x_Herb.THC 0.0265 5.02E + 07 17.69
83 Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC 0.0052 9.24 2.67
84 Hypoplastic right heart 1 Lag Resin 5.65E-05 25.73 7.38
85 Hypoplastic right heart 2 Lags Resin 0.0009 25.49 5.44
86 Mitral valve anomalies Additive Daily.Interpol. 6.06E-10 6.92E + 21 4.76E + 15
87 Mitral valve anomalies Interactive Daily.Interpol. 7.46E-09 2.31E + 18 5.81E + 12
88 Mitral valve anomalies Interactive LM.Cannabis_x_Herb.THC 0.0189 6.44E + 05 19.02
89 Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. 1.27E-13 9.27 6.31
90 Mitral valve anomalies 2 Lags Herb 0.0155 8.04E + 03 10.85

Table 15:

E-values from geospatial models

No. Regression Anomaly Model Type Term P-Value E-Value Estimate Lower Bound E-Value
1 Spatial Cong. heart disease Additive Herb.THC 0.0038 1.20E + 05 70.68
2 Spatial Cong. heart disease Interactive Herb.THC 0.0038 1.20E + 05 70.68
3 Spatial Cong. heart disease 1 Lag Herb.THC 0.0401 801.09 1.98
4 Spatial Cong. heart disease 2 Lags Herb.THC 0.0238 144.6 2.95
5 Spatial Severe cong. heart disease Additive Herb 8.22E-07 8.11E + 07 7.77E + 04
6 Spatial Severe cong. heart disease Additive LM.Cannabis_x_Resin.THC 0.0002 281.87 20.47
7 Spatial Severe cong. heart disease Interactive Herb 1.05E-10 1.19E + 13 1.61E + 09
8 Spatial Severe cong. heart disease Interactive LM.Cannabis_x_Resin.THC 2.35E-05 2.21E + 05 1.03E + 03
9 Spatial Severe cong. heart disease 1 Lag LM.Cannabis_x_Resin.THC: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 0.0050 2.18E + 05 3.06
10 Spatial Severe cong. heart disease 1 Lag Herb 0.0391 1.20E + 11 3.67E + 03
11 Spatial Severe cong. heart disease 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0026 2.74E + 11 1.60E + 04
12 Spatial Severe cong. heart disease 2 Lags Herb 0.0221 6.71E + 03 5.99
13 Spatial ASD 1 Lag Tobacco: Daily.Interpol. 0.0210 4.41E + 07 25.77
14 Spatial ASD 2 Lags Daily.Interpol. 0.0215 1.54E + 139 1.07E + 21
15 Spatial VSD Additive Herb 0.0014 33.67 1.99
16 Spatial VSD Additive Resin 0.0296 5.88E + 03 43.32
17 Spatial VSD Interactive LM.Cannabis_x_Herb.THC 8.94E-06 1.16E + 17 4.81E + 09
18 Spatial VSD 1 Lag LM.Cannabis_x_Herb.THC 0.0003 9.50E + 09 4.91E + 05
19 Spatial VSD 2 Lags Daily.Interpol. 0.0137 3.41E + 57 1.44E + 12
20 Spatial VSD 2 Lags LM.Cannabis_x_Herb.THC 2.15E-05 4.45E + 23 8.06E + 12
21 Spatial AVSD Additive Herb 0.0014 5.88E + 03 43.32
22 Spatial AVSD Additive Resin 0.0296 33.65 1.99
23 Spatial AVSD Interactive Tobacco: Resin 1.23E-05 4.06 2.56
24 Spatial AVSD 2 Lags Tobacco: Resin 0.0289 2.37 1.26
25 Spatial PDA Additive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 0.0011 4.73E + 03 44.81
26 Spatial PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 2.50E-05 3.21E + 05 1.23E + 03
27 Spatial PDA Interactive Tobacco: Daily.Interpol. 0.0015 5.09E + 06 576.84
28 Spatial PDA 1 Lag Tobacco: Daily.Interpol. 4.13E-05 1.11E + 13 5.74E + 05
29 Spatial PDA 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. 0.0026 1.37E + 16 3.82E + 08
30 Spatial PDA 2 Lags Tobacco: Daily.Interpol. 0.0008 7.25E + 09 344.71
31 Spatial PDA 2 Lags LM.Cannabis_x_Herb.THC 0.0107 66.55 8.12
32 Spatial Tetralogy of Fallot Additive Herb 0.0033 2.95E + 07 503.90
33 Spatial Tetralogy of Fallot Interactive Tobacco: Resin 1.44E-05 26.76 7.86
34 Spatial Tetralogy of Fallot 1 Lag Tobacco: Herb 5.26E-05 13.11 4.83
35 Spatial Tetralogy of Fallot 2 Lags Tobacco: LM.Cannabis_x_Herb.THC 1.07E-06 62.87 15.34
36 Spatial Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 8.77E-05 293.63 23.91
37 Spatial Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 8.77E-05 293.63 23.91
38 Spatial Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0284 6.95 1.58
39 Spatial Vascular disruptions 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0008 24.97 5.19
40 Spatial Double outlet right ventricle Additive LM.Cannabis_x_Herb.THC 0.0099 7.76E + 04 25.13
41 Spatial Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC 0.0208 1.63E + 27 2.73E + 04
42 Spatial Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC 9.11E-06 2.54E + 12 1.18E + 07
43 Spatial Transposition great vessels Additive LM.Cannabis_x_Herb.THC 0.0099 7.77E + 04 25.13
44 Spatial Transposition great vessels Interactive Herb 0.0005 4.95E + 03 61.38
45 Spatial Transposition great vessels 1 Lag Resin 0.0370 15.34 1.53
46 Spatial Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC 0.0001 12.51 4.51
47 Spatial Hypoplastic right heart Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 5.22E-06 960.35 67.27
48 Spatial Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 3.10E-07 1.48E + 03 118.27
49 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0003 6.18E + 07 7.55
50 Spatial Hypoplastic right heart 1 Lag Daily.Interpol. 0.0079 901.95 32.41
51 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Herb.THC 0.0333 5.17E + 33 1.34E + 09
52 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 1.09E-06 2.21E + 13 4.19E + 04
53 Spatial Hypoplastic right heart 2 Lags Daily.Interpol. 5.10E-05 2.22E + 05 2.10E + 03
54 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Herb.THC 0.0035 1.17E + 95 2.06E + 49
55 Spatial Mitral valve anomalies Interactive Tobacco: Daily.Interpol. 2.17E-07 9.91E + 05 7.03E + 03
56 Spatial Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. 4.14E-06 1.58E + 06 4.93E + 03
57 Spatial Mitral valve anomalies 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0038 3.71E + 28 2.81E + 09
58 Spatial Mitral valve anomalies 2 Lags Tobacco: Daily.Interpol. 0.0038 3.97E + 04 49.19
59 Spatial Mitral valve anomalies 2 Lags LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. 0.0115 5.36E + 35 2.03E + 08

These lists are then combined into the lists of 149 E-values derived from both sets of models, as shown in Table 16. It was found that 138/149 (92.6%) of the E-value estimates were >9 and so in the high zone, and all 149 exceeded the cut-off for causality at 1.25 [67]. 112/149 (75.2%) mEVs exceeded 9 and so fell in the high zone [68], and 147/149 mEVs (98.7%) exceeded the threshold for causality at 1.25 [67].

Table 16:

List of all E-values

No. E-Value Estimate Lower Bound E-Value
1 Infinity 4.28E + 135
2 1.54E + 139 2.06E + 49
3 1.17E + 95 3.41E + 44
4 4.37E + 59 3.15E + 34
5 3.41E + 57 1.07E + 21
6 5.07E + 49 7.81E + 20
7 7.77E + 39 1.04E + 17
8 5.36E + 35 7.82E + 16
9 5.17E + 33 4.97E + 16
10 2.08E + 32 3.88E + 16
11 3.71E + 28 4.76E + 15
12 1.63E + 27 1.86E + 15
13 1.04E + 25 3.72E + 13
14 5.10E + 24 2.54E + 13
15 1.67E + 24 8.06E + 12
16 4.45E + 23 5.81E + 12
17 6.92E + 21 1.44E + 12
18 1.60E + 21 4.28E + 11
19 5.56E + 20 2.95E + 10
20 8.06E + 19 1.77E + 10
21 3.79E + 19 1.30E + 10
22 2.31E + 18 1.26E + 10
23 4.00E + 17 4.81E + 09
24 1.16E + 17 2.81E + 09
25 1.37E + 16 1.61E + 09
26 9.01E + 15 1.34E + 09
27 8.51E + 14 3.82E + 08
28 3.95E + 14 2.03E + 08
29 9.24E + 13 6.85E + 07
30 5.25E + 13 6.31E + 07
31 5.19E + 13 1.18E + 07
32 4.84E + 13 7.61E + 05
33 2.21E + 13 5.89E + 05
34 1.19E + 13 5.74E + 05
35 1.11E + 13 4.91E + 05
36 3.38E + 12 2.94E + 05
37 2.54E + 12 2.58E + 05
38 7.34E + 11 2.02E + 05
39 2.74E + 11 1.96E + 05
40 1.20E + 11 1.96E + 05
41 9.50E + 09 1.86E + 05
42 7.28E + 09 1.74E + 05
43 7.25E + 09 7.77E + 04
44 4.74E + 09 4.19E + 04
45 6.66E + 08 2.73E + 04
46 4.17E + 08 2.14E + 04
47 3.52E + 08 1.76E + 04
48 2.93E + 08 1.60E + 04
49 2.51E + 08 1.08E + 04
50 9.44E + 07 9.39E + 03
51 8.11E + 07 7.03E + 03
52 6.18E + 07 4.93E + 03
53 5.02E + 07 3.72E + 03
54 4.41E + 07 3.67E + 03
55 3.89E + 07 2.43E + 03
56 2.95E + 07 2.10E + 03
57 7.57E + 06 1.68E + 03
58 5.09E + 06 1.52E + 03
59 3.11E + 06 1.23E + 03
60 3.04E + 06 1.18E + 03
61 2.38E + 06 1.08E + 03
62 2.38E + 06 1.03E + 03
63 1.80E + 06 1.03E + 03
64 1.58E + 06 868.53
65 9.91E + 05 850.24
66 6.44E + 05 740.60
67 4.08E + 05 686.08
68 3.64E + 05 576.84
69 3.59E + 05 503.90
70 3.30E + 05 344.71
71 3.21E + 05 255.77
72 2.22E + 05 212.19
73 2.21E + 05 155.66
74 2.18E + 05 121.42
75 1.34E + 05 118.27
76 1.20E + 05 111.26
77 1.20E + 05 91.92
78 1.19E + 05 90.06
79 1.09E + 05 81.68
80 7.77E + 04 70.68
81 7.76E + 04 70.68
82 6.79E + 04 67.27
83 5.06E + 04 61.38
84 4.53E + 04 59.42
85 3.97E + 04 55.25
86 2.33E + 04 54.91
87 1.79E + 04 50.46
88 1.24E + 04 49.19
89 8.04E + 03 44.81
90 6.74E + 03 43.32
91 6.71E + 03 43.32
92 5.88E + 03 42.72
93 5.88E + 03 32.41
94 4.95E + 03 29.73
95 4.79E + 03 25.77
96 4.73E + 03 25.13
97 3.92E + 03 25.13
98 3.81E + 03 23.91
99 3.78E + 03 23.91
100 3.46E + 03 22.14
101 2.80E + 03 20.47
102 1.61E + 03 19.41
103 1.48E + 03 19.02
104 1.48E + 03 18.81
105 1.41E + 03 17.74
106 1.31E + 03 17.69
107 1.11E + 03 15.34
108 960.35 14.31
109 901.95 12.31
110 897.5 11.38
111 801.09 11.26
112 616.49 10.85
113 474.56 8.52
114 293.63 8.12
115 293.63 8.07
116 281.87 7.86
117 263.77 7.55
118 243.5 7.38
119 144.6 6.31
120 108.11 5.99
121 66.55 5.91
122 62.87 5.44
123 62.36 5.19
124 54.68 4.83
125 52.93 4.51
126 44.48 3.89
127 36.96 3.67
128 33.67 3.62
129 33.65 3.48
130 26.76 3.06
131 25.73 2.95
132 25.49 2.76
133 24.97 2.67
134 15.34 2.56
135 13.11 2.28
136 12.51 2.10
137 9.27 2.03
138 9.24 1.99
139 6.95 1.99
140 5.64 1.98
141 5.56 1.81
142 4.92 1.71
143 4.91 1.59
144 4.06 1.58
145 3.72 1.53
146 2.49 1.44
147 2.37 1.26
148 1.54 1.24
149 1.48 1.07

Table 17 lists these E-values by CA. Table 18 summarizes these data by CA listed in descending order of median mEV. This table is of interest for several reasons and is considered further in the Discussion section below.

Table 17:

E-values by anomaly

No. Regression Anomaly Model_Type Term Group P-Value E-Value Estimate Lower Bound E-Value
1 Spatial ASD 2 Lags Daily.Interpol. Daily 0.0215 1.54E + 139 1.07E + 21
2 Panel ASD Interactive Herb Herb 2.32E-12 3.59E + 05 1.76E + 04
3 Panel ASD Additive Herb Herb 0.0013 1.79E + 04 81.68
4 Panel ASD 2 Lags LM.Cannabis_x_Herb.THC Herb <2.2E-16 9.01E + 15 2.54E + 13
5 Panel ASD 1 Lag LM.Cannabis_x_Herb.THC Herb 8.72E-15 7.28E + 09 6.31E + 07
6 Panel ASD 4 Lags LM.Cannabis_x_Herb.THC Herb 0.0168 2.51E + 08 90.06
7 Panel ASD Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0133 4.91 1.81
8 Spatial ASD 1 Lag Tobacco: Daily.Interpol. Daily 0.0210 4.41E + 07 25.77
9 Spatial AVSD Additive Herb Herb 0.0014 5.88E + 03 43.32
10 Panel AVSD Interactive LM.Cannabis_x_Resin.THC Resin 8.05E-07 1.67E + 24 1.86E + 15
11 Panel AVSD 1 Lag LM.Cannabis_x_Resin.THC Resin 0.0042 4.17E + 08 1.18E + 03
12 Panel AVSD Additive Resin Resin 4.05E-10 897.5 155.66
13 Spatial AVSD Additive Resin Resin 0.0296 33.65 1.99
14 Spatial AVSD Interactive Tobacco: Resin Resin 1.23E-05 4.06 2.56
15 Spatial AVSD 2 Lags Tobacco: Resin Resin 0.0289 2.37 1.26
16 Panel AVSD 1 Lag Tobacco: Resin Resin 1.11E-07 5.64 3.62
17 Panel AVSD Interactive Tobacco: Resin Resin 4.26E-07 5.56 3.48
18 Panel AVSD 2 Lags Tobacco: Resin Resin 1.58E-12 1.54 1.44
19 Panel AVSD Interactive Tobacco: Resin: LM.Cannabis_x_Resin.THC Resin 0.0026 263.77 11.38
20 Panel Cong. heart disease 1 Lag Herb.THC Herb 1.75E-19 8.06E + 19 3.88E + 16
21 Panel Cong. heart disease Interactive Herb.THC Herb 9.29E-10 3.95E + 14 2.95E + 10
22 Panel Cong. heart disease Additive Herb.THC Herb 1.93E-16 3.38E + 12 1.26E + 10
23 Panel Cong. heart disease 2 Lags Herb.THC Herb 1.15E-05 6.66E + 08 1.86E + 05
24 Spatial Cong. heart disease Additive Herb.THC Herb 0.0038 1.20E + 05 70.68
25 Spatial Cong. heart disease Interactive Herb.THC Herb 0.0038 1.20E + 05 70.68
26 Spatial Cong. heart disease 2 Lags Herb.THC Herb 0.0238 144.6 2.95
27 Spatial Cong. heart disease 1 Lag Herb.THC Herb 0.0401 801.09 1.98
28 Panel Cong. heart disease 2 Lags Herb.THC: LM.Cannabis_x_Herb.THC Herb 4.14E-11 4.37E + 59 3.41E + 44
29 Panel Cong. heart disease Interactive LM.Cannabis_x_Herb.THC Herb 6.23E-03 5.19E + 13 2.14E + 04
30 Panel Cong. heart disease Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.:
LM.Cannabis_x_Resin.THC_x_Daily.Interpol.
Daily 1.91E-02 5.56E + 20 9.39E + 03
31 Panel Double outlet right ventricle Interactive Herb Herb 6.33E-05 1.34E + 05 740.60
32 Panel Double outlet right ventricle 2 Lags Herb: Resin Herb 0.0138 5.10E + 24 5.89E + 05
33 Spatial Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC Herb 9.11E-06 2.54E + 12 1.18E + 07
34 Panel Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0030 9.24E + 13 1.74E + 05
35 Spatial Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC Herb 0.0208 1.63E + 27 2.73E + 04
36 Spatial Double outlet right ventricle Additive LM.Cannabis_x_Herb.THC Herb 0.0099 7.76E + 04 25.13
37 Panel Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC Daily 9.88E-05 2.08E + 32 7.82E + 16
38 Panel Double outlet right ventricle Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0005 3.52E + 08 1.08E + 04
39 Panel Double outlet right ventricle 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0052 3.92E + 03 22.14
40 Panel Double outlet right ventricle Interactive Tobacco: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 5.35E-12 4.53E + 04 3.72E + 03
41 Spatial Hypoplastic right heart 2 Lags Daily.Interpol. Daily 5.10E-05 2.22E + 05 2.10E + 03
42 Spatial Hypoplastic right heart 1 Lag Daily.Interpol. Daily 0.0079 901.95 32.41
43 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0035 1.17E + 95 2.06E + 49
44 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Herb.THC Herb 0.0333 5.17E + 33 1.34E + 09
45 Panel Hypoplastic right heart Additive LM.Cannabis_x_Herb.THC Herb 0.0265 5.02E + 07 17.69
46 Panel Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC Resin 0.0052 9.24 2.67
47 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 1.09E-06 2.21E + 13 4.19E + 04
48 Spatial Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 3.10E-07 1.48E + 03 118.27
49 Spatial Hypoplastic right heart Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 5.22E-06 960.35 67.27
50 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0003 6.18E + 07 7.55
51 Panel Hypoplastic right heart Additive Resin Resin 0.0050 1.11E + 03 14.31
52 Panel Hypoplastic right heart 1 Lag Resin Resin 5.65E-05 25.73 7.38
53 Panel Hypoplastic right heart 2 Lags Resin Resin 0.0009 25.49 5.44
54 Panel Mitral valve anomalies Additive Daily.Interpol. Daily 6.06E-10 6.92E + 21 4.76E + 15
55 Panel Mitral valve anomalies Interactive Daily.Interpol. Daily 7.46E-09 2.31E + 18 5.81E + 12
56 Panel Mitral valve anomalies 2 Lags Herb Herb 0.0155 8.04E + 03 10.85
57 Panel Mitral valve anomalies Interactive LM.Cannabis_x_Herb.THC Herb 0.0189 6.44E + 05 19.02
58 Spatial Mitral valve anomalies 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 0.0038 3.71E + 28 2.81E + 09
59 Spatial Mitral valve anomalies 2 Lags LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 0.0115 5.36E + 35 2.03E + 08
60 Spatial Mitral valve anomalies Interactive Tobacco: Daily.Interpol. Daily 2.17E-07 9.91E + 05 7.03E + 03
61 Spatial Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. Daily 4.14E-06 1.58E + 06 4.93E + 03
62 Spatial Mitral valve anomalies 2 Lags Tobacco: Daily.Interpol. Daily 0.0038 3.97E + 04 49.19
63 Panel Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. Daily 1.27E-13 9.27 6.31
64 Panel PDA Additive Daily.Interpol. Daily 4.3E-09 5.07E + 49 3.15E + 34
65 Panel PDA 1 Lag LM.Cannabis_x_Herb.THC Herb 7.29E-14 8.51E + 14 4.28E + 11
66 Panel PDA 2 Lags LM.Cannabis_x_Herb.THC Herb 2.33E-07 7.34E + 11 6.85E + 07
67 Panel PDA Interactive LM.Cannabis_x_Herb.THC Herb 3.27E-05 3.64E + 05 1.52E + 03
68 Spatial PDA 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0107 66.55 8.12
69 Panel PDA Additive LM.Cannabis_x_Herb.THC Herb 0.0158 2.80E + 03 8.07
70 Spatial PDA 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0026 1.37E + 16 3.82E + 08
71 Spatial PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 2.50E-05 3.21E + 05 1.23E + 03
72 Spatial PDA Additive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0011 4.73E + 03 44.81
73 Panel PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0449 1.48 1.07
74 Spatial PDA 1 Lag Tobacco: Daily.Interpol. Daily 4.13E-05 1.11E + 13 5.74E + 05
75 Spatial PDA Interactive Tobacco: Daily.Interpol. Daily 0.0015 5.09E + 06 576.84
76 Spatial PDA 2 Lags Tobacco: Daily.Interpol. Daily 0.0008 7.25E + 09 344.71
77 Panel PDA 1 Lag Tobacco: Daily.Interpol. Daily 1.39E-08 2.93E + 08 7.61E + 05
78 Panel PDA 2 Lags Tobacco: Daily.Interpol. Daily 0.0042 3.30E + 05 111.26
79 Panel PDA Interactive Tobacco: Daily.Interpol. Daily 8.61E-10 243.5 59.42
80 Spatial Severe cong. heart disease Interactive Herb Herb 1.05E-10 1.19E + 13 1.61E + 09
81 Spatial Severe Cong. heart disease Additive Herb Herb 8.22E-07 8.11E + 07 7.77E + 04
82 Spatial Severe cong. heart disease 1 Lag Herb Herb 0.0391 1.20E + 11 3.67E + 03
83 Spatial Severe cong. heart disease 2 Lags Herb Herb 0.0221 6.71E + 03 5.99
84 Panel Severe cong. heart disease Interactive Herb.THC Herb 1.31E-05 3.89E + 07 2.94E + 05
85 Panel Severe cong. heart disease 1 Lag Herb.THC Herb 0.0078 6.74E + 03 18.81
86 Panel Severe cong. heart disease 2 Lags Herb.THC Herb 4.41E-02 3.46E + 03 2.10
87 Spatial Severe cong. heart disease Interactive LM.Cannabis_x_Resin.THC Resin 2.35E-05 2.21E + 05 1.03E + 03
88 Spatial Severe cong. heart disease Additive LM.Cannabis_x_Resin.THC Resin 0.0002 281.87 20.47
89 Spatial Severe cong. heart disease 1 Lag LM.Cannabis_x_Resin.THC: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Resin 0.0050 2.18E + 05 3.06
90 Spatial Severe cong. heart disease 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0026 2.74E + 11 1.60E + 04
91 Panel Severe cong. heart disease Additive LM.Herb.Daily.Intpltd Daily 4.74E-02 5.25E + 13 3.67
92 Panel Severe cong. heart disease Additive LM.Herb.THC Herb 1.48E-03 7.57E + 06 850.24
93 Panel Severe cong. heart disease Additive LM.Herb.THC.Daily.Interpol Herb 4.43E-02 4.92E + 00 1.24
94 Panel Severe cong. heart disease Interactive LM.Resin Resin 9.62E-07 2.33E + 04 686.08
95 Panel Severe cong. heart disease 2 Lags LM.Resin Resin 7.23E-06 1.31E + 03 91.92
96 Panel Severe cong. heart disease 1 Lag LM.Resin Resin 0.0003 616.49 29.73
97 Panel Severe cong. heart disease Interactive LM.Resin.Daily.Interpol Daily 4.20E-11 4.84E + 13 1.30E + 10
98 Panel Severe cong. heart disease Interactive LM.Resin.Daily.Interpol: LM.Herb.THC.Daily.Interpol Daily 1.22E-13 108.11 42.72
99 Panel Severe cong. heart disease 2 Lags LM.Resin.Daily.Interpol: LM.Resin Daily 4.42E-02 4.08E + 05 2.76
100 Panel Severe cong. heart disease 1 Lag LM.Resin: LM.Herb.THC.Daily.Interpol Daily 0.0005 1.80E + 06 1.03E + 03
101 Panel Severe cong. heart disease Interactive Tobacco: LM.Herb.THC.Daily.Interpol Daily 3.85E-08 2.49 2.03
102 Panel Tetralogy of Fallot Interactive Daily.Interpol. Daily 2.1E-09 1.10E + 307 4.28E + 135
103 Panel Tetralogy of Fallot Additive Daily.Interpol. Daily 5.96E-09 3.79E + 19 3.72E + 13
104 Spatial Tetralogy of Fallot Additive Herb Herb 0.0033 2.95E + 07 503.90
105 Panel Tetralogy of Fallot 2 Lags LM.Cannabis_x_Herb.THC Herb 3.86E-08 1.04E + 25 1.04E + 17
106 Panel Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC Herb 0.0159 1.19E + 05 17.74
107 Panel Tetralogy of Fallot 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 2.59E-10 1.24E + 04 1.08E + 03
108 Panel Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 4.68E-07 36.96 12.31
109 Panel Tetralogy of Fallot 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 4.36E-16 3.78E + 03 868.53
110 Panel Tetralogy of Fallot 2 Lags Resin Resin 0.0460 474.56 1.71
111 Spatial Tetralogy of Fallot 1 Lag Tobacco: Herb Herb 5.26E-05 13.11 4.83
112 Spatial Tetralogy of Fallot 2 Lags Tobacco: LM.Cannabis_x_Herb.THC Herb 1.07E-06 62.87 15.34
113 Spatial Tetralogy of Fallot Interactive Tobacco: Resin Resin 1.44E-05 26.76 7.86
114 Panel Transposition great vessels 1 Lag Herb Herb <2.2E-16 3.11E + 06 2.02E + 05
115 Panel Transposition great vessels 2 Lags Herb Herb 0.0056 4.74E + 09 1.68E + 03
116 Panel Transposition great vessels Interactive Herb Herb 0.0013 5.06E + 04 121.42
117 Spatial Transposition great vessels Interactive Herb Herb 0.0005 4.95E + 03 61.38
118 Panel Transposition great vessels Additive Herb Herb 0.0003 9.44E + 07 8.52
119 Spatial Transposition great vessels Additive LM.Cannabis_x_Herb.THC Herb 0.0099 7.77E + 04 25.13
120 Panel Transposition great vessels Additive LM.Cannabis_x_Resin.THC Resin 0.0002 1.61E + 03 50.46
121 Panel Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC Resin 0.0034 1.41E + 03 19.41
122 Spatial Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC Resin 0.0001 12.51 4.51
123 Panel Transposition great vessels Interactive LM.Cannabis_x_Resin.THC: Resin Resin 8.46E-05 7.77E + 39 7.81E + 20
124 Panel Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0437 54.68 1.59
125 Spatial Transposition great vessels 1 Lag Resin Resin 0.0370 15.34 1.53
126 Panel Transposition great vessels Interactive Tobacco: Resin Resin 0.0002 3.72 2.28
127 Panel Vascular disruptions 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 6.72E-04 1.09E + 05 255.77
128 Panel Vascular disruptions 2 Lags LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 1.76E-04 1.48E + 03 55.25
129 Panel Vascular disruptions Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: Resin Daily 1.27E-05 4.00E + 17 1.77E + 10
130 Panel Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC Resin 9.61E-04 4.79E + 03 54.91
131 Panel Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 1.56E-06 3.81E + 03 212.19
132 Spatial Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 8.77E-05 293.63 23.91
133 Spatial Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 8.77E-05 293.63 23.91
134 Panel Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 4.85E-05 52.93 11.26
135 Spatial Vascular disruptions 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0008 24.97 5.19
136 Spatial Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0284 6.95 1.58
137 Panel Vascular disruptions 2 Lags Resin Resin 3.50E-08 6.79E + 04 2.43E + 03
138 Panel Vascular disruptions Interactive Resin Resin 0.0038 62.36 5.91
139 Panel Vascular disruptions Additive Resin Resin 9.68E-03 44.48 3.89
140 Spatial VSD 2 Lags Daily.Interpol. Daily 0.0137 3.41E + 57 1.44E + 12
141 Spatial VSD Additive Herb Herb 0.0014 33.67 1.99
142 Panel VSD 2 Lags LM.Cannabis_x_Herb.THC Herb 2.7E-14 1.60E + 21 4.97E + 16
143 Spatial VSD 2 Lags LM.Cannabis_x_Herb.THC Herb 2.15E-05 4.45E + 23 8.06E + 12
144 Spatial VSD Interactive LM.Cannabis_x_Herb.THC Herb 8.94E-06 1.16E + 17 4.81E + 09
145 Spatial VSD 1 Lag LM.Cannabis_x_Herb.THC Herb 0.0003 9.50E + 09 4.91E + 05
146 Panel VSD 1 Lag LM.Cannabis_x_Herb.THC Herb <2.2E-16 3.04E + 06 2.58E + 05
147 Panel VSD Additive LM.Cannabis_x_Herb.THC Herb <2.2E-16 2.38E + 06 1.96E + 05
148 Panel VSD Interactive LM.Cannabis_x_Herb.THC Herb <2.2E-16 2.38E + 06 1.96E + 05
149 Spatial VSD Additive Resin Resin 0.0296 5.88E + 03 43.32

Table 18:

Summary of E-values by anomaly

Anomaly Number Mean mEV Median mEV Minimum mEV Maximum mEV Mean E-Value Estimate Median E-Value Estimate mEV Estimate Maximum E-Value Estimate
VSD 10 4.97E + 15 374 500.00 1.99 4.97E + 16 3.41E + 56 4.75E + 09 33.67 3.41E + 57
Cong. heart disease 11 3.10E + 43 21 400.00 1.98 3.41E + 44 3.97E + 58 3.38E + 12 144.6 4.37E + 59
Double outlet right ventricle 10 7.82E + 15 19 050.00 22.14 7.82E + 16 2.08E + 31 1.27E + 12 3920 2.08E + 32
ASD 8 1.34E + 20 8845.03 1.81 1.07E + 21 1.93E + 138 1.48E + 08 4.91 1.54E + 139
Mitral valve anomalies 10 4.77E + 14 5980.00 6.31 4.76E + 15 5.36E + 34 1 285 500 9.27 5.36E + 35
PDA 16 1.97E + 33 903.42 1.07 3.15E + 34 3.17E + 48 2 727 000 1.48 5.07E + 49
Tetralogy of Fallot 12 3.57E + 134 260.82 1.71 4.28E + 135 9.17E + 305 8090 13.11 1.10E + 307
Severe cong. heart disease 22 6.64E + 08 67.32 1.24 1.30E + 10 5.15E + 12 219 500 2.49 5.25E + 13
Hypoplastic right heart 13 1.58E + 48 32.41 2.67 2.06E + 49 9.00E + 93 1480 9.24 1.17E + 95
Transposition great vessels 13 6.01E + 19 25.13 1.53 7.81E + 20 5.98E + 38 4950 3.72 7.77E + 39
Vascular disruptions 13 1.36E + 09 23.91 1.58 1.77E + 10 3.08E + 16 293.63 6.95 4.00E + 17
AVSD 11 1.69E + 14 3.62 1.26 1.86E + 15 1.52E + 23 33.65 1.54 1.67E + 24

These multivariable data are also similarly suited to illustration by Volcano plots as was done earlier for the bivariate results.

The multivariable data for the E-value estimates are shown in Supplementary Fig. S2. In this plot, the presence of the tetralogy of Fallot far to the right forces all the points to the left side of the graph and makes the remainder of the graph difficult to interpret clearly. A similar problem occurs when the mEVs are considered, as shown in Supplementary Fig. S3.

Discussion

Main Results

Study data indicate that 17 of the 23 congenital cardiac anomalies demonstrated strong bivariate relationships with different metrics of cannabis exposure. Twelve of these anomalies were selected for detailed study in inverse probability weight panel regression models and in spatiotemporal models. In all twelve cases cannabis metrics persisted after adjustment in multivariable panel and spatial models. The use of ipw in panel models moved the analysis from a merely observational paradigm into a pseudorandomized paradigm from which it is both proper and appropriate to draw causal conclusions. When models were assessed for uncontrolled confounding E-values were noted to be very high throughout effectively excluding alternative explanations on quantitative grounds. The present results for ASD, VSD, AVSD, PDA and transposition of the great vessels are consistent with those previously reported in other series [4–9, 70].

Interestingly a companion paper to this one has shown that the VACTERL syndrome (Vertebral, anorectal, cardiac, tracheo-esophageal fistulae/esophageal atresia, renal and limb anomalies) was strongly and causally linked with European cannabinoid exposure which is itself consistent with cannabis-induced inhibition of the sonic hedgehog pathway as has previously been demonstrated [32, 71]. Since cardiac abnormalities are part of the VACTERL syndrome this finding confirms current study findings. The commonest cardiac anomalies seen in VACTERL syndrome are VSD and tetralogy of Fallot, two of the anomalies described herein [71–73].

In this respect the present results closely paralleled similar studies recently published from Canada, Australia, HI, CO, and the USA [4–9, 70]. They are also consistent with the wide spectrum of genotoxic activities which have been demonstrated experimentally for cannabis and cannabinoids.

The seventeen anomalies which showed strong bivariate relationships to cannabis exposure metrics were: (i) congenital heart defects, Severe CHD, Double outlet right ventricle, Transposition of great vessels, Single ventricle, VSD, ASD, AVSD, Tetralogy of Fallot, Ebstein’s anomaly, Pulmonary valve stenosis, Pulmonary valve atresia, Mitral valve anomalies, Hypoplastic right heart, Aortic atresia/interrupted aortic arch, PDA as only CHD in term infants (≥37 weeks) and Vascular disruption anomalies.

The six anomalies which did not show a bivariate relationship to cannabis exposure were: (ii) arterial truncus, tricuspid valve stenosis and atresia, aortic valve stenosis or atresia, coarctation of the aorta, hypoplastic left heart, total anomalous pulmonary venous return.

The twelve anomalies for which extended inverse probability weighted panel regression and space-time modelling was undertaken were: (iii) congenital heart defects, Severe CHD, Double outlet right ventricle, Transposition of great vessels, VSD, ASD, AVSD, Tetralogy of Fallot, Mitral valve anomalies, Hypoplastic right heart, PDA as only CHD in term infants (≥37 weeks) and Vascular disruption anomalies.

For these reasons, these figures have been re-plotted at higher magnification as Figs 24 and 25 which address the E-value estimates and the mEVs, respectively. As compared to the earlier bivariate analysis, it is now apparent that ASD, VSD, tetralogy of Fallot, severe CHD, transposition of the great vessels and mitral valve anomalies accompany CHD in the upper reaches of these plots.

Figure 24:

Figure 24:

Magnified volcano plot of negative log of P-values against log of E-value estimates for multivariate regressions

Figure 25:

Figure 25:

Magnified volcano plot of negative log of P-values against log of mEV for multivariate regressions

The E-value list may also be listed in order of the environmental exposure to intoxicant, as shown in Table 19. When the exposures are categorized into three primary exposures as daily cannabis exposure interpolated and herb and resin THC concentrations, the outcomes summarized in Table 20 are seen. These values are again listed in descending order of median mEV. The value for daily use interpolated is noted to be much greater than that for the herb and cannabis resin THC concentrations.

Table 19:

E-values by the major covariate group

No. Regression Anomaly Model_Type Term Group P-Value E-Value Estimate Lower Bound E-Value
1 Spatial ASD 2 Lags Daily.Interpol. Daily 0.0215 1.54E + 139 1.07E + 21
2 Panel ASD Interactive Herb Herb 2.32E-12 3.59E + 05 1.76E + 04
3 Panel ASD Additive Herb Herb 0.0013 1.79E + 04 81.68
4 Panel ASD 2 Lags LM.Cannabis_x_Herb.THC Herb <2.2E-16 9.01E + 15 2.54E + 13
5 Panel ASD 1 Lag LM.Cannabis_x_Herb.THC Herb 8.72E-15 7.28E + 09 6.31E + 07
6 Panel ASD 4 Lags LM.Cannabis_x_Herb.THC Herb 0.0168 2.51E + 08 90.06
7 Panel ASD Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0133 4.91 1.81
8 Spatial ASD 1 Lag Tobacco: Daily.Interpol. Daily 0.0210 4.41E + 07 25.77
9 Spatial AVSD Additive Herb Herb 0.0014 5.88E + 03 43.32
10 Panel AVSD Interactive LM.Cannabis_x_Resin.THC Resin 8.05E-07 1.67E + 24 1.86E + 15
11 Panel AVSD 1 Lag LM.Cannabis_x_Resin.THC Resin 0.0042 4.17E + 08 1.18E + 03
12 Panel AVSD Additive Resin Resin 4.05E-10 897.5 155.66
13 Spatial AVSD Additive Resin Resin 0.0296 33.65 1.99
14 Spatial AVSD Interactive Tobacco: Resin Resin 1.23E-05 4.06 2.56
15 Spatial AVSD 2 Lags Tobacco: Resin Resin 0.0289 2.37 1.26
16 Panel AVSD 1 Lag Tobacco: Resin Resin 1.11E-07 5.64 3.62
17 Panel AVSD Interactive Tobacco: Resin Resin 4.26E-07 5.56 3.48
18 Panel AVSD 2 Lags Tobacco: Resin Resin 1.58E-12 1.54 1.44
19 Panel AVSD Interactive Tobacco: Resin: LM.Cannabis_x_Resin.THC Resin 0.0026 263.77 11.38
20 Panel Cong. heart disease 1 Lag Herb.THC Herb 1.75E-19 8.06E + 19 3.88E + 16
21 Panel Cong. heart disease Interactive Herb.THC Herb 9.29E-10 3.95E + 14 2.95E + 10
22 Panel cong. heart disease Additive Herb.THC Herb 1.93E-16 3.38E + 12 1.26E + 10
23 Panel Cong. heart disease 2 Lags Herb.THC Herb 1.15E-05 6.66E + 08 1.86E + 05
24 Spatial Cong. heart disease Additive Herb.THC Herb 0.0038 1.20E + 05 70.68
25 Spatial Cong. heart disease Interactive Herb.THC Herb 0.0038 1.20E + 05 70.68
26 Spatial Cong. heart disease 2 Lags Herb.THC Herb 0.0238 144.6 2.95
27 Spatial Cong. heart disease 1 Lag Herb.THC Herb 0.0401 801.09 1.98
28 Panel Cong. heart disease 2 Lags Herb.THC: LM.Cannabis_x_Herb.THC Herb 4.14E-11 4.37E + 59 3.41E + 44
29 Panel Cong. heart disease Interactive LM.Cannabis_x_Herb.THC Herb 6.23E-03 5.19E + 13 2.14E + 04
30 Panel Cong. heart disease Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 1.91E-02 5.56E + 20 9.39E + 03
31 Panel Double outlet right ventricle Interactive Herb Herb 6.33E-05 1.34E + 05 740.60
32 Panel Double outlet right ventricle 2 Lags Herb: Resin Herb 0.0138 5.10E + 24 5.89E + 05
33 Spatial Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC Herb 9.11E-06 2.54E + 12 1.18E + 07
34 Panel Double outlet right ventricle 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0030 9.24E + 13 1.74E + 05
35 Spatial Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC Herb 0.0208 1.63E + 27 2.73E + 04
36 Spatial Double outlet right ventricle Additive LM.Cannabis_x_Herb.THC Herb 0.0099 7.76E + 04 25.13
37 Panel Double outlet right ventricle Interactive LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC Daily 9.88E-05 2.08E + 32 7.82E + 16
38 Panel Double outlet right ventricle Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0005 3.52E + 08 1.08E + 04
39 Panel Double outlet right ventricle 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0052 3.92E + 03 22.14
40 Panel Double outlet right ventricle Interactive Tobacco: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 5.35E-12 4.53E + 04 3.72E + 03
41 Spatial Hypoplastic right heart 2 Lags Daily.Interpol. Daily 5.10E-05 2.22E + 05 2.10E + 03
42 Spatial Hypoplastic right heart 1 Lag Daily.Interpol. Daily 0.0079 901.95 32.41
43 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0035 1.17E + 95 2.06E + 49
44 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Herb.THC Herb 0.0333 5.17E + 33 1.34E + 09
45 Panel Hypoplastic right heart Additive LM.Cannabis_x_Herb.THC Herb 0.0265 5.02E + 07 17.69
46 Panel Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC Resin 0.0052 9.24 2.67
47 Spatial Hypoplastic right heart 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 1.09E-06 2.21E + 13 4.19E + 04
48 Spatial Hypoplastic right heart Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 3.10E-07 1.48E + 03 118.27
49 Spatial Hypoplastic right heart Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 5.22E-06 960.35 67.27
50 Spatial Hypoplastic right heart 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0003 6.18E + 07 7.55
51 Panel Hypoplastic right heart Additive Resin Resin 0.0050 1.11E + 03 14.31
52 Panel Hypoplastic right heart 1 Lag Resin Resin 5.65E-05 25.73 7.38
53 Panel Hypoplastic right heart 2 Lags Resin Resin 0.0009 25.49 5.44
54 Panel Mitral valve anomalies Additive Daily.Interpol. Daily 6.06E-10 6.92E + 21 4.76E + 15
55 Panel Mitral valve anomalies Interactive Daily.Interpol. Daily 7.46E-09 2.31E + 18 5.81E + 12
56 Panel Mitral valve anomalies 2 Lags Herb Herb 0.0155 8.04E + 03 10.85
57 Panel Mitral valve anomalies Interactive LM.Cannabis_x_Herb.THC Herb 0.0189 6.44E + 05 19.02
58 Spatial Mitral valve anomalies 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 0.0038 3.71E + 28 2.81E + 09
59 Spatial Mitral valve anomalies 2 Lags LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 0.0115 5.36E + 35 2.03E + 08
60 Spatial Mitral valve anomalies Interactive Tobacco: Daily.Interpol. Daily 2.17E-07 9.91E + 05 7.03E + 03
61 Spatial Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. Daily 4.14E-06 1.58E + 06 4.93E + 03
62 Spatial Mitral valve anomalies 2 Lags Tobacco: Daily.Interpol. Daily 0.0038 3.97E + 04 49.19
63 Panel Mitral valve anomalies 1 Lag Tobacco: Daily.Interpol. Daily 1.27E-13 9.27 6.31
64 Panel PDA Additive Daily.Interpol. Daily 4.3E-09 5.07E + 49 3.15E + 34
65 Panel PDA 1 Lag LM.Cannabis_x_Herb.THC Herb 7.29E-14 8.51E + 14 4.28E + 11
66 Panel PDA 2 Lags LM.Cannabis_x_Herb.THC Herb 2.33E-07 7.34E + 11 6.85E + 07
67 Panel PDA Interactive LM.Cannabis_x_Herb.THC Herb 3.27E-05 3.64E + 05 1.52E + 03
68 Spatial PDA 2 Lags LM.Cannabis_x_Herb.THC Herb 0.0107 66.55 8.12
69 Panel PDA Additive LM.Cannabis_x_Herb.THC Herb 0.0158 2.80E + 03 8.07
70 Spatial PDA 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0026 1.37E + 16 3.82E + 08
71 Spatial PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 2.50E-05 3.21E + 05 1.23E + 03
72 Spatial PDA Additive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0011 4.73E + 03 44.81
73 Panel PDA Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 0.0449 1.48 1.07
74 Spatial PDA 1 Lag Tobacco: Daily.Interpol. Daily 4.13E-05 1.11E + 13 5.74E + 05
75 Spatial PDA Interactive Tobacco: Daily.Interpol. Daily 0.0015 5.09E + 06 576.84
76 Spatial PDA 2 Lags Tobacco: Daily.Interpol. Daily 0.0008 7.25E + 09 344.71
77 Panel PDA 1 Lag Tobacco: Daily.Interpol. Daily 1.39E-08 2.93E + 08 7.61E + 05
78 Panel PDA 2 Lags Tobacco: Daily.Interpol. Daily 0.0042 3.30E + 05 111.26
79 Panel PDA Interactive Tobacco: Daily.Interpol. Daily 8.61E-10 243.5 59.42
80 Spatial Severe cong. heart disease Interactive Herb Herb 1.05E-10 1.19E + 13 1.61E + 09
81 Spatial Severe cong. heart disease Additive Herb Herb 8.22E-07 8.11E + 07 7.77E + 04
82 Spatial Severe cong. heart disease 1 Lag Herb Herb 0.0391 1.20E + 11 3.67E + 03
83 Spatial Severe cong. heart disease 2 Lags Herb Herb 0.0221 6.71E + 03 5.99
84 Panel Severe cong. heart disease Interactive Herb.THC Herb 1.31E-05 3.89E + 07 2.94E + 05
85 Panel Severe cong. heart disease 1 Lag Herb.THC Herb 0.0078 6.74E + 03 18.81
86 Panel Severe cong. heart disease 2 Lags Herb.THC Herb 4.41E-02 3.46E + 03 2.10
87 Spatial Severe cong. heart disease Interactive LM.Cannabis_x_Resin.THC Resin 2.35E-05 2.21E + 05 1.03E + 03
88 Spatial Severe cong. heart disease Additive LM.Cannabis_x_Resin.THC Resin 0.0002 281.87 20.47
89 Spatial Severe cong. heart disease 1 Lag LM.Cannabis_x_Resin.THC: LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Resin 0.0050 2.18E + 05 3.06
90 Spatial Severe cong. heart disease 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0026 2.74E + 11 1.60E + 04
91 Panel Severe cong. heart disease Additive LM.Herb.Daily.Intpltd Daily 4.74E-02 5.25E + 13 3.67
92 Panel Severe cong. heart disease Additive LM.Herb.THC Herb 1.48E-03 7.57E + 06 850.24
93 Panel Severe cong. heart disease Additive LM.Herb.THC.Daily.Interpol Herb 4.43E-02 4.92E + 00 1.24
94 Panel Severe cong. heart disease Interactive LM.Resin Resin 9.62E-07 2.33E + 04 686.08
95 Panel Severe cong. heart disease 2 Lags LM.Resin Resin 7.23E-06 1.31E + 03 91.92
96 Panel Severe cong. heart disease 1 Lag LM.Resin Resin 0.0003 616.49 29.73
97 Panel Severe cong. heart disease Interactive LM.Resin.Daily.Interpol Daily 4.20E-11 4.84E + 13 1.30E + 10
98 Panel Severe cong. heart disease Interactive LM.Resin.Daily.Interpol: LM.Herb.THC.Daily.Interpol Daily 1.22E-13 108.11 42.72
99 Panel Severe cong. heart disease 2 Lags LM.Resin.Daily.Interpol: LM.Resin Daily 4.42E-02 4.08E + 05 2.76
100 Panel Severe cong. heart disease 1 Lag LM.Resin: LM.Herb.THC.Daily.Interpol Daily 0.0005 1.80E + 06 1.03E + 03
101 Panel Severe cong. heart disease Interactive Tobacco: LM.Herb.THC.Daily.Interpol Daily 3.85E-08 2.49 2.03
102 Panel Tetralogy of Fallot Interactive Daily.Interpol. Daily 2.1E-09 1.10E + 307 4.28E + 135
103 Panel Tetralogy of Fallot Additive Daily.Interpol. Daily 5.96E-09 3.79E + 19 3.72E + 13
104 Spatial Tetralogy of Fallot Additive Herb Herb 0.0033 2.95E + 07 503.90
105 Panel Tetralogy of Fallot 2 Lags LM.Cannabis_x_Herb.THC Herb 3.86E-08 1.04E + 25 1.04E + 17
106 Panel Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC Herb 0.0159 1.19E + 05 17.74
107 Panel Tetralogy of Fallot 1 Lag LM.Cannabis_x_Herb.THC: LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Daily 2.59E-10 1.24E + 04 1.08E + 03
108 Panel Tetralogy of Fallot Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 4.68E-07 36.96 12.31
109 Panel Tetralogy of Fallot 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 4.36E-16 3.78E + 03 868.53
110 Panel Tetralogy of Fallot 2 Lags Resin Resin 0.0460 474.56 1.71
111 Spatial Tetralogy of Fallot 1 Lag Tobacco: Herb Herb 5.26E-05 13.11 4.83
112 Spatial Tetralogy of Fallot 2 Lags Tobacco: LM.Cannabis_x_Herb.THC Herb 1.07E-06 62.87 15.34
113 Spatial Tetralogy of Fallot Interactive Tobacco: Resin Resin 1.44E-05 26.76 7.86
114 Panel Transposition great vessels 1 Lag Herb Herb <2.2E-16 3.11E + 06 2.02E + 05
115 Panel Transposition great vessels 2 Lags Herb Herb 0.0056 4.74E + 09 1.68E + 03
116 Panel Transposition great vessels Interactive Herb Herb 0.0013 5.06E + 04 121.42
117 Spatial Transposition great vessels Interactive Herb Herb 0.0005 4.95E + 03 61.38
118 Panel Transposition great vessels Additive Herb Herb 0.0003 9.44E + 07 8.52
119 Spatial Transposition great vessels Additive LM.Cannabis_x_Herb.THC Herb 0.0099 7.77E + 04 25.13
120 Panel Transposition great vessels Additive LM.Cannabis_x_Resin.THC Resin 0.0002 1.61E + 03 50.46
121 Panel Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC Resin 0.0034 1.41E + 03 19.41
122 Spatial Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC Resin 0.0001 12.51 4.51
123 Panel Transposition Great Vessels Interactive LM.Cannabis_x_Resin.THC: Resin Resin 8.46E-05 7.77E + 39 7.81E + 20
124 Panel Transposition great vessels 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0437 54.68 1.59
125 Spatial Transposition great vessels 1 Lag Resin Resin 0.0370 15.34 1.53
126 Panel Transposition great vessels Interactive Tobacco: Resin Resin 0.0002 3.72 2.28
127 Panel Vascular disruptions 1 Lag LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 6.72E-04 1.09E + 05 255.77
128 Panel Vascular disruptions 2 Lags LM.Cannabis_x_Herb.THC_x_Daily.Interpol. Daily 1.76E-04 1.48E + 03 55.25
129 Panel Vascular disruptions Interactive LM.Cannabis_x_Herb.THC_x_Daily.Interpol.: LM.Cannabis_x_Resin.THC_x_Daily.Interpol.: Resin Daily 1.27E-05 4.00E + 17 1.77E + 10
130 Panel Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC Resin 9.61E-04 4.79E + 03 54.91
131 Panel Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 1.56E-06 3.81E + 03 212.19
132 Spatial Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 8.77E-05 293.63 23.91
133 Spatial Vascular disruptions Interactive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 8.77E-05 293.63 23.91
134 Panel Vascular disruptions Additive LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 4.85E-05 52.93 11.26
135 Spatial Vascular disruptions 2 Lags LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0008 24.97 5.19
136 Spatial Vascular disruptions 1 Lag LM.Cannabis_x_Resin.THC_x_Daily.Interpol. Resin 0.0284 6.95 1.58
137 Panel Vascular disruptions 2 Lags Resin Resin 3.50E-08 6.79E + 04 2.43E + 03
138 Panel Vascular disruptions Interactive Resin Resin 0.0038 62.36 5.91
139 Panel Vascular disruptions Additive Resin Resin 9.68E-03 44.48 3.89
140 Spatial VSD 2 Lags Daily.Interpol. Daily 0.0137 3.41E + 57 1.44E + 12
141 Spatial VSD Additive Herb Herb 0.0014 33.67 1.99
142 Panel VSD 2 Lags LM.Cannabis_x_Herb.THC Herb 2.7E-14 1.60E + 21 4.97E + 16
143 Spatial VSD 2 Lags LM.Cannabis_x_Herb.THC Herb 2.15E-05 4.45E + 23 8.06E + 12
144 Spatial VSD Interactive LM.Cannabis_x_Herb.THC Herb 8.94E-06 1.16E + 17 4.81E + 09
145 Spatial VSD 1 Lag LM.Cannabis_x_Herb.THC Herb 0.0003 9.50E + 09 4.91E + 05
146 Panel VSD 1 Lag LM.Cannabis_x_Herb.THC Herb <2.2E-16 3.04E + 06 2.58E + 05
147 Panel VSD Additive LM.Cannabis_x_Herb.THC Herb <2.2E-16 2.38E + 06 1.96E + 05
148 Panel VSD Interactive LM.Cannabis_x_Herb.THC Herb <2.2E-16 2.38E + 06 1.96E + 05
149 Spatial VSD Additive Resin Resin 0.0296 5.88E + 03 43.32

Table 20:

Summary of E-values by the major covariate group

Group Number Mean mEV Median mEV Minimum mEV Maximum mEV Mean E-value estimate Median E-value estimate mEV estimate Maximum E-value estimate
Daily 20 2.14E + 134 5980 6.31 4.28E + 135 5.50E + 305 1.69E + 08 9.27 1.10E + 307
Herb 75 2.75E + 47 1520 1.07 2.06E + 49 1.56E + 93 7.57E + 06 1.48 1.17E + 95
Resin 54 1.45E + 19 19.94 1.26 7.81E + 20 1.44E + 38 756.995 1.54 7.77E + 39

These comparisons are formalized in Table 21 where the various groups are compared for the E-value estimates and mEVs using the Wilcoxon test. In this case for both the E-value estimate and the mEV, the daily to resin and herb to resin comparisons are significant, but the comparisons between daily use interpolated and herb THC concentration are not significant (Table 21).

Table 21:

Wilcoxon tests for inter-group comparisons for the major covariate group

Comparison W-Statistic Alternative P-Value
Lower E-Value, Daily_v_Herb 917 two.sided 0.1285
Lower E-Value, Daily_v_Resin 888 two.sided 2.34E-05
Lower E-Value, Herb_v_Resin 2924 two.sided 1.79E-05
E-Value Estimate, Daily_v_Herb 872 two.sided 0.2674
E-Value Estimate, Daily_v_Resin 886 two.sided 2.61E-05
E-Value Estimate, Herb_v_Resin 3167 two.sided 5.05E-08

Main Results in Detail

At bivariate analysis the effects of tobacco and alcohol were weak or negative across all CCA’s, while daily cannabis use interpolated was much stronger and more positive (Figs 1–3). While daily cannabis use was the most significant covariate on bivariate analyses (Table 1), resin and herb THC concentrations were also strongly related to CCA’s (Figs 4–6).

On bivariate map plots it was clear that CHD and severe CHD plotted against cannabis herb concentrations was rising simultaneously in countries with increasing cannabis use, such as Spain, France, Belgium, Netherlands, Croatia, Norway, Italy, Germany & Bulgaria indicated by all turning pink/purple (Figs 16–17). Trends for AVSD plotted against resin THC concentration were also moving together in Germany, France, Bulgaria, Norway, Netherlands all turned (Fig. 19). Trends for transposition of the great vessels plotted against cannabis resin THC concentration were moving together in Norway, Belgium, Italy, Spain, France, Bulgaria indicated by all turning pink/purple (Fig. 20).

Countries with rising daily cannabis use had in general higher CAR’s over time than those without (time: status interaction: β-Est. = 0.0267, t = 2.7563, P = 0.0059; Fig. 21).

At inverse probability weighted panel regression cannabis terms were positive and significant for CHD, severe CHD, ASD, VSD, AVSD, PDA, tetralogy of Fallot, vascular disruptions, double outlet right ventricle, transposition of the great vessels, hypoplastic right heart and mitral valve anomalies from: 1.75x10−19, 4.20x10−11, <2.2x10−16, <2.2x10−16, 1.58x10−12, 4.30x10−9, 4.36x10−16, 3.50x10−8, 5.35x10−12, <2.2x10−16, 5.65x10−5, 6.06 × 10−10 (Supplementary Tables S17–S28).

At spatial regression terms including cannabis were positive and significant for this same list of anomalies from: 0.0038, 1.05x10−10, 0.0215, 8.94x10−6, 1.23x10−5, 2.05x10−5, 1.07x10−6, 8.77x10−5, 9.11x10−6, 0.0001, 3.10x10−7, 2.17 × 10−7 (Tables 2–13).

92.6% and 75.2% of 149 E-value estimates and mEVs exceeded nine and 100.0% and 98.7% exceeded 1.25 (Table 16).

The order of relationship to cannabis judged by median mEV’s was VSD > CHD > double outlet right ventricle > ASD > mitral valve abnormalities > PDA > tetralogy of Fallot > severe CHD > hypoplastic right heart syndrome > transposition great vessels > vascular disruptions > AVSD (Table 18).

The order of covariates judged by the median mEV was daily cannabis use interpolated > herb THC concentration > resin THC concentration (Table 20).

A detailed categorical quintile analysis of this data was presented previously [9]. The reader who is interested in precise results from such analyses including risk ratios, attributable fractions in the exposed and population attributable fractions is cordially invited to peruse this important resource.

We note that in the present study were tobacco and alcohol use were unrelated or were negatively related to CAR’s. This findings is at variance with other results such as those previously reported from North America [8, 74]. Such differing results will require further research.

Mechanisms

Genotoxicity

Cannabinoids have been note to induce genotoxicity my many routes including severe morphological damage to sperm [75, 76], inducing high rates of failed oocyte division [77], induction of single- and double- stranded DNA breaks [78–80], formation of end-to-end chromosomal fusions and translocations [76, 81, 82], involvement in testicular cancer where whole genome doubling or quadrupling are known oncogenic events [81], disruption of telomerase [12, 83], interference with key epigenotoxic machinery (KMT2A [84]), induction of DNA bridges [77, 85, 86], alterations of DNA methylation which are heritable for the following generations [12, 84, 87–94], failure of histone-protamine substitution in sperm [95], and also alterations of histone proteins including acetylated- and phosphorylated- histones [96–99] which have also been shown to be heritable [99].

Epigenomics

Interpretation of current CCA cannabis related findings is assisted by comparing the list of genes in the core cardiogenic complex to those identified in the recently published whole genome epigenomic screen of cannabis dependence and withdrawal [12]. When this is done there are four hits identified for MEF2, 249 hits for NKX2, 127 hits for GATA and 15 hits for Tbx. No hits could be identified for Hand −1 or −2. In considering the list of genes identified as crucial in vasculogenesis there were five hits for VEGF, 6 for notch and 427 for Eph (and none for the Ephrins or COUP-TFII).

It was curious that there were initially no hits for the sonic hedgehog gene. However it is noted that for four of the key genes involved in the sonic hedgehog pathway or for its key interacting partners some hits were identified. Hence for GLI3 (Gli family zinc finger 3) there were 183 hits; for MEGF8 (multiple EGF-like domains 8) there were 105 hits, for TMEM107 (transmembrane protein 107) there were 22 hits and for BMP4 (bone morphogenetic protein 4) there were 166 hits. Since sonic hedgehog is a key morphogen controlling not only heart and arterial morphogenesis but the formation of many organs and structures this finding is potentially very important indeed.

Importantly there were 151 hits for KMT (histone lysine methyltransferase) in the epigenome-wide cannabinoid effects screen described [12]. This is important as this enzyme forms a key component of the epigenomic machinery.

Epigenomic Implication of Cardiovascular-Relevant Pathways

The report from Schrott and colleagues described several pathways that were prominently identified amongst the epigenome-wide screen conducted in rats and humans of cannabis dependence and withdrawal [12]. These included cardiogenesis, agenesis of the organism and growth of the organism. During cannabis withdrawal these workers reported that the area of the blood vessel component and organismal death were of concern [12].

There were nine hits on the cardiovascular system (CVS) including morphology of the CVS (39 genes, page 321; 35 genes, page 324), quantity of cardiomyocytes (4 genes, page 321) and hypoplasia of the heart chamber (7 genes, page 299).

Under heart there were three hits. Hypoplasia of the heart (10 genes, page 288; 7 genes, page 299; 6 genes, page 306), and hypoplasia of the trabeculae carnae (4 genes page 321). There were 26 genes noted on page 318 related to cardiogenesis.

These findings achieve particular significance in terms of our positive identification of hypoplastic right heart as a cannabis related anomaly (present report).

Atrial development occurred in several places including morphogenesis of the atrium (4 genes, page 314), morphogenesis of the atrial septum (3 genes page 318), atrial hypoplasia (2 genes page 319) and abnormal atrial morphology (6 genes, page 322).

In relation to the atrioventricular valves which are derived from the endocardial cushions abnormal morphology of the atrioventricular cushions (6 genes, page 296), lack of atrioventricular canal cushions (4 genes, page 300) and morphogenesis of the atrioventricular valve (3 genes, page 321).

Concerning the ventricle it was noted that formation of the ventricular septum (7 genes, page 315), VSDs type 3 (3 genes, page 301), hypoplasia of the cardiac ventricle (6 genes, page 306) and formation of the ventricular septum (7 genes, page 315).

In relation to blood vessel formation there angiogenesis was noted (54 genes, page 289), vascular development (56 genes, page 294), vasculogenesis (42 genes, page 302), sprouting angiogenesis (7 genes, page 324), movement of vascular endothelial cells (13 genes page 316), migration of endothelial cells (19 genes, page 317), migration of vascular endothelial cells (12 genes, page 317), angiogenesis of pulmonary vein (1 gene, page 357) and breakdown of blood vessel (1 gene, page 357).

These results are detailed in Table 22. Overall it is noted that this spectrum of epigenomic perturbations accounts for the epidemiologically observed pattern of teratological defects very well indeed.

Table 22:

EWAS annotations in epigenomic data of Schrott et.al [15]

Nearest Gene Name Page Dependence Status Number Genes Identified P-Value
Cardiovasculature
 Abnormal CVS 324 Withdrawal 35 0.002740
 CVS Development 321 Withdrawal 39 0.001920
Heart
 Hypoplasia of heart 288 Withdrawal 10 8.83E-08
 Cardiogenesis 318 Withdrawal 26 0.001640
 Hypoplasia trabeculae carnae 321 Withdrawal 4 0.001960
 Quantity cardiomyocytes 321 Withdrawal 4 0.001960
 Hypoplasia heart chamber 299 Withdrawal 7 0.000021
Atrium
 Atrial morphogenesis 314 Withdrawal 4 0.000855
 Atrial septal morphogenesis 318 Withdrawal 3 0.001650
 Atrial hypoplasia 319 Withdrawal 2 0.001770
 Abnormal atrial morphology 322 Withdrawal 6 0.002100
Atrioventricular valves
 Abnormal morphology AV cushions 296 Withdrawal 6 9.04E-06
 Lack of AV canal cushions 300 Withdrawal 4 0.000040
 AV valve morphogenesis 321 Withdrawal 3 0.002040
Ventricle
 VSD type 3 301 Withdrawal 3 0.000051
 Hypoplasia heart ventricle 306 Withdrawal 6 0.000157
 Formation ventricular septum 315 Withdrawal 7 0.001060
Vessels
 Angiogenesis 289 Withdrawal 54 1.73E-06
 CVS development 294 Withdrawal 56 7.32E-06
 Vasculogenesis 302 Withdrawal 42 6.65E-05
 Sprouting angiogenesis 324 Withdrawal 7 0.002690
 Vascular endothelial cell movement 316 Withdrawal 13 0.001210
 Endothelial cell migration 317 Withdrawal 19 0.001450
 Vascular endothelial cell migration 317 Withdrawal 12 0.001530
 Early onset hypertension 357 Withdrawal 1 0.007010
 Blood vessel breakdown 357 Withdrawal 1 0.007010
 Pulmonary vein angiogenesis 357 Withdrawal 1 0.007010

Qualitative Causal Inference

n 1965 A.B. Hill, a famous epidemiologist investigating the link between tobacco and lung cancer, set out his now well-known criteria to determine if a reported association might be causal [100]. His criteria included strength of association, consistency amongst different studies, specificity, temporality, coherence with known data, biological plausibility, dose-response curve, analogy with similar situations elsewhere and experimental confirmation. All of these criteria are fulfilled for congenital heart disorders as described above.

Quantitative Causal Inference

One of the main limitations of observational studies is the non-comparability of study groups, so-called ‘comparing apples with oranges’. This issue is addressed in the present multivariable panel regression modelling by the use of ipw which is the technique of choice in causal inference to circumvent this issue.

One of the main limitations of observational studies is the non-comparability of study groups, so-called ‘comparing apples with oranges’. This issue is addressed in the present multivariable panel regression modelling by the use of ipw which is the technique of choice in causal inference to circumvent this issue.

The other major issue with observational studies is the so-called concern of uncontrolled confounding. The E-values (or expected value) quantifies and constrains the degree of association demanded of some external unknown covariate with both the exposure of concern and the outcome of interest in order to explain away some apparently causal relationship. E-values >9 are said to be unusually high and assign causality [68]; however, an E-value greater than only 1.25 is generally required to assign causality [67]. E-values also have a 95% confidence interval. The lower bound is the one quoted in this report which identifies that 97.5% of the estimates will lie above that position. As noted the very high lower E-values in this report give the reader confidence in the outcomes described.

Generalizability

This is the largest dataset of CAs in the world and the present results necessarily carry great weight based on that alone. Results are further strengthened by their clear concordance with many datasets external to the present study [4–9, 70]. The results seen in bivariate analysis were confirmed in multiple regression modelling with two different regression techniques. Importantly the major techniques for causal inference have been employed namely ipw and E-values which transforms the analysis from a purely observational dataset into a pseudorandomized paradigm from which causal inferences may properly be drawn. In that our work demonstrates causality in this context, given the sophisticated form of modelling and the large size of the database we are happy that our results are widely generalizable.

Strengths and Limitations

The strengths of our study are that it is based on one of the largest datasets in the world and uses sophisticated forms of analysis in multivariable adjustment. We have also widely deployed the key tools of causal inference to allow pseudorandomization of our analysis and causal inferential modelling. The E-values which have been calculated are generally in the higher range which further adds robustness to the results. The present results are also consistent with results from several other recent reports. Moreover univariate and bivariate maps have been liberally supplied to allow the reader to actually visualize the datasets being described. Ranger regression was used for formal variable selection. Limitations of the study would include that, in common with many other epidemiological studies, individual cannabis exposure data was not available to the present investigators. Also some of the data had to be interpolated as in some datasets the degree of missing data was significant. This needs to be born in mind particularly when interpreting the data for daily cannabis use. Moreover the strong background of a genetic and biologically plausible explanatory frameworks, assisted greatly by the epigenetic work of Schrott and colleagues, makes findings mechanistically reasonable, further strengthening our confidence in both findings and generalizability. It is also observed that men and women who use cannabis may also differ in important respects from those who do not, albeit it can be argued that differences in long term relationship stability, rates of employment, and income are caused by and deeply confounded with cannabis use in that there is an evident two-way relationship between common sociodemographic covariates and drug use. In this sense it is possible that multivariable studies could over-control for such variables. While multivariable modelling can adjust to some extent for some of these covariates further large detailed subgroup investigations are indicated.

Conclusion

In conclusion we note that 17 congenital cardiac anomalies were positively related to metrics of cannabis exposure at bivariate analysis. When 12 of these CCA’s were studied in detail by inverse probability weighted panel regression and geospatial regression robust relationships to cannabis were confirmed which persisted after adjustment and fulfilled quantitative epidemiological criteria for causal relationships. Pathophysiologically the inhibition by cannabis through epigenomic pathways with the cardiac core regulatory gene complex and particularly the sonic hedgehog pathway by epigenomic mechanisms via heritable changes in DNA methylation is impressive and worthy of further study. The findings that 12–17 CCA’s could be related to metrics of cannabis exposure and most powerfully daily cannabis use in the largest CA dataset in the world is very concerning indeed particularly in the context of rapidly rising prevalence and daily intensity of cannabis use and cannabinoid potency and most especially in the context of the exponential genotoxic dose-response curve which has been demonstrated for cannabis genotoxicity both in the laboratory and epidemiologically. From this impressive dataset it can only be concluded that rational drug policy would require careful control of the penetration of powerful genotoxic compounds such as cannabinoids into the community in order to protect and preserve the genome and epigenome of the coming several generations.

Supplementary Material

dvac015_Supp

Acknowledgements

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Contributor Information

Albert Stuart Reece, Department of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

Gary Kenneth Hulse, Department of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

Supplementary Data

Supplementary Data is available at EnvEpig online.

Conflict of interest statement

The authors declare that they have no competing interests.

Funding

No funding was provided for this study. No funding organization played any role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Ethics Approval and Consent to Participate

The Human Research Ethics Committee of the University of Western Australia provided ethical approval for the study to be undertaken on 24 September 2021 (No. RA/4/20/4724).

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files. Data along with the relevant R code have been made publicly available on the Mendeley Database Repository and can be accessed from these URLs: 10.17632/vsmmmkncsd.1 and 10.17632/tysn37t426.1

Authors’ Contributions

A.S.R. assembled the data, designed and conducted the analyses and wrote the first manuscript draft. G.K.H. provided technical and logistic support, co-wrote the paper, assisted with gaining ethical approval and provided advice on manuscript preparation and general guidance to study conduct. A.S.R. had the idea for the article, performed the literature search, wrote the first draft and is the guarantor for the article.

References

  • 1. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence . U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001–2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June2020. www.cdc.gov/cancer/public-use (10 January 2022, date last accessed).
  • 2. Van Gelder MM, Donders ART, Devine O. et al. Using Bayesian models to assess the effects of under-reporting of cannabis use on the association with birth defects, national birth defects prevention study, 1997–2005. Paediatr Perinat Epidemiol 2014;28:424–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. van Gelder MM, Reefhuis J, Caton ARet al. National Birth Defects Prevention Study. . Maternal periconceptional illicit drug use and the risk of congenital malformations. Epidemiology 2009;20:60–6. [DOI] [PubMed] [Google Scholar]
  • 4. Forrester MB, Merz RD. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J Toxicol Environ Health 2007;70:7–18. [DOI] [PubMed] [Google Scholar]
  • 5. Reece AS, Hulse GK. Cannabis teratology explains current patterns of Coloradan congenital defects: the contribution of increased cannabinoid exposure to rising teratological trends. Clin Pediatr (Phila) 2019;58:1085–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Reece AS, Hulse GK. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol Toxicol 2020;21:75–103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Reece AS, Hulse GK. Canadian cannabis consumption and patterns of congenital anomalies: an ecological geospatial analysis. J Addict Med 2020;14:e195–210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Reece AS, Hulse GK. Geotemporospatial and causal inference epidemiological analysis of US survey and overview of cannabis, cannabidiol and cannabinoid genotoxicity in relation to congenital anomalies 2001–2015. BMC Pediatr 2022;22:47–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Reece AS, Hulse GK. Cannabinoid- and substance- relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. Environ Epigenet 2022;8:1–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Reece AS, Hulse GK. Cannabis in pregnancy – rejoinder, exposition and cautionary tales. Psychiatric Times 2020;37. [Google Scholar]
  • 11. Carlson BM. Human Embryology and Developmental Biology, Vol. 1. 6th edn. Philadelphia: Elsevier, 2019. [Google Scholar]
  • 12. Schrott R, Murphy SK, Modliszewski JL. et al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environ Epigenet 2021;7:1–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Young-Wolff KC, Tucker LY, Alexeeff S. et al. Trends in self-reported and biochemically tested marijuana use among pregnant females in California from 2009–2016. JAMA 2017;318:2490–1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Young-Wolff KC, Ray GT, Alexeeff SE. et al. Rates of prenatal cannabis use among pregnant women before and during the COVID-19 pandemic. JAMA 2021;326:1745–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. McCance-katz EF. The consequences of maternal substance abuse for the child exposed in utero. Psychosomatics 1991;32:268–74. [DOI] [PubMed] [Google Scholar]
  • 16. McCantz-Katz E. Urgent and emerging issues in prevention: marijuana, kratom and E-cigarettes. In: Substance Abuse and Mental Health Services Administration Department of Health and Human Services, Vol. 1. Rockville, Maryland: SAMHSA, DHHS, USA, 2019, 1–43. [Google Scholar]
  • 17. McCantz-Katz E. The national survey of drug use and health: 2019. In: ed. Substance Abuse and Mental Health Services Administration, US Department of Health and Human Services, Vol. 1. Silver Springs, Maryland: SAMHSA, US DHHS, 2020, 1–63. [Google Scholar]
  • 18. Volkow ND, Han B, Compton WM. et al. Self-reported medical and nonmedical cannabis use among pregnant women in the United States. JAMA 2019;322:167–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Dickson B, Mansfield C, Guiahi M. et al. Recommendations from cannabis dispensaries about first-trimester cannabis use. Obstet Gynecol 2018;131:1031–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol 2011;2:291–308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Europoean Union, Science Hub. Eurocat Data: Prevalence Charts and Tables. https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en (10 January 2022, date last accessed).
  • 22. Manthey J, Freeman TP, Kilian C. et al. Public health monitoring of cannabis use in Europe: prevalence of use, cannabis potency, and treatment rates. Lancet Regional Health - Europe 2021;10:100227–200237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Hölzel BN, Pfannkuche K, Allner B. et al. Following the adverse outcome pathway from micronucleus to cancer using H2B-eGFP transgenic healthy stem cells. Arch Toxicol 2020;94:3265–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Russo C, Ferk F, Misik M. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch Toxicol 2018;93:179–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Tahir SK, Trogadis JE, Stevens JK. et al. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem Cell Biol 1992;70:1159–73. [DOI] [PubMed] [Google Scholar]
  • 26. Vela G, Martin S, Garcia-Gil L. et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res 1998;807:101–9. [DOI] [PubMed] [Google Scholar]
  • 27. Busch FW, Seid DA, Wei ET. Mutagenic activity of marihuana smoke condensates. Cancer Lett 1979;6:319–24. [DOI] [PubMed] [Google Scholar]
  • 28. Koller VJ, Ferk F, Al-Serori H. et al. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem Toxicol 2015;80::130–136. [DOI] [PubMed] [Google Scholar]
  • 29. Zimmerman AM, Raj AY. Influence of cannabinoids on somatic cells in vivo. Pharmacology 1980;21:277–87. [DOI] [PubMed] [Google Scholar]
  • 30. Shoyama Y, Sugawa C, Tanaka H. et al. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav 2008;3:1111–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Price PJ, Suk WA, Spahn GJ. et al. Transformation of Fischer rat embryo cells by the combined action of murine leukemia virus and (-)-trans-9-tetrahydrocannabinol. Proc Soc Exp Biol Med 1972;140:454–6. [DOI] [PubMed] [Google Scholar]
  • 32. Fish EW, Murdaugh LB, Zhang C. et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-hedgehog interaction. Sci Rep 2019;9:16057–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Koller VJ, Auwarter V, Grummt T. et al. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8. Toxicol Appl Pharmacol 2014;277:164–71. [DOI] [PubMed] [Google Scholar]
  • 34. Sarafian TA, Habib N, Oldham M. et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am J Physiol 2006;290:L1202–1209. [DOI] [PubMed] [Google Scholar]
  • 35. Sarafian TA, Kouyoumjian S, Khoshaghideh F. et al. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol 2003;284:L298–306. [DOI] [PubMed] [Google Scholar]
  • 36. Morimoto S, Tanaka Y, Sasaki K. et al. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J Biol Chem 2007;282:20739–51. [DOI] [PubMed] [Google Scholar]
  • 37. Singh N, Hroudova J, Fisar Z. Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J Mol Neurosci 2015;56:926–31. [DOI] [PubMed] [Google Scholar]
  • 38. Tahir SK, Zimmerman AM. Influence of marihuana on cellular structures and biochemical activities. Pharmacol Biochem Behav 1991;40:617–23. [DOI] [PubMed] [Google Scholar]
  • 39. Fisar Z, Singh N, Hroudova J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 2014;231:62–71. [DOI] [PubMed] [Google Scholar]
  • 40. Reece AS, Hulse GK. Quadruple convergence – rising cannabis prevalence, intensity, concentration and use disorder treatment. Lancet Regional Health - Europe 2021;10:100245–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Gant J. Scientists are baffled by spatter of babies born without hands or arms in France, as investigation fails to discover a cause. Daily Mail, 14 July 2019, London, UK.
  • 42. Agence France-Presse in Paris . France to investigate cause of upper limb defects in babies. The Guardian, London, 2018. [Google Scholar]
  • 43. Willsher K. Baby arm defects prompt nationwide investigation in France. Guardian, London, 2018. [Google Scholar]
  • 44.World Health Organization. Global Health Observatory. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/total-(recorded-unrecorded)-alcohol-per-capita-(15-)-consumption (10 January 2022, date last accessed).
  • 45. Prevalence of Drug Use . European Monitoring Centre for Drugs and Drug Addiction (EMCDDA): Statistical Bulletin 2021. https://www.emcdda.europa.eu/data/stats2021/gps_en (10 January 2022, date last accessed).
  • 46.World Bank. The World Bank: Crude Data: Adjusted Net National Income per Capita (Current US$). https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CD (10 January 2022, date last accessed).
  • 47.R Core Team R: A Language and Environment for Statistical Computing. https://cran.r-project.org/ (10 January 2022, date last accessed).
  • 48. Wickham H, Averick M, Bryan J. et al. Welcome to the tidyverse. J Open Source Softw 2019;4:1686–91. [Google Scholar]
  • 49. Pebesma E. Simple features for R: standardized support for spatial vector data. R J 2018;10:439–46. [Google Scholar]
  • 50.Garnier S., Ross N., Rudis B et al. Viridis: Default Color Maps from ‘matplotlib’. https://CRAN.R-project.org/package=viridis (10 January 2022, date last accessed).
  • 51.Murphy W.D. Colorplaner: ggplot2 Extension to Visualize Two Variables per Color Aesthetic Through Colorspace Projection. https://github.com/wmurphyrd/colorplaner (10 January 2022, date last accessed).
  • 52. Pinheiro J, Bates D, DebRoy Set al. R Core Team. . nlme: linear and nonlinear mixed effects models. vol. 1: R: Comprehensive R Archive Network, 2020. [Google Scholar]
  • 53.Bolker B., Robinson D. Broom.mixed: Tidying Methods for Mixed Models. http://github.com/bbolker/broom.mixed (10 January 2022, date last accessed).
  • 54.Robinson D., Hayes A., Couch S. Broom: Convert Statistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom (10 January 2022, date last accessed).
  • 55. Leeper TJ. margins: marginal effects for model objects. Edited by Leeper T.J, vol. 1. R package version 0.3.26, 2021, 1–36. [Google Scholar]
  • 56. Wright MN, Ziegler A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw 2017;77:1–17. [Google Scholar]
  • 57. Greenwell BM, Boehmke BC. Variable importance plots—an introduction to the vip package. R J 2021;12:343–66. [Google Scholar]
  • 58.Croissant Y., Millo G., Tappe K et al. Package ‘plm’. https://cran.r-project.org/web/packages/plm/plm.pdf (10 January 2022, date last accessed).
  • 59. Bivand RS., Wong DW.S.. Comparing implementations of global and local indicators of spatial association. Test 2018;27:716–748. [Google Scholar]
  • 60. Millo G, Piras G. splm: spatial panel data models in R. J Stat Softw 2012;47:1–38. [Google Scholar]
  • 61. Millo G, Piras G. Package ‘splm’. Trieste, Italy: CRAN (Central R-Archive Network), 2018, 1–27. https://cran.r-project.org/web/packages/splm/splm.pdf (10 January 2022, date last accessed). [Google Scholar]
  • 62. Croissant Y, Millo G. Panel Data Econometrics with R, Vol. 1. Oxford, UK: John Wiley and Sons, 2019. [Google Scholar]
  • 63. Wal W, Geskus R. ipw: an R package for inverse probability weighting. J Stat Softw 2011;43:1–23. [Google Scholar]
  • 64. VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017;167:268–74. [DOI] [PubMed] [Google Scholar]
  • 65. VanderWeele TJ, Martin JN, Mathur MB. E-values and incidence density sampling. Epidemiology 2020;31:e51–e52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. VanderWeele TJ, Mathur MB. Commentary: developing best-practice guidelines for the reporting of E-values. Int J Epidemiol 2020;49:1495–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. VanderWeele TJ, Ding P, Mathur M. Technical considerations in the use of the E-value. J Causal Inference 2019;7:1–11. [Google Scholar]
  • 68. Pearl J, Mackaenzie D. The Book of Why: The New Science of Cause and Effect, Vol. 1. New York: Basic Books, 2019. [Google Scholar]
  • 69.Mathur M., Smith L.H., Ding P et al. Package ‘EValue’. https://cran.r-project.org/web/packages/EValue/EValue.pdf (10 January 2022, date last accessed).
  • 70. Wilson PD, Loffredo CA, Correa-Villasenor A. et al. Attributable fraction for cardiac malformations. Am J Epidemiol 1998;148:414–23. [DOI] [PubMed] [Google Scholar]
  • 71. Ngan ESW, Kim KH, Hui CC. Sonic hedgehog signaling and VACTERL association. Mol Syndromol 2013;4:32–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Great Ormond St. Hospital for Children, NHS Foundation Trust. VACTERL Association: Information for Families. https://media.gosh.nhs.uk/documents/VACTERL_association_F1612_FINAL_Sep19.pdf (10 January 2022, date last accessed).
  • 73. VACTERL Association. https://www.gosh.nhs.uk/conditions-and-treatments/conditions-we-treat/vacterl-association-0/ (10 January 2022, date last accessed).
  • 74. Bolin EH, Gokun Y, Romitti PA. et al. Maternal smoking and congenital heart defects, national birth defects prevention study, 1997–2011. J Pediatr 2022;240:79–86.e71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Zimmerman AM, Zimmerman S, Raj AY. Effects of cannabinoids on spermatogensis in mice. In: Nahas GG, Sutin KM, Harvey DJ. et al. (eds), Marijuana and Medicine, Vol. 1. 1st edn. Totowa, NY: Humana Press, 1999, 347–58. [Google Scholar]
  • 76. Huang HFS, Nahas GG, Hembree WC. Effects of marijuana inhalation on spermatogenesis of the rat. In: Nahas GG, Sutin KM, Harvey DJ. et al. (eds), Marijuana in Medicine, Vol. 1. Totowa, NY: Human Press, 1999, 359–66. [Google Scholar]
  • 77. Morishima A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res Monogr 1984;44:25–45. [PubMed] [Google Scholar]
  • 78. Russo C, Ferk F, Mišík M. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch Toxicol 2019;93:179–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Stenchever MA, Kunysz TJ, Allen MA. Chromosome breakage in users of marihuana. Am J Obstet Gynecol 1974;118:106–13. [DOI] [PubMed] [Google Scholar]
  • 80. Leuchtenberger C, Leuchtenberger R. Morphological and cytochemical effects of marijuana cigarette smoke on epithelioid cells of lung explants from mice. Nature 1971;234:227–9. [DOI] [PubMed] [Google Scholar]
  • 81. Shen H, Shih J, Hollern DP. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep 2018;23:3392–406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Reece AS, Hulse GK. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat Res 2016;789::15–25. [DOI] [PubMed] [Google Scholar]
  • 83. Hussein NAEM, El-Toukhy MAE-F, Kazem AH. et al. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. Alexandria J Med 2014;50:241–51. [Google Scholar]
  • 84. Ellis RJ, Bara A, Vargas CA. et al. Prenatal Δ(9)-tetrahydrocannabinol exposure in males leads to motivational disturbances related to striatal epigenetic dysregulation. Biol Psychiatry 2021;92:127–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Henrich RT, Nogawa T, Morishima A. In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes. Environ Mutagen 1980;2:139–47. [DOI] [PubMed] [Google Scholar]
  • 86. Morishima A, Henrich RT, Jayaraman J. et al. Hypoploid metaphases in cultured lymphocytes of marihuana smokers. Adv Biosci 1978;22–23:371–6. [DOI] [PubMed] [Google Scholar]
  • 87. Murphy SK, Itchon-Ramos N, Visco Z. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 2018;13:1208–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Schrott R, Acharya K, Itchon-Ramos N. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 2019;15:1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. DiNieri JA, Wang X, Szutorisz H. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol Psychiatry 2011;70:763–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Szutorisz H, DiNieri JA, Sweet E. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 2014;39:1315–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Szutorisz H, Hurd YL. Epigenetic effects of cannabis exposure. Biol Psychiatry 2016;79:586–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Szutorisz H, Hurd YL. High times for cannabis: epigenetic imprint and its legacy on brain and behavior. Neurosci Biobehav Rev 2018;85:93–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Watson CT, Szutorisz H, Garg P. et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 2015;40:2993–3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Ellis J, Pediani JD, Canals M. et al. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 2006;281:38812–24. [DOI] [PubMed] [Google Scholar]
  • 95. Chioccarelli T, Cacciola G, Altucci L. et al. Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement. Endocrinology 2010;151:5017–29. [DOI] [PubMed] [Google Scholar]
  • 96. Mon MJ, Haas AE, Stein JL. et al. Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells. Biochem Pharmacol 1981;30:31–43. [DOI] [PubMed] [Google Scholar]
  • 97. Mon MJ, Haas AE, Stein JL. et al. Influence of psychoactive and nonpsychoactive cannabinoids on chromatin structure and function in human cells. Biochem Pharmacol 1981;30:45–58. [DOI] [PubMed] [Google Scholar]
  • 98. Mon MJ, Jansing RL, Doggett S. et al. Influence of delta9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem Pharmacol 1978;27:1759–65. [DOI] [PubMed] [Google Scholar]
  • 99. Yang X, Hegde VL, Rao R. et al. Histone modifications are associated with delta9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses. J Biol Chem 2014;289:18707–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58:295–300. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

dvac015_Supp

Data Availability Statement

Raw datasets, including 3800 lines of computation code in R, have been made freely available through the Mendeley data repository at the following URLs: 10.17632/tysn37t426.1 and 10.17632/nm3tgcvvzd.1. This study was not pre-registered in the Open Science Framework.

Ethics

Ethical approval for this study was provided by the Human Research Ethics Committee of the University of Western Australia number RA/4/20/4724 on 24 September 2021.

All data generated or analysed during this study are included in this published article and its supplementary information files. Data along with the relevant R code have been made publicly available on the Mendeley Database Repository and can be accessed from these URLs: 10.17632/vsmmmkncsd.1 and 10.17632/tysn37t426.1


Articles from Environmental Epigenetics are provided here courtesy of Oxford University Press

RESOURCES