Skip to main content
Radiation Oncology (London, England) logoLink to Radiation Oncology (London, England)
. 2022 Aug 23;17:149. doi: 10.1186/s13014-022-02110-6

Correction: A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation

Sebastian Marschner 1,6,, Manasi Datar 2, Aurélie Gaasch 1, Zhoubing Xu 3, Sasa Grbic 3, Guillaume Chabin 3, Bernhard Geiger 3, Julian Rosenman 4, Stefanie Corradini 1, Maximilian Niyazi 1, Tobias Heimann 2, Christian Möhler 5, Fernando Vega 5, Claus Belka 1, Christian Thieke 1
PMCID: PMC9400213  PMID: 35999593

Correction: Radiation Oncology (2022) 17:129 https://doi.org/10.1186/s13014-022-02102-6

After publication of this article [1], the authors reported that the author name ‘Manasi Datar’ was incorrectly written as ‘Manasi Datarb’.

The original article [1] has been corrected.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reference

  • 1.Marschner S, Datar M, Gaasch A, Xu Z, Grbic S, Chabin G, Geiger B, Rosenman J, Corradini S, Niyazi M, Heimann T, Möhler C, Vega F, Belka C, Thieke C. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation. Radiat Oncol. 2022;17:129. doi: 10.1186/s13014-022-02102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Radiation Oncology (London, England) are provided here courtesy of BMC

RESOURCES