Abstract
In this method we illustrate how to amplify, sequence, and analyze antibody/immunoglobulin (IG) heavy-chain gene rearrangements from genomic DNA that is derived from bulk populations of cells by next-generation sequencing (NGS). We focus on human source material and illustrate how bulk gDNA-based sequencing can be used to examine clonal architecture and networks in different samples that are sequenced from the same individual. Although bulk gDNA-based sequencing can be performed on both IG heavy (IGH) or kappa/lambda light (IGK/IGL) chains, we focus here on IGH gene rearrangements because IG heavy chains are more diverse, tend to harbor higher levels of somatic hypermutations (SHM), and are more reliable for clone identification and tracking. We also provide a procedure, including code, and detailed instructions for processing and annotation of the NGS data. From these data we show how to identify expanded clones, visualize the overall clonal landscape, and track clonal lineages in different samples from the same individual. This method has a broad range of applications, including the identification and monitoring of expanded clones, the analysis of blood and tissue-based clonal networks, and the study of immune responses including clonal evolution.
Full text of this article can be found in Bookshelf.
References
- Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302(5909):575–581. 10.1038/302575a0 doi: 10.1038/302575a0. [DOI] [PubMed]
- Sakano H, Kurosawa Y, Weigert M, Tonegawa S (1981) Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes. Nature 290(5807):562–565. 10.1038/290562a0 doi: 10.1038/290562a0. [DOI] [PubMed]
- Weigert MG, Cesari IM, Yonkovich SJ, Cohn M (1970) Variability in the lambda light chain sequences of mouse antibody. Nature 228(5276):1045–1047. 10.1038/2281045a0 doi: 10.1038/2281045a0. [DOI] [PubMed]
- Papavasiliou FN, Schatz DG (2002) Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109(Suppl):S35–S44. 10.1016/s0092-8674(02)00706-7 doi: 10.1016/s0092-8674(02)00706-7. [DOI] [PubMed]
- Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32(2):158–168. 10.1038/nbt.2782 doi: 10.1038/nbt.2782. [DOI] [PMC free article] [PubMed]
- Benichou J, Ben-Hamo R, Louzoun Y, Efroni S (2012) Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 135(3):183–191. 10.1111/j.1365-2567.2011.03527.x doi: 10.1111/j.1365-2567.2011.03527.x. [DOI] [PMC free article] [PubMed]
- Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP et al. (2013) The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 4:413. 10.3389/fimmu.2013.00413 doi: 10.3389/fimmu.2013.00413. [DOI] [PMC free article] [PubMed]
- van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98–3936. Leukemia 17(12):2257–2317. 10.1038/sj.leu.2403202 doi: 10.1038/sj.leu.2403202. [DOI] [PubMed]
- Ritz C, Meng W, Stanley NL, Baroja ML, Xu C, Yan P et al. (2020) Postvaccination graft dysfunction/aplastic anemia relapse with massive clonal expansion of autologous CD8+ lymphocytes. Blood Adv 4(7):1378–1382. 10.1182/bloodadvances.2019000853 doi: 10.1182/bloodadvances.2019000853. [DOI] [PMC free article] [PubMed]
- Meng W, Zhang B, Schwartz GW, Rosenfeld AM, Ren D, Thome JJC et al. (2017) An atlas of B-cell clonal distribution in the human body. Nat Biotechnol 35(9):879–884. 10.1038/nbt.3942 doi: 10.1038/nbt.3942. [DOI] [PMC free article] [PubMed]
- Langerak AW, Bruggemann M, Davi F, Darzentas N, van Dongen JJM, Gonzalez D et al. (2017) High-throughput Immunogenetics for clinical and research applications in immunohematology: potential and challenges. J Immunol 198(10):3765–3774. 10.4049/jimmunol.1602050 doi: 10.4049/jimmunol.1602050. [DOI] [PubMed]
- Vander Heiden JA, Yaari G, Uduman M, Stern JN, O’Connor KC, Hafler DA et al. (2014) pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30(13):1930–1932. 10.1093/bioinformatics/btu138 doi: 10.1093/bioinformatics/btu138. [DOI] [PMC free article] [PubMed]
- Rosenfeld AM, Meng W, Luning Prak ET, Hershberg U (2018) ImmuneDB, a novel tool for the analysis, storage, and dissemination of immune repertoire sequencing data. Front Immunol 9:2107. 10.3389/fimmu.2018.02107 doi: 10.3389/fimmu.2018.02107. [DOI] [PMC free article] [PubMed]
- Ye J, Ma N, Madden TL, Ostell JM (2013) IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41(Web Server issue):W34–W40. 10.1093/nar/gkt382 doi: 10.1093/nar/gkt382. [DOI] [PMC free article] [PubMed]
- Vander Heiden JA, Marquez S, Marthandan N, Bukhari SAC, Busse CE, Corrie B et al. (2018) AIRR community standardized representations for annotated immune repertoires. Front Immunol 9:2206. 10.3389/fimmu.2018.02206 doi: 10.3389/fimmu.2018.02206. [DOI] [PMC free article] [PubMed]
- Rosenfeld AM, Meng W, Chen DY, Zhang B, Granot T, Farber DL et al. (2018) Computational evaluation of B-cell clone sizes in bulk populations. Front Immunol 9:1472. 10.3389/fimmu.2018.01472 doi: 10.3389/fimmu.2018.01472. [DOI] [PMC free article] [PubMed]
- Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M et al. (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J 3(6):1209–1219 doi: 10.1002/j.1460-2075.1984.tb01955.x. [DOI] [PMC free article] [PubMed]
- Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. 10.1046/j.1461-0248.2001.00230.x doi: 10.1046/j.1461-0248.2001.00230.x. [DOI]
- Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. 10.1093/oxfordjournals.molbev.a040454 doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed]
- Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19(1):83–92. 10.2307/2412028 doi: 10.2307/2412028. [DOI]
- MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K et al. (2018) Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics 19(1):30. 10.1186/s12864-017-4428-5 doi: 10.1186/s12864-017-4428-5. [DOI] [PMC free article] [PubMed]
- Rubelt F, Busse CE, Bukhari SAC, Burckert JP, Mariotti-Ferrandiz E, Cowell LG et al. (2017) Adaptive immune receptor repertoire community recommendations for sharing immune-repertoire sequencing data. Nat Immunol 18(12):1274–1278. 10.1038/ni.3873 doi: 10.1038/ni.3873. [DOI] [PMC free article] [PubMed]
- Lindenbaum O, Nouri N, Kluger Y, Kleinstein SH (2021) Alignment free identification of clones in B cell receptor repertoires. Nucleic Acids Res 49(4):e21. 10.1093/nar/gkaa1160 doi: 10.1093/nar/gkaa1160. [DOI] [PMC free article] [PubMed]
- Gupta NT, Adams KD, Briggs AW, Timberlake SC, Vigneault F, Kleinstein SH (2017) Hierarchical clustering can identify B cell clones with high confidence in Ig repertoire sequencing data. J Immunol 198(6):2489–2499. 10.4049/jimmunol.1601850 doi: 10.4049/jimmunol.1601850. [DOI] [PMC free article] [PubMed]
- Kepler TB (2013) Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res 2:103. 10.12688/f1000research.2-103.v1 doi: 10.12688/f1000research.2-103.v1. [DOI] [PMC free article] [PubMed]
- Ralph DK, Matsen FA IV (2016) Likelihood-based inference of B cell clonal families. PLoS Comput Biol 12(10):e1005086. 10.1371/journal.pcbi.1005086 doi: 10.1371/journal.pcbi.1005086. [DOI] [PMC free article] [PubMed]
- Pernis B, Chiappino G, Kelus AS, Gell PG (1965) Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J Exp Med 122(5):853–876. 10.1084/jem.122.5.853 doi: 10.1084/jem.122.5.853. [DOI] [PMC free article] [PubMed]
- Barreto V, Cumano A (2000) Frequency and characterization of phenotypic Ig heavy chain allelically included IgM-expressing B cells in mice. J Immunol 164(2):893–899. 10.4049/jimmunol.164.2.893 doi: 10.4049/jimmunol.164.2.893. [DOI] [PubMed]
- Balomenos D, Balderas RS, Mulvany KP, Kaye J, Kono DH, Theofilopoulos AN (1995) Incomplete T cell receptor V beta allelic exclusion and dual V beta-expressing cells. J Immunol 155(7):3308–3312 [PubMed]
- Casellas R, Zhang Q, Zheng NY, Mathias MD, Smith K, Wilson PC (2007) Igkappa allelic inclusion is a consequence of receptor editing. J Exp Med 204(1):153–160. 10.1084/jem.20061918 doi: 10.1084/jem.20061918. [DOI] [PMC free article] [PubMed]
- Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K (1993) Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178(2):615–622. 10.1084/jem.178.2.615 doi: 10.1084/jem.178.2.615. [DOI] [PMC free article] [PubMed]
- Mathieson W, Thomas GA (2020) Why formalin-fixed, paraffin-embedded biospecimens must be used in genomic medicine: an evidence-based review and conclusion. J Histochem Cytochem 68(8):543–552. 10.1369/0022155420945050 doi: 10.1369/0022155420945050. [DOI] [PMC free article] [PubMed]
- Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL et al. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5(1):3–21. 10.1093/jpe/rtr044 doi: 10.1093/jpe/rtr044. [DOI]