Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Aug 19;60(10):977–985. doi: 10.1007/s12275-022-2134-8

Phenotypic and genomic characteristics of Brevibacterium zhoupengii sp. nov., a novel halotolerant actinomycete isolated from bat feces

Yuyuan Huang 1, Lingzhi Dong 1,2, Jian Gong 1,2, Jing Yang 1,2,3, Shan Lu 1,2,3, Xin-He Lai 4, Dong Jin 1,2,3, Qianni Huang 1,5, Ji Pu 1, Liyun Liu 1, Jianguo Xu 1,2,3,6,7,
PMCID: PMC9390107  PMID: 35984616

Abstract

Two strictly aerobic, Gram-staining-positive, non-spore-forming, regular rod-shaped (approximately 0.7 × 1.9 mm) bacteria (HY170T and HY001) were isolated from bat feces collected from Chongzuo city, Guangxi province (22°20′54″N, 106°49′20″E, July 2011) and Chuxiong Yi Autonomous Prefecture, Yunnan province (25°09′10″N, 102°04′39″E, October 2013) of South China, respectively. Optimal growth is obtained at 25–28°C (range, 4–32°C) on BHI-5% sheep blood plate with pH 7.5 (range, 5.0–10.0) in the presence of 0.5–1.0% NaCl (w/v) (range, 0–15% NaCl [w/v]). The phylogenetic and phylogenomic trees based respectively on the 16S rRNA gene and 845 core gene sequences revealed that the two strains formed a distinct lineage within the genus Brevibacterium, most closely related to B. aurantiacum NCDO 739T (16S rRNA similarity, both 98.5%; dDDH, 46.7–46.8%; ANI, 91.9–92.1%). Strain HY170T contained MK-8(H2), diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG), galactose and ribose as the predominant menaquinone, major polar lipids, and main sugars in the cell wall teichoic acids, respectively. The meso-diaminopimelic acid (meso-DAP) was the diagnostic diamino acid of the peptidoglycan found in strain HY170T. Anteiso-C15:0 and anteiso-C17:0 were the major fatty acids (> 10%) of strains HY170T and HY001, with anteiso-C17:1A predominant in strain HY170T but absent in strain HY001. Mining the genomes revealed the presence of secondary metabolite biosynthesis gene clusters encoding for non-alpha poly-amino acids (NAPAA), ectoine, siderophore, and terpene. Based on results from the phylogenetic, chemotaxonomic and phenotypic analyses, the two strains could be classified as a novel species of the genus Brevibacterium, for which the name Brevibacterium zhoupengii sp. nov. is proposed (type strain HY170T = CGMCC 1.18600T = JCM 34230T).

Supplemental material for this article may be found at 10.1007/s12275-022-2134-8.

Keywords: Brevibacterium zhoupengii, bat, carotenoid, Mrp gene, halotolerant

Electric Supplementary Material

Appendix (2.2MB, pdf)

Acknowledgements

This work was supported by grants from National Key R&D Program of China (2019YFC1200501 and 2019YFC1200505) and Research Units of Discovery of Unknown Bacteria and Function (2018RU010).

We would like to express our appreciation to Professors Zhengli Shi and Peng Zhou (Wuhan Institute of Virology, Chinese Academy of Sciences) for sharing the bat fecal samples.

Ethical Statement

The ethical practice was approved by Ethical Committee of the National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (NO: ICDC-2016004).

Footnotes

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. Afonso E, Goydadin AC. Molecular detection of Anaplasma phagocytophilum DNA in the lesser horseshoe bat (Rhinolophus hipposideros) guano. Epidemiol. Infect. 2018;146:1253–1258. doi: 10.1017/S0950268818001279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antoniou S, Dimitriadis A, Polydorou F, Malaka E. Brevibacterium iodinum peritonitis associated with acute urticaria in a CAPD patient. Perit. Dial. Int. 1997;17:614–615. doi: 10.1177/089686089701700617. [DOI] [PubMed] [Google Scholar]
  3. Asai N, Suematsu H, Yamada A, Watanabe H, Nishiyama N, Sakanashi D, Kato H, Shiota A, Hagihara M, Koizumi Y, et al. Brevibacterium paucivorans bacteremia: case report and review of the literature. BMC Infect. Dis. 2019;19:344. doi: 10.1186/s12879-019-3962-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2010;2:117–134. doi: 10.4056/sigs.531120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol. Rev. 1960;24:261–265. doi: 10.1128/br.24.3.261-265.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bai X, Xiong Y, Lu S, Jin D, Lai X, Yang J, Niu L, Hu S, Meng X, Pu J, et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) Int. J. Syst. Evol. Microbiol. 2016;66:3281–3286. doi: 10.1099/ijsem.0.001189. [DOI] [PubMed] [Google Scholar]
  8. Breed R. The Brevibacteriaceae fam. nov. of order Eubacteriales. Rias. Commun. VI Congr. Int. Microbiol. Roma. 1953;1:13–14. [Google Scholar]
  9. Cannon JP, Spandoni SL, Pesh-Iman S, Johnson S. Pericardial infection caused by Brevibacterium casei. Clin. Microbiol. Infect. 2005;11:164–165. doi: 10.1111/j.1469-0691.2004.01050.x. [DOI] [PubMed] [Google Scholar]
  10. Castanera R, Ruggieri V, Pujol M, Garcia-Mas J, Casacuberta JM. An improved melon reference genome with single-molecule sequencing uncovers a recent burst of transposable elements with potential impact on genes. Front. Plant Sci. 2020;10:1815. doi: 10.3389/fpls.2019.01815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen P, Zhang L, Wang J, Ruan J, Han X, Huang Y. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. Int. J. Syst. Evol. Microbiol. 2016;66:5268–5274. doi: 10.1099/ijsem.0.001506. [DOI] [PubMed] [Google Scholar]
  12. Cheng Y, Bai Y, Huang Y, Yang J, Lu S, Jin D, Pu J, Zheng H, Li J, Huang Y, et al. Agromyces laixinhei sp. nov. isolated from bat feces in China. J. Microbiol. 2021;59:467–475. doi: 10.1007/s12275-021-0546-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collins MD, Farrow JA, Goodfellow M, Minnikin DE. Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Syst. Appl. Microbiol. 1983;4:388–395. doi: 10.1016/S0723-2020(83)80023-X. [DOI] [PubMed] [Google Scholar]
  14. Deng T, Lu H, Qian Y, Chen X, Yang X, Guo J, Sun G, Xu M. Brevibacterium rongguiense sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 2020;70:5205–5210. doi: 10.1099/ijsem.0.004379. [DOI] [PubMed] [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. [DOI] [PubMed] [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 1971;20:406–416. doi: 10.1093/sysbio/20.4.406. [DOI] [Google Scholar]
  18. Forquin-Gomez MP, Weimer BC. Brevibacterium. In: Batt CA, Tortorello ML, editors. Encyclopedia of Food Microbiology. 2nd edn. San Diego, USA: Academic Press; 2014. pp. 324–330. [Google Scholar]
  19. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015;43:D261–D269. doi: 10.1093/nar/gku1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gavrish EL, Krauzova VI, Potekhina NV, Karasev SG, Plotnikova EG, Altyntseva OV, Korosteleva LA, Evtushenko LI. Three new species of brevibacteria-Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov. Mikrobiologiia. 2004;73:218–225. [PubMed] [Google Scholar]
  22. Ge Y, Jin D, Lai XH, Yang J, Lu S, Huang Y, Zheng H, Zhang X, Xu J. Vagococcus zengguangii sp. nov., isolated from yak faeces. J. Microbiol. 2021;59:1–9. doi: 10.1007/s12275-021-0406-3. [DOI] [PubMed] [Google Scholar]
  23. Harper JJ, Davis GHG. Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int. J. Syst. Evol. Microbiol. 1979;29:56–58. [Google Scholar]
  24. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic Actinomycetes. J. Gen. Appl. Microbiol. 1983;29:319–322. doi: 10.2323/jgam.29.319. [DOI] [Google Scholar]
  25. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021;19:141–154. doi: 10.1038/s41579-020-00459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huang Y, Wang X, Yang J, Lu S, Lai XH, Jin D, Pu J, Huang Y, Ren Z, Zhu W, et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int. J. Syst. Evol. Microbiol. 2019;69:3629–3635. doi: 10.1099/ijsem.0.003674. [DOI] [PubMed] [Google Scholar]
  27. Huang Y, Yang J, Lu S, Lai XH, Jin D, Zhou J, Zhang S, Huang Q, Lv X, Zhu W, et al. Morphological and genomic characteristics of two novel halotolerant actinomycetes, Tomitella gaofuii sp. nov. and Tomitella fengzijianii sp. nov. isolated from bat faeces. Syst. Appl. Microbiol. 2022;45:126294. doi: 10.1016/j.syapm.2022.126294. [DOI] [PubMed] [Google Scholar]
  28. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012;61:1061–1067. doi: 10.1093/sysbio/sys062. [DOI] [PubMed] [Google Scholar]
  29. Irakli MN, Samanidou VF, Papadoyannis IN. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cereals after solid-phase extraction. J. Sep. Sci. 2011;34:1375–1382. doi: 10.1002/jssc.201100077. [DOI] [PubMed] [Google Scholar]
  30. Ivanova EP, Christen R, Alexeeva YV, Zhukova NV, Gorshkova NM, Lysenko AM, Mikhailov VV, Nicolau DV. Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga. Int. J. Syst. Evol. Microbiol. 2004;54:2107–2111. doi: 10.1099/ijs.0.02867-0. [DOI] [PubMed] [Google Scholar]
  31. Joshi S, Misra R, Kirolikar S, Mushrif S. Catheter-related Brevibacterium casei bloodstream infection in a child with aplastic anaemia. Indian J. Med. Microbiol. 2020;38:226–228. doi: 10.4103/ijmm.IJMM_20_292. [DOI] [PubMed] [Google Scholar]
  32. Jung MS, Quan XT, Siddiqi MZ, Liu Q, Kim SY, Wee JH, Im WT. Brevibacterium anseongense sp. nov., isolated from soil of ginseng field. J. Microbiol. 2018;56:706–712. doi: 10.1007/s12275-018-8181-5. [DOI] [PubMed] [Google Scholar]
  33. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 1988;19:161–207. doi: 10.1016/S0580-9517(08)70410-0. [DOI] [Google Scholar]
  34. Krubasik P, Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol. Gen. Genet. 2000;263:423–432. doi: 10.1007/s004380051186. [DOI] [PubMed] [Google Scholar]
  35. Kumar VA, Augustine D, Panikar D, Nandakumar A, Dinesh KR, Karim S, Philip R. Brevibacterium casei as a cause of brain abscess in an immunocompetent patient. J. Clin. Microbiol. 2011;49:4374–4376. doi: 10.1128/JCM.01086-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lee SD. Brevibacterium samyangense sp. nov., an actinomycete isolated from a beach sediment. Int. J. Syst. Evol. Microbiol. 2006;56:1889–1892. doi: 10.1099/ijs.0.64269-0. [DOI] [PubMed] [Google Scholar]
  37. Liu S, Jin D, Lan R, Wang Y, Meng Q, Dai H, Lu S, Hu S, Xu J. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int. J. Syst. Evol. Microbiol. 2015;65:2130–2134. doi: 10.1099/ijs.0.000228. [DOI] [PubMed] [Google Scholar]
  38. McCarthy A. Third generation DNA sequencing: Pacific Biosciences’ single molecule real time technology. Chem. Biol. 2010;17:675–676. doi: 10.1016/j.chembiol.2010.07.004. [DOI] [PubMed] [Google Scholar]
  39. McCaughey C, Damani NN. Central venous line infection caused by Brevibacterium epidermidis. J. Infect. 1991;23:211–212. doi: 10.1016/0163-4453(91)92451-A. [DOI] [PubMed] [Google Scholar]
  40. Medema MH, Blin K, Cimermancic P, Jager VD, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39:W339–W346. doi: 10.1093/nar/gkr466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Meléndez-Martínez AJ, Escudero-Gilete ML, Vicario IM, Heredia FJ. Study of the influence of carotenoid structure and individual carotenoids in the qualitative and quantitative attributes of orange juice color. Food Res. Int. 2010;43:1289–1296. doi: 10.1016/j.foodres.2010.03.012. [DOI] [Google Scholar]
  42. Muhldorfer K. Bats and bacterial pathogens: a review. Zoonoses Public Health. 2013;60:93–103. doi: 10.1111/j.1863-2378.2012.01536.x. [DOI] [PubMed] [Google Scholar]
  43. Onraedt A, Soetaert W, Vandamme E. Industrial importance of the genus Brevibacterium. Biotechnol. Lett. 2005;27:527–533. doi: 10.1007/s10529-005-2878-3. [DOI] [PubMed] [Google Scholar]
  44. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol, Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Newark, Delaware, USA: MIDI Inc.; 1990. [Google Scholar]
  48. Shi Z. Bat and virus. Protein Cell. 2010;1:109–114. doi: 10.1007/s13238-010-0029-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013;3:84–91. doi: 10.1016/j.coviro.2012.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Environ. Microbiol. 1974;28:226–231. doi: 10.1128/am.28.2.226-231.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tang SK, Wang Y, Schumann P, Stackebrandt E, Lou K, Jiang CL, Xu LH, Li WJ. Brevibacterium album sp. nov., a novel actinobacterium isolated from a saline soil in China. Int. J. Syst. Evol. Microbiol. 2008;58:574–577. doi: 10.1099/ijs.0.65183-0. [DOI] [PubMed] [Google Scholar]
  52. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wang X, Yang J, Lu S, Lai XH, Jin D, Pu J, Niu L, Zhu W, Liang J, Huang Y, et al. Paraliobacillus zengyii sp. nov., a slightly halophilic and extremely halotolerant bacterium isolated from Tibetan antelope faeces. Int. J. Syst. Evol. Microbiol. 2019;69:1426–1432. doi: 10.1099/ijsem.0.003333. [DOI] [PubMed] [Google Scholar]
  54. Wauters G, Charlier J, Janssens M, Delmée M. Brevibacterium paucivorans sp. nov., from human clinical specimens. Int. J. Syst. Evol. Microbiol. 2001;51:1703–1707. doi: 10.1099/00207713-51-5-1703. [DOI] [PubMed] [Google Scholar]
  55. Wauters G, Van Bosterhaut B, Avesani V, Cuvelier R, Charlier J, Janssens M, Delmée M. Peritonitis due to Brevibacterium otitidis in a patient undergoing continuous ambulatory peritoneal dialysis. J. Clin. Microbiol. 2000;38:4292–4293. doi: 10.1128/JCM.38.11.4292-4293.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Xu M, Dai Y, Huang Y, Yang J, Lai XH, Jin D, Lu S, Zhou J, Zhang S, Bai Y, Jiao Y, Qiao L, Jiang Y, Xu J. Ruania zhangjianzhongii. 2021. [DOI] [PubMed] [Google Scholar]
  57. Xu Y, Xu X, Lan R, Xiong Y, Ye C, Ren Z, Liu L, Zhao A, Wu LF, Xu J. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS ONE. 2013;8:e64211. doi: 10.1371/journal.pone.0064211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek. 2017;110:1281–1286. doi: 10.1007/s10482-017-0844-4. [DOI] [PubMed] [Google Scholar]
  60. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhou, J., Huang, Y., Yang, J., Lai, X.H., Jin, D., Lu, S., Pu, J., Zhang, S., Zhu, W., Xu, M., et al. 2021. Microbacterium chengjingii sp. nov. and Microbacterium fandaimingii sp. nov., isolated from bat faeces of Hipposideros and Rousettus species. Int. J. Syst. Evol. Microbiol.71. doi: 10.1099/ijsem.0.004858. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Appendix (2.2MB, pdf)

Articles from Journal of Microbiology (Seoul, Korea) are provided here courtesy of Nature Publishing Group

RESOURCES