Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Aug 16;65(9):2051–2067. doi: 10.1007/s11431-022-2145-x

A review of the design of load-carrying exoskeletons

JieJunYi Liang 1,, QinHao Zhang 1, Yang Liu 1, Tao Wang 1, GuangFu Wan 1
PMCID: PMC9392988  PMID: 36032505

Abstract

The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.

Keywords: load carrying, lower limb exoskeleton, joint torque, load transfer, load-suspended backpack

Footnotes

This work was supported by the National Key R&D Program of China (Grant No. 2020YFC2007800) and the National Natural Science Foundation of China (Grant Nos. 52005191 and 52027806). The author thanks Kunhua Cheng, Yixiao Deng, Qiyun Wu, Jiahao Wu, Peilin Wang, Yida Wang, and Qizhi Jiang for literature collection.

References

  • 1.Seay J F. Biomechanics of load carriage—Historical perspectives and recent insights. J Strength Cond Res. 2015;29:S129–S133. doi: 10.1519/JSC.0000000000001031. [DOI] [PubMed] [Google Scholar]
  • 2.Ali A, Fontanari V, Schmoelz W, et al. Systematic review of back-support exoskeletons and soft robotic suits. Front Bioeng Biotechnol. 2021;9:765257. doi: 10.3389/fbioe.2021.765257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes J M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 2021;18:22. doi: 10.1186/s12984-021-00815-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Maloiy G M O, Heglund N C, Prager L M, et al. Energetic cost of carrying loads: Have African women discovered an economic way? Nature. 1986;319:668–669. doi: 10.1038/319668a0. [DOI] [PubMed] [Google Scholar]
  • 5.Baudinette R V, Biewener A A. Young wallabies get a free ride. Nature. 1998;395:653–654. doi: 10.1038/27111. [DOI] [Google Scholar]
  • 6.Bastien G J, Schepens B, Willems P A, et al. Energetics of load carrying in Nepalese porters. Science. 2005;308:1755. doi: 10.1126/science.1111513. [DOI] [PubMed] [Google Scholar]
  • 7.Zoss A, Kazerooni H, Chu A. On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, 2005. 3465–3472
  • 8.Gregorczyk K N, Hasselquist L, Schiffman J M, et al. Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage. Ergonomics. 2010;53:1263–1275. doi: 10.1080/00140139.2010.512982. [DOI] [PubMed] [Google Scholar]
  • 9.Malcolm P, Derave W, Galle S, et al. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLOS ONE. 2013;8:e56137. doi: 10.1371/journal.pone.0056137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mooney L M, Rouse E J, Herr H M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014;11:80. doi: 10.1186/1743-0003-11-80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Collins S H, Wiggin M B, Sawicki G S. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015;522:212–215. doi: 10.1038/nature14288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ding Y, Panizzolo F A, Siviy C, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit. J Neuroeng Rehabil. 2016;13:87. doi: 10.1186/s12984-016-0196-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Asbeck A T, De Rossi S M M, Holt K G, et al. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015;34:744–762. doi: 10.1177/0278364914562476. [DOI] [Google Scholar]
  • 14.Panizzolo F A, Galiana I, Asbeck A T, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J Neuroeng Rehabil. 2016;13:1–4. doi: 10.1186/s12984-016-0150-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sanchez-Villamañan M D C, Gonzalez-Vargas J, Torricelli D, et al. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. J Neuroeng Rehabil. 2019;16:55. doi: 10.1186/s12984-019-0517-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hussain F, Goecke R, Mohammadian M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proc Inst Mech Eng H. 2021;235:1375–1385. doi: 10.1177/09544119211032010. [DOI] [PubMed] [Google Scholar]
  • 17.Shi D, Zhang W, Zhang W, et al. A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng. 2019;32:74. doi: 10.1186/s10033-019-0389-8. [DOI] [Google Scholar]
  • 18.Pinto-Fernandez D, Torricelli D, Sanchez-Villamanan M D C, et al. Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1573–1583. doi: 10.1109/TNSRE.2020.2989481. [DOI] [PubMed] [Google Scholar]
  • 19.Li W Z, Cao G Z, Zhu A B. Review on control strategies for lower limb rehabilitation exoskeletons. IEEE Access. 2021;9:123040–123060. doi: 10.1109/ACCESS.2021.3110595. [DOI] [Google Scholar]
  • 20.Knapik J J, Reynolds K L, Harman E. Soldier load carriage: Historical, physiological, biomechanical, and medical aspects. Mil Med. 2004;169:45–56. doi: 10.7205/MILMED.169.1.45. [DOI] [PubMed] [Google Scholar]
  • 21.Simpkins C, Ahn J, Yang F. Effects of anterior load carriage on gait parameters: A systematic review with meta-analysis. Appl Ergon. 2022;98:103587. doi: 10.1016/j.apergo.2021.103587. [DOI] [PubMed] [Google Scholar]
  • 22.Knapik J, Harman E, Reynolds K. Load carriage using packs: A review of physiological, biomechanical and medical aspects. Appl Ergon. 1996;27:207–216. doi: 10.1016/0003-6870(96)00013-0. [DOI] [PubMed] [Google Scholar]
  • 23.Rome L C, Flynn L, Yoo T D. Rubber bands reduce the cost of carrying loads. Nature. 2006;444:1023–1024. doi: 10.1038/4441023a. [DOI] [PubMed] [Google Scholar]
  • 24.Zhang B, Liu Y, Fan W, et al. Pilot study of a hover backpack with tunable air damper for decoupling load and human. In: 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Boston, 2020, 1834–1839
  • 25.Leng Y, Lin X, Yang L, et al. Design of an elastically suspended backpack with tunable stiffness. In: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM). Shenzhen, 2020. 359–363
  • 26.He L, Xiong C, Zhang Q, et al. A backpack minimizing the vertical acceleration of the load improves the economy of human walking. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1994–2004. doi: 10.1109/TNSRE.2020.3011974. [DOI] [PubMed] [Google Scholar]
  • 27.Loscher D M, Meyer F, Kracht K, et al. Timing of head movements is consistent with energy minimization in walking ungulates. Proc R Soc B. 2016;283:20161908. doi: 10.1098/rspb.2016.1908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Fu X Y, Zelik K E, Board W J, et al. Soft tissue deformations contribute to the mechanics of walking in obese adults. Med Sci Sports Exercise. 2015;47:1435–1443. doi: 10.1249/MSS.0000000000000554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Browning R C, McGowan C P, Kram R. Obesity does not increase external mechanical work per kilogram body mass during walking. J Biomech. 2009;42:2273–2278. doi: 10.1016/j.jbiomech.2009.06.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Keren R, Or Y. Energy performance analysis of a backpack suspension system with a timed clutch for human load carriage. Mech Mach Theory. 2018;120:250–264. doi: 10.1016/j.mechmachtheory.2017.09.021. [DOI] [Google Scholar]
  • 31.Castillo E R, Lieberman G M, McCarty L S, et al. Effects of pole compliance and step frequency on the biomechanics and economy of pole carrying during human walking. J Appl Physiol. 2014;117:507–517. doi: 10.1152/japplphysiol.00119.2014. [DOI] [PubMed] [Google Scholar]
  • 32.Kram R. Carrying loads with springy poles. J Appl Physiol. 1991;71:1119–1122. doi: 10.1152/jappl.1991.71.3.1119. [DOI] [PubMed] [Google Scholar]
  • 33.Foissac M, Millet G Y, Geyssant A, et al. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking. J Biomech. 2009;42:125–130. doi: 10.1016/j.jbiomech.2008.10.012. [DOI] [PubMed] [Google Scholar]
  • 34.Hoover J, Meguid S A. Performance assessment of the suspended-load backpack. Int J Mech Mater Des. 2011;7:111–121. doi: 10.1007/s10999-011-9153-7. [DOI] [Google Scholar]
  • 35.Ackerman J, Seipel J. A model of human walking energetics with an elastically-suspended load. J Biomech. 2014;47:1922–1927. doi: 10.1016/j.jbiomech.2014.03.016. [DOI] [PubMed] [Google Scholar]
  • 36.Li D, Li T, Li Q, et al. A simple model for predicting walking energetics with elastically-suspended backpack. J Biomech. 2016;49:4150–4153. doi: 10.1016/j.jbiomech.2016.10.037. [DOI] [PubMed] [Google Scholar]
  • 37.Zhang B, Liu T, Fan W, et al. Sliding mode control of the semi-active hover backpack based on the bioinspired skyhook damper model. In: 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, 2021. 9389–9395
  • 38.Yang L, Xu Y, Zhang J, et al. Design of an elastically suspended backpack with a tunable damper. In: 2019 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO). Beijing, 2019. 180–185
  • 39.Xie L, Cai M. Increased energy harvesting and reduced accelerative load for backpacks via frequency tuning. Mech Syst Signal Process. 2015;58–59:399–415. doi: 10.1016/j.ymssp.2015.01.012. [DOI] [Google Scholar]
  • 40.Yang L, Zhang J, Xu Y, et al. Energy performance analysis of a suspended backpack with an optimally controlled variable damper for human load carriage. Mech Mach Theory. 2020;146:103738. doi: 10.1016/j.mechmachtheory.2019.103738. [DOI] [Google Scholar]
  • 41.Yang L, Xiong C, Hao M, et al. Energetic response of human walking with loads using suspended backpacks. IEEE ASME Trans Mechatron, 2021, doi: 10.1109/TMECH.2021.3127714
  • 42.Bryan G M, Franks P W, Klein S C, et al. A hip-knee-ankle exoskeleton emulator for studying gait assistance. Int J Robot Res. 2021;40:722–746. doi: 10.1177/0278364920961452. [DOI] [Google Scholar]
  • 43.Shao Y, Zhang W, Su Y, et al. Design and optimisation of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mech Mach Theory. 2021;161:104323. doi: 10.1016/j.mechmachtheory.2021.104323. [DOI] [Google Scholar]
  • 44.Hao M, Zhang J, Chen K, et al. Supernumerary robotic limbs to assist human walking with load carriage. J Mech Robot. 2020;12:061014. doi: 10.1115/1.4047729. [DOI] [Google Scholar]
  • 45.Cao W, Chen C, Wang D, et al. A lower limb exoskeleton with rigid and soft structure for loaded walking assistance. IEEE Robot Autom Lett. 2021;7:454–461. doi: 10.1109/LRA.2021.3125723. [DOI] [Google Scholar]
  • 46.Medrano R L, Thomas G C, Rouse E J. Can humans perceive the metabolic benefit provided by augmentative exoskeletons? J Neuroeng Rehabil. 2022;19:26. doi: 10.1186/s12984-022-01002-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Quinlivan B T, Lee S, Malcolm P, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci Robot. 2017;2:eaah4416. doi: 10.1126/scirobotics.aah4416. [DOI] [PubMed] [Google Scholar]
  • 48.Liu J, Xiong C, Fu C. An ankle exoskeleton using a lightweight motor to create high power assistance for push-off. J Mech Robot. 2019;11:041001. doi: 10.1115/1.4043456. [DOI] [Google Scholar]
  • 49.Xie L, Wang Z, Huang G, et al. Mechanical efficiency investigation of an ankle-assisted robot for human walking with a backpack-load. J Biomech Eng. 2021;143:111010. doi: 10.1115/1.4051434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lee M, Kim J, Hyung S, et al. A compact ankle exoskeleton with a multiaxis parallel linkage mechanism. IEEE ASME Trans Mechatron. 2020;26:191–202. doi: 10.1109/TMECH.2020.3008372. [DOI] [Google Scholar]
  • 51.Mooney L M, Herr H M. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. J Neuroeng Rehabil. 2016;13:4. doi: 10.1186/s12984-016-0111-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Han H, Wang W, Zhang F, et al. Selection of muscle-activity-based cost function in human-in-the-loop optimization of multi-gait ankle exoskeleton assistance. IEEE Trans Neural Syst Rehabil Eng. 2021;29:944–952. doi: 10.1109/TNSRE.2021.3082198. [DOI] [PubMed] [Google Scholar]
  • 53.Bryan G M, Franks P W, Song S, et al. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. J Neuroeng Rehabil. 2021;18:161. doi: 10.1186/s12984-021-00955-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Bessler-Etten J, Schaake L, Prange-Lasonder G B, et al. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator. J Neuroeng Rehabil. 2022;19:13. doi: 10.1186/s12984-022-00990-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Bacek T, Moltedo M, Serrien B, et al. Human musculoskeletal and energetic adaptations to unilateral robotic knee gait assistance. IEEE Trans Biomed Eng. 2022;69:1141–1150. doi: 10.1109/TBME.2021.3114737. [DOI] [PubMed] [Google Scholar]
  • 56.Shamaei K, Napolitano P C, Dollar A M. A quasi-passive compliant stance control knee-ankle-foot orthosis. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). Seattle, 2013. 1–6 [DOI] [PubMed]
  • 57.Zhang T, Feng K, Zeng B, et al. Design and validation of a light-weight soft hip exosuit with series-wedge-structures for assistive walking and running. IEEE ASME Trans Mechatron, 2021, doi: 10.1109/TMECH.2021.3120422
  • 58.Zhang T, Tran M, Huang H. Design and experimental verification of hip exoskeleton with balance capacities for walking assistance. IEEE ASME Trans Mechatron. 2018;23:274–285. doi: 10.1109/TMECH.2018.2790358. [DOI] [Google Scholar]
  • 59.Panizzolo F A, Freisinger G M, Karavas N, et al. Metabolic cost adaptations during training with a soft exosuit assisting the hip joint. Sci Rep. 2019;9:9779. doi: 10.1038/s41598-019-45914-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Kim H J, Lim D H, Kim W S, et al. Development of a passive modular knee mechanism for a lower limb exoskeleton robot and its effectiveness in the workplace. Int J Precis Eng Manuf. 2020;21:227–236. doi: 10.1007/s12541-019-00217-7. [DOI] [Google Scholar]
  • 61.Kim H, June Shin Y, Kim J. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics. 2017;46:32–45. doi: 10.1016/j.mechatronics.2017.06.009. [DOI] [Google Scholar]
  • 62.Panizzolo F A, Bolgiani C, Di Liddo L, et al. Reducing the energy cost of walking in older adults using a passive hip flexion device. J Neuroeng Rehabil. 2019;16:117. doi: 10.1186/s12984-019-0599-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Malcolm P, Lee S, Crea S, et al. Varying negative work assistance at the ankle with a soft exosuit during loaded walking. J Neuroeng Rehabil. 2017;14:62. doi: 10.1186/s12984-017-0267-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Lee S, Kim J, Baker L, et al. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. J Neuroeng Rehabil. 2018;15:66. doi: 10.1186/s12984-018-0410-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Bougrinat Y, Achiche S, Raison M. Design and development of a lightweight ankle exoskeleton for human walking augmentation. Mechatronics. 2019;64:102297. doi: 10.1016/j.mechatronics.2019.102297. [DOI] [Google Scholar]
  • 66.Cempini M, De Rossi S M M, Lenzi T, et al. Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method. IEEE Trans Robot. 2012;29:236–250. doi: 10.1109/TRO.2012.2226381. [DOI] [Google Scholar]
  • 67.Lee J, Kim H, Jang J, et al. Virtual model control of lower extremity exoskeleton for load carriage inspired by human behavior. Auton Robot. 2015;38:211–223. doi: 10.1007/s10514-014-9404-1. [DOI] [Google Scholar]
  • 68.Cha D, Kim K I. A lower limb exoskeleton based on recognition of lower limb walking intention. Trans Can Soc Mech Eng. 2018;43:102–111. doi: 10.1139/tcsme-2018-0087. [DOI] [Google Scholar]
  • 69.Long Y, Du Z, Chen C, et al. Development and analysis of an electrically actuated lower extremity assistive exoskeleton. J Bionic Eng. 2017;14:272–283. doi: 10.1016/S1672-6529(16)60397-9. [DOI] [Google Scholar]
  • 70.Yu S N, Lee H D, Lee S H, et al. Design of an under-actuated exoskeleton system for walking assist while load carrying. Adv Robot. 2012;26:561–580. doi: 10.1163/156855311X617506. [DOI] [Google Scholar]
  • 71.Wang T, Zheng T, Zhao S, et al. Design and control of a seriesparallel elastic actuator for a weight-bearing exoskeleton robot. Sensors. 2022;22:1055. doi: 10.3390/s22031055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Wang J, Fei Y, Chen W. Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robotics. 2020;7:140–154. doi: 10.1089/soro.2019.0023. [DOI] [PubMed] [Google Scholar]
  • 73.Aoustin Y, Formalskii A M. Walking of biped with passive exoskeleton: Evaluation of energy consumption. Multibody Syst Dyn. 2018;43:71–96. doi: 10.1007/s11044-017-9602-7. [DOI] [Google Scholar]
  • 74.Li X, Li W, Li Q. Method, design, and evaluation of an exoskeleton for lifting a load in situ. Appl Bion Biomech. 2021;2021:5513013. doi: 10.1155/2021/5513013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Cao W, Chen C, Hu H, et al. Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton. IEEE Trans Automat Sci Eng. 2020;18:426–436. doi: 10.1109/TASE.2020.3027748. [DOI] [Google Scholar]
  • 76.Zhang J, Fiers P, Witte K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking. Science. 2017;356:1280–1284. doi: 10.1126/science.aal5054. [DOI] [PubMed] [Google Scholar]
  • 77.Nuckols R W, Lee S, Swaminathan K, et al. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci Robot. 2021;6:eabj1362. doi: 10.1126/scirobotics.abj1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Fontana M, Vertechy R, Marcheschi S, et al. The body extender: A full-body exoskeleton for the transport and handling of heavy loads. IEEE Robot Automat Mag. 2014;21:34–44. doi: 10.1109/MRA.2014.2360287. [DOI] [Google Scholar]
  • 79.Kim W, Lee H, Kim D, et al. Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR). In: 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). Gyeonggi-do, 2014. 479–484
  • 80.Bacek T, Moltedo M, Rodriguez-Guerrero C, et al. Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. Mech Mach Theory. 2018;130:71–85. doi: 10.1016/j.mechmachtheory.2018.08.014. [DOI] [Google Scholar]
  • 81.Beyl P, Van Damme M, Van Ham R, et al. Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE ASME Trans Mechatron. 2013;19:1046–1056. doi: 10.1109/TMECH.2013.2268942. [DOI] [Google Scholar]
  • 82.Firouzi V, Davoodi A, Bahrami F, et al. From a biological template model to gait assistance with an exosuit. Bioinspir Biomim. 2021;16:066024. doi: 10.1088/1748-3190/ac2e0d. [DOI] [PubMed] [Google Scholar]
  • 83.Wang T, Zhu Y, Zheng T, et al. PALExo: A parallel actuated lower limb exoskeleton for high-load carrying. IEEE Access. 2020;8:67250–67262. doi: 10.1109/ACCESS.2020.2986357. [DOI] [Google Scholar]
  • 84.Walsh C J, Pasch K, Herr H. An autonomous, underactuated exoskeleton for load-carrying augmentation. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, 2006. 1410–1415
  • 85.Lovrenovic Z, Doumit M. Development and testing of a passive walking assist exoskeleton. Biocybern Biomed Eng. 2019;39:992–1004. doi: 10.1016/j.bbe.2019.01.002. [DOI] [Google Scholar]
  • 86.Wang D, Lee K M, Ji J. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Trans Robot. 2016;32:933–942. doi: 10.1109/TRO.2016.2572692. [DOI] [Google Scholar]
  • 87.Fan H, Chen W, Che J, et al. The design principle and method of load-carrying lower limb exoskeleton based on passive variable stiffness joint. In: Liu X J, Nie Z, Yu J, et al., eds. Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science, vol 13013. Cham: Springer, 2021. 676–686
  • 88.Yan Z, Han B, Du Z, et al. Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers. Biocybern Biomed Eng. 2021;41:221–238. doi: 10.1016/j.bbe.2020.12.010. [DOI] [Google Scholar]
  • 89.Zhu A, Shen Z, Shen H, et al. Design of a passive weight-support exoskeleton of human-machine multi-link. In: 2018 15th International Conference on Ubiquitous Robots (UR). Honolulu, 2018. 296–301
  • 90.Jamšek M, Petrič T, Babič J. Gaussian mixture models for control of quasi-passive spinal exoskeletons. Sensors. 2020;20:2705. doi: 10.3390/s20092705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Walsh C J, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot. 2007;4:487–506. doi: 10.1142/S0219843607001126. [DOI] [Google Scholar]
  • 92.Van Dijk W, de Wijdeven T, Holscher M M, et al. Exobuddy—A non-anthropomorphic quasi-passive exoskeleton for load carrying assistance. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob). Enschede, 2018. 336–341
  • 93.Cempini M, De Rossi S M M, Lenzi T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). Seattle, 2013. 1–6 [DOI] [PubMed]
  • 94.Szigeti A, Takeda Y, Matsuura D. Portable design and range of motion control for an ankle rehabilitation mechanism capable of adjusting to changes in joint axis. Int J Mech Robot Syst. 2016;3:222–236. doi: 10.1504/IJMRS.2016.081113. [DOI] [Google Scholar]
  • 95.Zanotto D, Akiyama Y, Stegall P, et al. Knee joint misalignment in exoskeletons for the lower extremities: Effects on user’s gait. IEEE Trans Robot. 2015;31:978–987. doi: 10.1109/TRO.2015.2450414. [DOI] [Google Scholar]
  • 96.Lee K M, Wang D. Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, 2015. 5572–5577
  • 97.Shafiei M, Behzadipour S. Adding backlash to the connection elements can improve the performance of a robotic exoskeleton. Mech Mach Theory. 2020;152:103937. doi: 10.1016/j.mechmachtheory.2020.103937. [DOI] [Google Scholar]
  • 98.Tong Y, Liu J. Review of research and development of supernumerary robotic limbs. IEEE CAA J Autom Sin. 2021;8:929–952. doi: 10.1109/JAS.2021.1003961. [DOI] [Google Scholar]
  • 99.Leng Y, Lin X, Huang G, et al. Wheel-legged robotic limb to assist human with load carriage: An application for environmental disinfection during COVID-19. IEEE Robot Autom Lett. 2021;6:3695–3702. doi: 10.1109/LRA.2021.3065197. [DOI] [Google Scholar]
  • 100.Gonzalez D J, Asada H H. Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, 2018. 4348–4354
  • 101.Parietti F, Asada H. Supernumerary robotic limbs for human body support. IEEE Trans Robot. 2016;32:301–311. doi: 10.1109/TRO.2016.2520486. [DOI] [Google Scholar]
  • 102.Parietti F, Chan K, Asada H H. Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, 2014
  • 103.Zhou Z, Chen W, Fu H, et al. Design and experimental evaluation of a non-anthropomorphic passive load-carrying exoskeleton. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM). Chongqing, 2021. 251–256
  • 104.Collo A, Bonnet V, Venture G. A quasi-passive lower limb exoskeleton for partial body weight support. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). Chongqing, 2016. 643–648
  • 105.Kim S, Nussbaum M A, Mokhlespour Esfahani M I, et al. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II—“Unexpected” effects on shoulder motion, balance, and spine loading. Appl Ergon. 2018;70:323–330. doi: 10.1016/j.apergo.2018.02.024. [DOI] [PubMed] [Google Scholar]
  • 106.Zhang H, Kadrolkar A, Sup I C. Design and preliminary evaluation of a passive spine exoskeleton. J Med Devices. 2016;10:011002. doi: 10.1115/1.4031798. [DOI] [Google Scholar]
  • 107.Yang X, Huang T H, Hu H, et al. Spine-inspired continuum soft exoskeleton for stoop lifting assistance. IEEE Robot Autom Lett. 2019;4:4547–4554. doi: 10.1109/LRA.2019.2935351. [DOI] [Google Scholar]
  • 108.Inose H, Mohri S, Arakawa H, et al. Semi-endoskeleton-type waist assist AB-wear suit equipped with compressive force reduction mechanism. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, 2017. 6014–6019
  • 109.Abdoli-E M, Agnew M J, Stevenson J M. An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clin BioMech. 2006;21:456–465. doi: 10.1016/j.clinbiomech.2005.12.021. [DOI] [PubMed] [Google Scholar]
  • 110.Näf M B, Koopman A S, Baltrusch S, et al. Passive back support exoskeleton improves range of motion using flexible beams. Front Robot AI. 2018;5:72. doi: 10.3389/frobt.2018.00072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Ulrey B L, Fathallah F A. Subject-specific, whole-body models of the stooped posture with a personal weight transfer device. J Electromyogr Kinesiol. 2013;23:206–215. doi: 10.1016/j.jelekin.2012.08.016. [DOI] [PubMed] [Google Scholar]
  • 112.Sadler E M, Graham R B, Stevenson J M. The personal lift-assist device and lifting technique: A principal component analysis. Ergonomics. 2011;54:392–402. doi: 10.1080/00140139.2011.556259. [DOI] [PubMed] [Google Scholar]
  • 113.Ji X, Wang D, Li P, et al. Corrigendum to “SIAT-WEXv2: A wearable exoskeleton for reducing lumbar load during lifting tasks”. Complexity. 2021;2021:9897521. [Google Scholar]
  • 114.Gao Z G, Sun S Q, Goonetilleke R S, et al. Effect of an on-hip load-carrying belt on physiological and perceptual responses during bimanual anterior load carriage. Appl Ergon. 2016;55:133–137. doi: 10.1016/j.apergo.2016.02.005. [DOI] [PubMed] [Google Scholar]
  • 115.Oberhofer K, Wettenschwiler P D, Singh N, et al. The influence of backpack weight and hip belt tension on movement and loading in the pelvis and lower limbs during walking. Appl Bion Biomech. 2018;2018:4671956. doi: 10.1155/2018/4671956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.de Looze M P, Bosch T, Krause F, et al. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 2016;59:671–681. doi: 10.1080/00140139.2015.1081988. [DOI] [PubMed] [Google Scholar]
  • 117.Bratic D, Noel A. Vertebral decompression device. 2021
  • 118.Luo Z, Yu Y. Wearable stooping-assist device in reducing risk of low back disorders during stooped work. In: 2013 IEEE International Conference on Mechatronics and Automation. Takamatsu, 2013. 230–236
  • 119.Yao Z, Linnenberg C, Weidner R, et al. Development of a soft power suit for lower back assistance. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019. 5103–5109
  • 120.Lamers E P, Yang A J, Zelik K E. Feasibility of a biomechanically-assistive garment to reduce low back loading during leaning and lifting. IEEE Trans Biomed Eng. 2018;65:1674–1680. doi: 10.1109/TBME.2017.2761455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Nassour J, Zhao G, Grimmer M. Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads. Sci Rep. 2021;11:12556. doi: 10.1038/s41598-021-91702-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Muramatsu Y, Umehara H, Kobayashi H. Improvement and quantitative performance estimation of the back support muscle suit. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka, 2013. 2844–2849 [DOI] [PubMed]
  • 123.von Glinski A, Yilmaz E, Mrotzek S, et al. Effectiveness of an onbody lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. J Clin Neurosci. 2019;63:249–255. doi: 10.1016/j.jocn.2019.01.038. [DOI] [PubMed] [Google Scholar]
  • 124.Liao H, Chan H H T, Gao F, et al. Design and characterization of a cable-driven series elastic actuator based torque transmission for back-support exoskeleton. In: 2021 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu, 2021. 914–919
  • 125.Eshel T. Mechanical “Hand” Helps Soldiers Handle Heavy Weapons. Defense Update 2018
  • 126.Pigrrynowsi M R, Norman R W, Winter D A. Mechanical energy analyses of the human during load carriage on a treadmill. Ergonomics. 1981;24:1–14. doi: 10.1080/00140138108924825. [DOI] [PubMed] [Google Scholar]
  • 127.Kerestes J, Sugar T G, Flaven T, et al. A method to add energy to running gait: PogoSuit. In: ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Buffalo, 2014. V05AT08A005
  • 128.Neptune R R, Zajac F E, Kautz S A. Muscle mechanical work requirements during normal walking: The energetic cost of raising the body’s center-of-mass is significant. J Biomech. 2004;37:817–825. doi: 10.1016/j.jbiomech.2003.11.001. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Technological Sciences are provided here courtesy of Nature Publishing Group

RESOURCES