Skip to main content
Plants logoLink to Plants
. 2022 Aug 16;11(16):2132. doi: 10.3390/plants11162132

Authentication and Market Survey of Sweet Birch (Betula lenta L.) Essential Oil

Noura S Dosoky 1, Ambika Poudel 1, Prabodh Satyal 1,*
Editors: Rino Ragno1, Mijat Božović1
PMCID: PMC9412571  PMID: 36015435

Abstract

Sweet Birch (Betula lenta) has several economic and medicinal uses. Very little is known about the chemical composition of B. lenta. In this study, the volatile compositions of the bark of B. lenta from authentic and commercial sources were assessed by gas chromatography-mass spectrometry (GC–MS) and gas chromatography–flame ionization detection (GC–FID). Overall, more than 60 compounds were identified in natural sweet birch EO obtained by hydro-distillation. The oil was dominated by methyl salicylate (93.24–99.84%). A good approach to distinguishing wintergreen and birch oils would be biomarker-based analysis. The biomarkers are selected based upon three main criteria: (1) the marker should be commercially unavailable or too expensive which renders the adulteration process very costly, (2) The marker should be detected consistently in all the tested authentic EO samples, and (3) A birch EO marker should be found exclusively in birch EO, not in wintergreen and vice versa. The minor components o-guaiacol, veratrole, 2-E-4-Z-decadienal, and 2-E-4-E-decadienal were identified as natural marker compounds for authentic sweet birch oil. Surprisingly, none of the tested 27 commercial samples contained any of the identified birch markers. The detection of wintergreen markers such as vitispirane and β-dehydroelsholtzia ketone, the synthetic marker dimethyl-2-hydroxyterephthalate, and ricenalidic acid lactone suggest the addition of wintergreen, synthetic methyl salicylate, and castor oil, respectively. This is the first report to identify birch biomarkers to the best of our knowledge.

Keywords: sweet birch, Betula lenta, essential oil, o-guaiacol, veratrole, 2-E-4-Z-decadienal, 2-E-4-E-decadienal, dimethyl 2-hydroxyterephthalate

1. Introduction

Betula species (Betulaceae) are largely found in regions north of the equator. Commonly known as birch, they have been used for centuries in various economic and medicinal applications [1]. Betula species are beneficial in cases of inflammation, infections, stomachache, urinary tract disorders, and skin problems [1,2]. Betula species contain flavonoids, glycosides, phenolics, saponins, sterols, tannins, and terpenes [3]. Being a rich source of antimicrobial compounds supports their traditional use to treat infections [4]. All parts of the tree, especially the wood, are used as raw materials in the paper and furniture industries in addition to charcoal production, dietary supplements, and cosmetics [5,6].

Betula lenta L., commonly known as sweet birch, black birch, mahogany birch, cherry birch, and southern birch, is one of the dark-barked birch species. B. lenta is a deciduous tree native to the eastern portion of North America. It is frequently found in northern forest ecosystems in the Appalachian Mountains. In the USA, it is found in Connecticut, Georgia, Kentucky, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, and West Virginia [7]. The tree can reach up to 30 m tall. B. lenta is a pharmacologically important tree. Traditionally, infusions and teas made of B. lenta bark have been taken for stomachache and lung diseases, while teas from bark and twigs are beneficial for fevers. B. lenta EO is an anti-inflammatory agent and is suitable for skin problems, rheumatism, and bladder infections. The young sweet birch tree has smooth bark with distinctive horizontal lenticels like other birch species. The mature tree has rough dark brown bark with irregular vertical cracks [8]. Birch bark is one of the abundant, underutilized natural resources [9]. It is the primary waste product of birch processing (about 10–15% of birch mass) [5]. The outer bark of white-barked birches is a good source of pentacyclic triterpenoids especially lupeol and betulin [9]. Several triterpenoids were identified in the outer bark of B. lenta, including betulin, betulone, betulinic acid, betulin-3-caffeate, lupeol, lupenone, lup-20(29)-ene-3ß,30-diol, lup-20(29)-ene-3ß-ol-30-al, lup-20(29)-ene-3ß,28-diol-30-al, and lupan-3ß,20diol [9]. Betula essential oils are generally produced by hydro-distillation. The bark of B. lenta is a known source of methyl salicylate and ethyl salicylate [10,11]. A significant amount of attention has been given to the authentication of wintergreen (Gaultheria spp.) EO. The authenticity of the essential oils of B. lenta offered in the market must be regarded with a similar attention. Unlike birch EO, the authentication of wintergreen EO has been the subject of several studies since 1986 [12]. Wintergreen and sweet birch EOs have a very similar chemical composition, dominated by methyl salicylate (about 99%). To authenticate the naturalness of this ester, it is easy to detect by GC-MS, preferably in SIM mode, the impurities that accompany the synthetic products acting as markers of the synthetic origins [12,13,14,15]. The efficiency of this task is enhanced using 13C, and 2H isotopic ratio measurements [14,15], and quantitative 2H-ERETIC-NMR [16]. Ultimately, 14C dating helps to ensure the contemporary origin of methyl salicylate [14]. Due to the high cost of natural birch oil, commercial birch oils are heavily adulterated [17]. Birch oil can be adulterated by adding a cheaper oil or synthetic methyl salicylate to increase the profit or by completely replacing the natural methyl salicylate with the inexpensive synthetic option. Therefore, the current study explores the volatile composition of the EO extracted from the bark of B. lenta obtained from trusted sources from Pennsylvania, USA, and compares the composition to the oils available in the US market. To the best of our knowledge, the EO composition of the bark of B. lenta has not been previously reported. Moreover, the essential oils of B. lenta were examined to identify unique chemical markers to help with authentication or adulteration detection.

2. Materials and Methods

2.1. Essential Oils

B. lenta bark samples were collected from McKean County, Pennsylvania, USA. Sweet birch grows in this area along with red maple (Acer rubrum L.), sugar maple (Acer saccharum Marshall), black cherry (Prunus serotina Ehrh), American beech (Fagus grandifolia Ehrh), Eastern hemlock (Tsuga canadensis (L.) Carriere), and yellow birch (Betula alleghaniensis Britt). B. lenta essential oils from authentic sources (hydro-distilled in both lab and industrial settings) and commercial suppliers were acquired from the EO collection of the Aromatic Plant Research Center (APRC, Lehi, UT, USA). Samples A1-A18 were distilled in industrial distillers while A19-A21 were extracted in the laboratory. The distillation conditions have been optimized in our previous work on wintergreen essential oil [13]. Birch bark samples were air-dried and then fermented in water for 8–10 h at 50 °C prior to distillation. Fermentation was over when the pH reached 3–4 and held this number for more than two hours. In the lab, the plant material was distilled for 6–10 h in a Clevenger-type apparatus. In the industrial setting, the plant material was distilled for 6–10 h at 600 kPa in a 5.5 m3 distiller, starting slowly for 2 h and then stabilizing around a flow rate of 2 L/min. Twenty-seven commercial birch essential oil products were purchased online. The product labels of most of these samples were labeled as “100% Pure Essential oil” or “100% pure Therapeutic Grade Essential oil” (Table 1).

Table 1.

Available information on commercial sweet birch samples.

Sample ID Name Sample Description Botanical Name
C1 Birch 100% Pure Essential oil Betula sp.
C2 Birch Sweet 100% Pure Essential oil Betula lenta
C3 Birch 100% pure and natural Therapeutic Grade Essential oil Betula lenta
C4 Birch 100% pure Essential oil Betula lenta
C5 Birch 100% Pure Essential oil Betula lenta
C6 Birch 100% pure Therapeutic Grade Essential oil Betula lenta
C7 Birch 100% pure Therapeutic Grade Essential oil Betula lenta
C8 Birch Therapeutic Grade Essential oil NA
C9 Birch 100% pure Therapeutic Grade Essential oil Betula lenta
C10 Birch 100% pure Essential oil, Therapeutic Grade Betula lenta
C11 Birch Sweet 100% pure Therapeutic Grade Essential oil Betula lenta
C12 Birch 100% pure Essential oil Betula lenta
C13 Birch Sweet Pure Essential oil Betula lenta
C14 Sweet Birch 100% pure Therapeutic Grade Essential oil Betula lenta
C15 Birch Sweet 100% pure Therapeutic Grade Essential oil Betula lenta
C16 Birch 100% Pure Essential oil Betula lenta
C17 Birch premium 100% pure Therapeutic Grade Essential oil Betula lenta
C18 Birch 100% Pure Essential oil Betula lenta
C19 Birch 100% pure Essential oil Betula lenta
C20 Birch 100% pure Essential oil Betula lenta
C21 Birch 100% Pure Essential oil Betula sp.
C22 Birch 100% Pure Essential oil Betula lenta
C23 Birch 100% Pure Essential oil Betula lenta
C24 Birch 100% Pure Essential oil Betula lenta
C25 Birch 100% pure Essential oil Betula lenta
C26 Birch 100% pure Essential oil Betula lenta
C27 Birch 100% pure Essential oil Betula lenta

2.2. Gas Chromatography-Mass Spectrometry (GC–MS) Analysis

Natural and commercial birch oil samples were analyzed using a gas chromatograph coupled to a mass spectrometer QP2010 Ultra (Shimadzu Scientific Instruments, Columbia, MD, USA) with electron impact (EI) mode with 70 eV. The separation of the analytes was carried out by using a ZB5MS GC capillary column, using 40–400 m/z range scans with a scan rate of 3.0 scan/s. The column temperature was set at 50 °C for 2 min and then increased at 2 °C/min to the temperature of 260 °C. The carrier gas was helium with a constant flow rate of 1.37 mL/min. The injector temperature was kept at 260 °C. For each essential oil sample, 1:10 v/v solution in dichloromethane (DCM) was prepared, and 0.3 μL was injected using a split ratio of 1:30. The essential oil components were identified by comparing mass spectral fragmentation patterns (over 80% similarity match) and retention indices (RI) based on a series of homologous C8–C20 n-alkanes with those reported in databases (NIST database, and our in-house library) using the Lab Solutions GCMS post-run analysis software version 4.45 (Shimadzu Scientific Instruments, Columbia, MD, USA) [18].

2.3. Gas Chromatography–Flame Ionization Detection (GC–FID) Analysis

Analysis of natural birch essential oil was carried out using a Shimadzu GC 2010 equipped with a flame ionization detector (Shimadzu Scientific Instruments, Columbia, MD, USA), as previously described [18] with a ZB-5 capillary column (Phenomenex, Torrance, CA, USA).

3. Results and Discussion

3.1. Authentic B. lenta Oil

Sweet birch samples were hydro-distilled both in the lab and in industrial distillers by trusted sources. Thus, there is no question about authenticity. The EO yield was in the range of 0.07–0.1%. The odor can be described as papery, lightly weak wintergreen, sweet, and lightly woody. There were no significant differences between the lab-distilled oils vs. industrially distilled ones. The chemical compositions of authentic birch EO (21 samples) are summarized in Table 2. Overall, more than 60 compounds were identified in natural sweet birch EOs. The oils are dominated by methyl salicylate (93.24–99.84%). Methyl salicylate is an analgesic phenolic ester [19] that dominates wintergreen [17] and sweet birch [11] oils. During the hydro-distillation of wintergreen (Gaultheria fragrantissima Wall), the glycoside gaultherin is converted to methyl salicylate, which is the major compound of the oil (above 98%) [17]. Some variations were observed in some of the minor components. o-Guaiacol, veratrole, ethyl salicylate, 2-E-4-Z-decadienal, 2-E-4-E-decadienal, and methyl o-anisate were consistently detected in all the authentic samples. The composition of B. lenta bark in the current study is quite different from that of other birch bark oils. The EO obtained from B. nigra bark was dominated by fatty acids and fatty acid-derived compounds (51.2–80.4%) and saturated normal alkanes (4.5–29.8%) [2,20,21]. The inner bark of B. pendula yielded an EO made of methyl salicylic, palmic, phenic, and behenic acids, and sesquiterpenes [22]. In another study from New Zealand, the EO of the inner bark of B. pendula had E-α-bergamotene (31%) and α-santalene (19%) as the main components. In comparison, the major components of B. papyrifera inner bark oil were E-α-bergamotene (18%), ar-curcumene (12%), E-β-farnesene (12%), Z-β-farnesene (10%) and Z-α-bergamotene (8%) [23]. The main constituents of the EO obtained from the bark of B. pubescens from Russia were α-santalene (2.0%), E-α-bergamotene (3.5%), E-β-bergamotene (0.8%), α-epoxysantalene (0.3%), E-α-epoxybergamotene (0.3%) and E-β-epoxybergamotene (0.4%) [24].

Table 2.

Chemical composition of authentic (A) sweet birch EO samples.

RIcalc RIexp Compounds A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21
801 802 Hexanal - - 0.01 0.01 0.01 - - - - - - 0.01 0.01 0.02 tr 0.02 0.05 0.05 0.06 0.01 0.01
846 846 2E-Hexenal - - - - - - - - - - - - - 0.13 0.02 - - - - - -
862 862 n-Hexanol - - - - - - - - - - - - 0.01 - - 0.01 0.02 0.01 - -
934 931 α-Pinene - - - 0.01 0.01 - - - - - - tr - - - - 0.01 - - - -
970 971 Sabinene - - - - - - - - - - - - - 0.01 - - - - - - -
975 974 β-Pinene - - - 0.01 0.01 - - - - - - 0.01 tr tr - - - - - - -
977 977 Phenol - - - - - - - - - 0.01 0.01 - - - - - - - - - -
988 984 2-Pentyl furan - 0.01 - 0.01 0.02 tr - - - tr - 0.01 0.02 - - 0.04 0.01 0.01 - - -
1009 1009 o-Methyl anisole - - - 0.01 0.01 - - - - - - tr - - - - - - - - -
1024 1020 p-Cymene - - - - -- - - - - -- - - - tr - 0.02 - 0.01 - - -
1044 1044 E-β-Ocimene - - - - - - - - - - - - - 0.01 - - - - - - -
1050 1048 o-Cresol - - - - - - - tr - - tr - - tr - - 0.01 0.01 0.03 - -
1068 1070 n-Octanol - - - - - - - tr - - - - - - - - 0.08 0.04 0.03 - -
1087 1087 o-Guaiacol tr tr tr tr tr 0.02 tr 0.04 0.04 0.06 0.10 0.01 tr 0.04 0.05 tr 0.47 0.30 0.39 0.02 0.02
1095 1098 Linalool - - - - - - - tr - - - - - 0.01 tr - 0.13 0.01 0.04 - -
1100 1103 n-Nonanal - 0.02 0.02 0.02 0.02 - - tr - - - 0.01 0.01 0.02 0.01 - - 0.01 - 0.01 0.01
1141 1142 Veratrole tr tr tr 0.01 0.01 tr tr 0.01 tr 0.01 0.02 0.01 tr 0.01 0.01 0.02 tr tr tr tr 0.01
1163 1160 2-E-Nonenal - 0.01 - 0.01 0.01 - - - - tr - - tr - - - - - - 0.03 0.01
1177 1180 Terpinen-4-ol - - - - - - - - - - - - - 0.01 - 0.02 0.02 - 0.01 - -
1191 1191 Methyl salicylate 98.97 97.37 98.96 98.30 98.22 99.54 99.78 99.77 99.84 98.70 99.11 98.38 97.93 99.48 99.67 93.24 97.74 99.20 98.82 97.87 98.49
1195 1195 Methyl chavicol - - - - - - - - - - - - - - - - 0.12 - - - -
1201 1201 n-Decanal - 0.01 0.01 0.01 0.01 - - tr - - - 0.01 0.01 tr tr - - - - 0.01 -
1239 1236 o-Anisaldehyde - - - 0.01 0.01 - - - - 0.01 0.01 0.01 0.01 - - - - - - - -
1260 1260 2-E-Decenal - - - - tr - - - - - - 0.01 0.01 - - - - - - tr -
1266 1266 Ethyl salicylate 0.58 0.76 0.49 0.61 0.61 0.06 0.05 0.04 0.03 0.63 0.33 0.60 0.59 0.03 0.03 6.41 0.74 0.08 0.40 1.7 0.84
1283 1282 Bornyl acetate - - - 0.01 0.01 - - - - - - 0.01 - - - - - - - - -
1292 1291 2-E-4-Z-Decadienal 0.04 0.10 0.10 0.05 0.06 0.02 tr tr tr tr tr 0.05 0.09 tr tr tr tr tr tr 0.01 0.01
1319 1315 2-E-4-E-Decadienal 0.06 0.21 0.15 0.12 0.12 0.06 0.01 tr tr 0.02 tr 0.11 0.19 0.01 tr tr tr tr tr 0.02 0.02
1322 1319 Methyl geranate - - - - - - - - - - - 0 0.01 - - - - - - - -
1332 1332 Methyl o-anisate 0.29 0.40 0.15 0.53 0.45 0.26 0.13 0.04 0.04 0.54 0.39 0.48 0.34 0.04 0.08 0.09 0.44 0.08 0.14 0.12 0.19
1356 1345 Eugenol - - - - - - 0.01 0.03 0.02 tr 0.01 - - 0.03 0.02 - 0.01 0.04 0.02 tr -
1365 1365 Z-8-Undecenal - 0.01 0.02 - - - - - - - - - 0.01 - - - - - - - -
1382 1382 Hexyl hexanoate - - - - - - - - - - - - - 0.01 - - - - - - -
1417 1417 β-Caryophyllene - 0.01 - - 0.01 - - tr - - - tr 0 0.01 0.01 - - - - - -
1423 1423 Isobutyl salicylate - 0.04 - 0.01 0.02 - - - - - - 0.01 0.04 - - - - - - 0.03 0.01
1453 1445 Geranyl acetone - 0.01 - tr 0.01 - - - - - - 0.01 0.01 - - - - - - - 0.01
1452 1453 α-Humulene - 0.03 - 0.02 0.02 - - tr - - - 0.02 0.02 tr 0.01 - - - - - -
1432 1480 E-β-Bergamotene - - - - - - - - - - - - tr - - - - - - - -
1500 1495 α-Muurolene - 0.02 0.01 - - - - - - - - tr 0.01 - - - - - - - -
1505 1502 E-E-α-Farnesene - - - - - - - - - - - - - 0.03 - - - - - - -
1507 Unidentified - - - - 0.02 0.01 - - - - - 0.02 - - 0.09 - - - - - -
1535 1528 Isopentyl salicylate 0.01 0.04 0.01 0.05 0.09 - - - - - - 0.06 0.03 - - 0.12 - - - - 0.01
1568 1568 3-E-Hexenyl benzoate - - - - - - - - - - - - - 0.02 0.01 - - - - - -
1574 1574 Pentyl salicylate - - - - - - - - - - - 0.01 0.01 - - - - - - - -
1579 1575 n-Hexyl benzoate - - - - - - - - - - - - - 0.01 - - - - - - -
1577 1577 Caryophyllene oxide - - - - - - - tr - - - - - 0.01 0.01 - - - - - -
1679 1679 Hexyl salicylate - - - - - - - - - - - - 0.01 - - - - - - - -
1697 1696 2-Pentadecanone - - - - - - - - - - - - tr - - - - - - - -
1700 1699 Heptadecane - - - - 0.01 - - - - - - tr 0.01 tr - - - - - - -
1714 1714 Pentadecanal - 0.03 0.01 0.01 0.01 0.02 tr - - 0.01 0.01 0.01 0.02 - - - tr - - - -
1800 1799 Octadecane - 0.01 tr tr 0.01 - - - - - - 0.01 0.01 tr tr - - 0.01 - tr -
1864 1864 Benzyl salicylate - 0.02 - 0.01 0.01 - tr 0.01 tr tr - 0.01 0.03 - - - - - - 0.01 0.01
1900 1899 Nonadecane - 0.01 0.01 0.01 0.01 - - tr - - - 0.01 0.01 tr tr - - 0.01 - 0.01 -
1903 1903 E-E,-5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl - - - - 0.01 - - - - - - 0 0.01 - - - - - - - -
2000 2000 Eicosane 0.01 0.03 0.01 0.02 0.02 - tr tr tr - - 0.02 0.02 - tr - - 0.01 - - 0.01
2061 2061 Phenyl ethyl alcohol dimer - - - - - - - tr - - - tr - tr - - - - - 0.01 -
2100 2100 Heneicosane 0.01 0.03 0.01 0.02 0.02 - 0.01 0.01 0.01 tr - 0.02 0.02 tr 0.01 - - 0.02 - 0.01 tr
2138 2138 Oxacycloheptadecenone - - - - - - - - - - - 0.01 0.01 - - - - - - - -
2200 2199 Docosane - - - - - - - - - - - - 0.01 - - - - - - - -
2300 2300 n-Tricosane - - - 0.01 - - - tr - - - - - - 0.01 - - - - - -
2500 2498 Pentacosane - - - - - - - 0.01 - - - - - - 0.01 - - - - - -
2700 2698 Heptacosane - - - - - - - - - - - - - - 0.01 - - - - - -
Yield (%) 0.07 0.1 0.08 0.07 0.09 0.09 0.07 0.07 0.07 0.1 0.07 0.07 0.08 0.1 0.08 0.1 0.1 0.08 0.07 0.07 0.1

Enantiomeric distribution is one of the popular methods of detecting adulteration in essential oils [25]. However, it was not possible to perform chiral analysis on B. lenta bark oil since methyl salicylate lacks a chiral core, and the minor chiral components are present in very low quantities. It is easy to confuse wintergreen and sweet birch oils due to their high methyl salicylate content. A good approach to distinguishing wintergreen and birch oils would be biomarker-based analysis. The biomarkers are selected based upon three main criteria: (1) the marker should be commercially unavailable or too expensive which renders the adulteration process very costly, (2) The marker should be detected consistently in all the tested authentic EO samples, and (3) A birch EO marker should be found exclusively in birch EO, not in wintergreen and vice versa. Table 3 shows a comparison between authentic sweet birch and wintergreen oil compositions. A total of 18 natural compounds are common in both oils. Ethyl salicylate and methyl o-anisate are common markers in both oils; however, they are present in higher amounts in sweet birch EO. Therefore, we can identify o-guaiacol, veratrole, 2-E-4-Z-decadienal, and 2-E-4-E-decadienal as natural marker compounds for authentic B. lenta oil (Figure 1).

Table 3.

Comparison of authentic wintergreen EOs and authentic birch EOs.

Compound Name Wintergreen (34 Samples) Birch (21 Samples)
Range (%) Mean SD Range (%) Mean SD
1,8-Cineole tr–0.05 0.01 0.01 - - -
2-Pentyl furan - - - 0–0.04 0.02 0.01
2-E-4-Z-Decadienal - - - tr–0.10 0.08 0.03
2-E-4-E-Decadienal - - - tr–0.21 0.05 0.07
2-E-Decenal - - - 0–0.01 0.01 0
2E-Hexenal - - - 0–0.13 0.08 0.08
2-E-Nonenal - - - 0–0.01 0.01 0.01
3-Z-Hexenol 0.01–0.03 0.01 0.01 - - -
3-Z-Hexenyl 3-methyl butanoate tr tr 0 - - -
3-Z-Hexenyl butanoate 0.01 0.01 0 - - -
3-Methyl-1,2-cyclopentanedione tr–0.01 0.01 0 - - -
3-E-Hexenyl benzoate - - - 0–0.02 0.02 0.01
allo-Ocimene 0.01 0.01 0 - - -
α-Humulene tr tr 0 0–0.03 0.02 0.01
α-Muurolene - - 0–0.02 0.02 0.01
α-Phellandrene tr–0.01 tr 0.01 - 0.01 -
α-Pinene tr–0.09 0.02 0.02 0–0.01 0.01 0
α-Thujene tr tr 0 - - -
Artemisia alcohol tr tr 0 - - -
Benzaldehyde tr–0.01 0.01 0.01 - - -
Benzyl alcohol tr–0.02 0.01 0.01 - - -
Benzyl salicylate - - - 0–0.03 0.01 0.01
β-Caryophyllene tr–0.02 0.01 0 0–0.01 0.01 0
β-Dehydro elsholtzia ketone tr–0.01 0.01 0 - - -
β-Pinene tr–0.05 0.02 0.01 0–0.01 0.01 0
Bornyl acetate tr–0.01 0.01 0 0–0.01 0.01 0
Camphene tr–0.01 0.01 0.01 - - -
Caryophyllene oxide - - - 0–0.01 0.01 0
Z-8-Undecenal - - - 0–0.02 0.01 0.01
δ-Cadinene tr tr 0 - - -
Docosane - - - 0–0.01 0.01 0
Eicosane - - - 0–0.03 0.02 0.01
Ethyl benzoate tr–0.01 0.01 0 - - -
Ethyl salicylate tr–0.33 0.1 0.07 0.03–6.41 0.74 1.36
Eugenol 0.01–0.14 0.05 0.03 0–0.04 0.03 0.01
Geraniol tr–0.01 0.01 0 - - -
Geranyl acetone - - - 0–0.01 tr 0
Germacrene D tr tr 0 - - -
Heneicosane - - - 0 -0.03 0.02 0.01
Heptacosane - - - 0–0.01 0.01 0
Heptadecane - - - 0–0.01 0.01 0
Hexanal - - - 0–0.06 0.02 0.02
Hexenyl acetate 0.01 0.01 0 - - -
Hexyl hexanoate - - - 0–0.01 0.01 0
Hexyl salicylate - - - 0–0.01 0.01 0
Hotrienol tr tr 0 - - -
Isobutyl salicylate - - - 0–0.04 0.01 0.01
Isopentyl salicylate - - - 0–0.09 0.05 0.04
Isothymol tr–0.01 0.01 0 - - -
Limonene tr–0.02 0.01 0.01 - - -
Linalool 0–0.06 0.03 0.01 0–0.13 0.05 0.06
Menthone tr–0.02 0.02 0 - - -
Methyl chavicol - - - 0–0.12 0.10 0
Methyl geranate - - - 0–0.01 0.01 0.01
Methyl o-anisate tr–0.01 0.01 0 0.04–0.54 0.25 0.18
Methyl salicylate 99.47–100 99.77 0.13 93.24–99.84 98.54 1.42
n-Decanal - - - 0–0.01 0.01 0
n-Hexanol tr–0.01 0.01 0 0–0.02 0.01 0
n-Hexyl benzoate - - - 0–0.01 0.01 0
n-Nonanal tr–0.01 tr 0.01 0–0.02 0.01 0
n-Octane tr tr 0 - - -
n-Octanol tr–0.01 0.01 0.01 0–0.08 0.05 0.03
Nonadecane - - - 0–0.01 0.01 0
n-Tricosane - - - 0–0.01 0.01 0
Octadecane - - - 0–0.01 0.01 0
o-Anisaldehyde - - - 0–0.01 0.01 0
o-Cresol - - - 0–0.03 0.01 0.01
o-Cymene tr tr 0 - - -
o-Guaiacol - - - tr–0.47 0.12 0.16
o-Methyl anisole - - - 0–0.01 0.01 0
Oxacycloheptadecenone - - - 0–0.01 0.01 0
p-Mentha-1(7),8(10)-dien-9-ol tr–0.01 0.01 0 - - -
p-Xylene tr tr 0 - - -
p-Cymene tr–0.01 0.01 0.01 0–0.02 0.02 0.01
Pentacosane - - - 0–0.01 0.01 0
Pentadecanal - - - 0–0.03 0.01 0.01
Pentyl salicylate - - - 0–0.01 0.01 0
Phenol tr–0.01 0.01 0 0–0.01 0.01 0
Phenyl ethyl alcohol dimer tr tr 0 - - -
Pulegone tr–0.01 0.01 0 - - -
Sabinene - - - 0–0.01 0.01 0
Terpinen-4-ol tr tr 0 0–0.02 0.02 0.01
Thymol tr–0.01 0.01 0 - - -
Toluene tr–0.01 0.01 0.01 - - -
E-β-Ocimene - - - 0–0.01 0
E-Caryophyllene tr–0.01 0.01 0 - - -
E-E,-5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl - - - 0–0.01 0.01 0
E-E-α-Farnesene - - - 0–0.03 0.02 0
Veratrole - - - tr–0.02 0.01 0
Vitispirane tr–0.02 0.01 0.01 - - -
Wintergreen sesquiterpenoid 1 tr–0.01 0.01 0 - - -
Xylene isomer tr tr 0 - - -

Figure 1.

Figure 1

Chemical structures of the identified birch biomarkers.

3.2. Commercial Sweet Birch Oil

Twenty-seven commercial birch oil samples were obtained from commercial vendors available in the US market. The chemical compositions of commercial birch EOs are shown in Table 4, with more than 100 identified components. Similar to the natural EO, commercial sweet birch EOs were dominated by methyl salicylate (56.71–99.9%). Minor components varied greatly between commercial samples. Woods and colleagues analyzed a commercial EO sample that was exclusively made of methyl salicylate [2,20]. Sweet birch markers (o-guaiacol, veratrole, 2-E-4-Z-decadienal, and 2-E-4-E-decadienal) were not detected in any of the tested commercial samples. Ethyl salicylate was absent from 11 samples. Interestingly, wintergreen markers such as vitispirane (10 occurrences) and β-dehydroelsholtzia ketone (3 occurrences) were detected in the tested samples. This finding suggests that wintergreen oil is available in the market as birch EO or the addition of wintergreen oil to natural birch oil [13]. Moreover, synthetic markers such as dimethyl-2-hydroxyterephthalate (6 occurrences) were also detected, which suggests the addition of synthetic methyl salicylate [17]. Ricenalidic acid lactone, a marker of the addition of castor oil, was detected in one sample.

Table 4.

Chemical composition of commercial (C) birch EO samples.

RIcalc RIexp Compounds C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27
848 848 3-Z-Hexenol - - 0.02 0.03 - - - - 0.05 - - - - - - - - - - - - - - - - - -
862 862 n-Hexanol - - tr 0.01 - - - - 0.01 - - - - - - - - - - - - - - - - - -
895 895 o-Xylene - - - - - - - - - - - - - 1.36 - - - - - - - - - - - - -
900 900 n-Nonane - - - - - - - - - - 0.01 - - 0.04 - - - - - - - - - - - - -
920 919 Hashishene - - - - - - - - - 0.01 - - - - - - - - - - - - - - - - -
921 Tricyclene + Hexylene glycol - - - - - - - - - - - - - 0.14 - - - - - - - - - - - - -
921 921 Tricyclene - - - - - - - 0.02 - - - - - - - - - - - - - - - 0.04 - - -
924 924 α-Thujene - - - tr - - - - - 2.93 - - 0.01 0.06 - - - - - - - - - - 0.27 - -
934 931 α-Pinene - - 0.01 0.04 - - 0.01 0.28 0.02 0.21 - - 0.19 6.11 - 0.18 2.30 - - - - 0.01 1.86 0.93 0.01 -
942 942 Thujadiene - - - - - - - - - 0.02 - - - - - - - - - - - - - - - - -
993 945 α-Fenchene - - - - - - - 0.04 - - - - - 0.05 - - - - - - - - - - - - -
949 948 Camphene - - - - - - - 0.14 - - - - 0.02 0.36 - 0.03 0.50 - - - - - - 0.65 - - -
969 970 3,7,7-Trimethyl-1,3,5-cycloheptatriene - - - - - - - 0.01 - - - - - 0.02 - - - - - - - - - - - - -
970 971 Sabinene - - - - - - - - - 0.18 - - 0.01 0.10 - - - - - - - - - 1.31 - - -
975 974 β-Pinene - - 0.01 0.02 - - tr 0.03 - 0.01 - - 0.07 0.17 - 0.02 2.28 0.03 - - - tr - - - - -
988 988 Myrcene - - - tr - - tr 0.06 - 0.02 - - 0.02 1.66 - tr - - - - - - - - - - -
1001 999 δ-2-Carene - - - - - - - 0.01 - - - - - 0.19 - - - - - - - - - - - - -
1006 1006 α-Phellandrene - - - - - - - 0.01 - 0.04 - - tr 1.94 - - - - - - - - - - - - -
1008 1008 δ-3-Carene - - - 0.01 - - - 1.92 - 0.13 - - - 8.42 - - 0.24 0.04 - - - - - 1.36 - - -
1012 1012 1,4-Cineole - - - - - - - 0.14 - - - - - 0.30 - - - - - - - - - - - - -
1014 1014 α-Terpinene - - - - - - - 0.04 - 0.01 - - 0.09 2.57 - - - - - - - - - - - - -
1020 1020 p-Cymene - - 0.01 0.01 - - - 0.05 - 0.05 - - 0.12 0.68 - 0.01 - - - - - - - - - - -
1026 1026 Acetyl methyl furan - - - - - - - - - 0.01 - - - - - - - - - - - - - - - - -
1024 1027 Limonene - - 0.01 0.01 0.05 0.06 0.02 0.28 0.01 0.06 - - 0.26 1.39 - 0.04 0.55 0.09 0.02 - - 0.01 - 0.47 0.27 0.01 -
1025 1029 β-Phellandrene - - - 0.01 - - tr - - 0.02 - - - 0.19 - - - - - - - - - 0.15 - - -
1026 1031 1,8-Cineole - - 0.01 0.02 - - 0.01 0.11 0.01 - - - 0.69 2.30 - 0.33 - - - 0.06 - 0.02 - - - 0.02 0.06
1032 1033 Z-β-Ocimene - - - - - - - - - 0.01 - - - 0.12 - - - - - - - - - - - - -
1041 Unidentified - - - - - - - - - - - - - 0.48 - - - - - - - - - - - - -
1044 1044 E-β-Ocimene - - - - - - - - - - - - - 0.24 - - - - - - - - - - - - -
1055 Unidentified - - - - - - - - - - - - - 0.25 - - - - - - - - - - - - -
1054 1058 γ-Terpinene - - - - - - - 0.02 - 0.02 - - 0.23 0.27 - 0.01 - - - - - - - - - - -
1063 1070 n-Octanol - - - - 0.01 0.01 - - - - - - - - - - - - - - - - - - - - -
1086 1088 Terpinolene - - - - - - - 0.11 - 0.01 - - 0.04 1.67 - - - - - - - - - - - - -
1086 1092 Fenchone - - - - - - tr - - - - - - 0.04 - - - - - - - tr - - - - -
1095 1098 Linalool - 0.03 0.03 0.04 0.01 0.02 0.03 - 0.05 - - 0.02 0.08 - - 0.03 - 0.04 0.03 0.07 0.04 0.03 0.03 - - 0.03 0.06
1106 1106 Isocamphone - - - - - - - - - - - - - 0.33 - - - - - - - - - - - - -
1106 1114 Z-Rose oxide - - - - - - - - - - - - 0.01 - - - - - - - - - - - - - -
1112 1119 E-Thujone - - - - - - 0.01 - - 0.01 - - - - - - - - - - - 0.01 - - - - -
1118 1121 Isophorone - - - - - - - - - - - - - 2.96 - - - - - - - - - - - - -
1130 1131 Terpin-3-en-1-ol - - - - - - - - - - - - - 0.22 - - - - - - - - - - - - -
1141 1145 Camphor - tr - - - - - - - - - 0.03 4.54 - 0.09 0.54 - - - - - - - - - -
1143 1150 Z-β-Terpineol - - - - - - - - - - - - - 0.13 - - - - - - - - - - - - -
1148 1152 Citronellal - - - - - - - - - - - - 0.01 - - - - - - - - - - - - - -
1148 1157 Menthone - - - - - - - - - 0.01 - - 0.01 0.04 - - - - - - - - - - - - -
1155 1162 Isoborneol - - - - - - - - - - - - - 0.2 - - - - - - - - - - - - -
1157 1163 Benzyl acetate - 0.02 - - - - - - - - - 0.01 - - - - - - - - - - - - - - -
1166 1166 iso-Menthone - - - - - - - - - - - - 0.05 - - - - - - - - - - - - - -
1169 1170 Borneol - - - - - - - - - - - - - 0.14 - 0.02 - - - - - - - - - - -
1176 1175 Menthol - - - - - - - - - 0.01 - - - - - - - - - - - - - - - - -
1177 1180 Terpinen-4-ol - - - - 0.01 0.01 - - - 0.01 - - 0.47 0.12 - 0.01 - - - - - - - - - - -
1191 1191 Methyl salicylate 99.99 99.90 99.80 99.64 99.38 99.29 99.78 95.18 99.34 95.64 99.68 99.91 96.67 56.71 99.95 98.89 93.37 99.68 99.95 99.82 99.87 99.85 99.96 93.83 97.58 99.74 99.78
1195 1195 Methyl chavicol - - - - - - - - - 0.21 - - - - - - - - - - - - - - - - -
1196 1196 Isocamphenone - - - - - - - - - - - - - 0.26 - - - - - - - - - - - - -
1199 1197 γ-Terpineol - - - - - - - - - - - - - 0.35 - - - - - - - - - - - - -
1209 1209 Octyl acetate - - - - 0.01 0.02 - - - - - - - - - - - - - - - - - - - - -
1249 1250 Geraniol - - - - tr 0.01 0.01 - - - - - - - - - - - - - - - - - - 0.03 -
1252 1252 Linalyl acetate - - - 0.01 - - - - - - - - 0.20 - - - - - - - - - - - - - -
1266 1266 Ethyl salicylate 0.01 0.04 0.05 0.08 0.50 0.55 0.07 - 0.07 - 0.26 0.03 - - - 0.15 - 0.05 - 0.04 0.04 0.04 - - - 0.11 0.08
1271 1271 Citronellyl formate - - - - - - - - - - - - 0.08 - - - - - - - - - - - - - -
1281 1281 Vitispirane - 0.01 0.02 0.01 0.02 0.02 0.01 - 0.03 - - 0.01 - - - 0.01 - - - - - 0.01 - - - - -
1283 1282 Bornyl acetate - - - - - - - - - - - - 0.02 0.65 - 0.08 0.20 0.07 - - - Tr - 0.15 - - -
1293 1293 Methyl naphthalene - - - 0.01 - - - - - - - - - - - - - - - - - - - - - - -
1298 1297 Geranyl formate - - - - - - - - - - - - 0.02 - - - - - - - - - - - - - -
1299 1299 β-Dehydro elsholtzia ketone - - - 0.01 - - - - 0.01 - - - - - - - - - - - - - - - - 0.01 -
1346 1344 α-Terpinyl acetate - - - - - - - - - - - - 0.02 - - 0.01 - - - - - - - - - - -
1356 1345 Eugenol - - 0.01 0.03 - - 0.01 - 0.01 - - - - - - - - - - - - - - - - - -
1371 1371 Longicyclene - - - - - - - - - - - - - 0.04 - - - - - - - - - - - - -
1379 1376 Geranyl acetate - - - - - - - - - - - - 0.01 - - - - - - - - - - - - - -
1387 1384 β-Bourbonene - - - - - - - - - 0.01 - - 0.01 - - - - - - - - - - - - - -
1407 1407 Longifolene - - - - - - - - - - - - - 0.15 - - - - - - - - - - - - -
1417 1417 β-Caryophyllene - 0.01 tr 0.01 0.01 0.01 - 0.02 0.01 - - 0.01 0.05 - - 0.01 - - - - - - - - - 0.01 -
1439 1434 Aromadendrene - - - - - - - - - - - - 0.01 - - - - - - - - - - - - 0.03 -
1452 1453 α-Humulene - - - - - - - 0.17 - - - - 0.0 - - - - - - - - - - - - - -
1458 1457 allo-Aromadendrene - - - - - - 0.01 - - - - - 0.01 - - - - - - - - - - - - 0.01 -
1461 1459 Z-Cadina-1(6),4-diene - - - - - - - 0.01 - - - - - - - - - - - - - - - - - - -
1475 1470 E-Cadina-1(6),4-diene - - - - - - - 0.02 - - - - - - - - - - - - - - - - - - -
1483 1476 α-Amorphene - - - - - - - 0.01 - - - - - - - - - - - - - - - - - - -
1489 1487 β-Selinene - - - - - - - 0.04 - - - - - - - - - - - - - - - - - - -
1496 1490 Viridiflorene - - - - - - - - - - - - 0.03 - - - - - - - - - - - - - -
1489 1492 α-Selinene - - - - - - - 0.06 - - - - - - - - - - - - - - - - - - -
1500 1493 Bicyclogermacrene - - - - - - - - - - - - 0.01 - - - - - - - - - - - - - -
1500 1495 α-Muurolene - - - - - - - 0.05 - - - - - - - - - - - - - - - - - - -
1509 1501 α-Bulnesene - - - - - - - 0.02 - - - - - - - - - - - - - - - - - - -
1514 Unidentified - - - - - - - 0.04 - - - - - - - - - - - - - - - - - - -
1522 1517 δ-Cadinene - - - - - - - 0.2 - - - - - - - - - - - - - - - - - - -
1521 1518 E-Calamenene - - - - - - - 0.11 - - - - 0.01 - - - - - - - - - - - - - -
1523 Unidentified - - - - - - - 0.03 - - - - - - - - - - - - - - - - - - -
1533 1531 E-Cadine-1,4-diene - - - - - - - 0.02 - - - - - - - - - - - - - - - - - - -
1544 1539 α-Calacorene - - - - - - - 0.01 - - - - - - - - - - - - - - - - - - -
1548 1548 Isocaryophyllene oxide - - - - - - - 0.08 - - - - - - - - - - - - - - - - - - -
1570 1570 Caryophyllenyl alcohol - - - - - - - 0.02 - - - - - - - - - - - - - - - - - - -
1577 1577 Caryophyllene oxide - - - - - - - 0.12 - - - - - - - - - - - - - - - - - - -
1610 1610 Dimethyl hydroxy terephthalate - - - - - - - 0.33 0.01 0.35 - - 0.39 0.09 0.05 - - - - - - - - - - - -
2057 2057 Ricenalidic acid lactone - - - - - - - 0.14 - - - - - - - - - - - - - - - - - - -
1282 1290 E-Anethole - - - - - - - - - - - - - - - - - - - - 0.03 - - - - - -
1298 1300 Carvacrol - - - - - - - - - - - - - - - - - - - - 0.02 - - - - - -
905 905 Cyclofenchene - - - - - - - - - - - - - - - - - - - - - - 0.01 - - - -
884 907 Santene - - - - - - - - - - - - - - - - - - - - - - - 0.18 - - -
1135 1123 Neral - - - - - - 0.01 - - - - - - - - - - - - - - - - - - - 0.02
1800 1800 Octadecane - - - - - - - - - - 0.01 - - - - - - - - - - - - - - - -

4. Conclusions

Hydro-distilled Betula lenta L. essential oils showed almost similar chemical compositions, with methyl salicylate as the main component (93.24–99.84%). Four biomarkers, namely, o-guaiacol, veratrole, 2-E-4-Z-decadienal, and 2-E-4-E-decadienal were identified for the natural B. lenta oil. These markers can be used to distinguish between sweet birch and wintergreen oils and may be used in sweet birch oil authentication and adulteration detection. Interestingly, none of the tested commercial samples contained any of the identified birch EO markers. The detection of wintergreen markers such as vitispirane and β-dehydroelsholtzia ketone, the synthetic marker dimethyl-2-hydroxyterephthalate, and ricenalidic acid lactone suggest the addition of wintergreen, synthetic methyl salicylate, and castor oil, respectively. Further investigations on the evaluation of biological activities of B. lenta essential oil are required.

Acknowledgments

The authors would like to thank Lindsey Novosel, Albert McGarity, and Plamen Nikolov for kindly providing authentic birch samples. Special thanks to Casera Wootton, Sushant Sharma Banjara, and Sumitra Dahal for their help with sample preparation. We would also like to thank Russel Osguthorpe for supporting this research project.

Author Contributions

Conceptualization, N.S.D. and P.S.; methodology, A.P.; validation, P.S. and A.P.; formal analysis, A.P.; investigation, N.S.D. and P.S.; data curation, P.S.; writing—original draft preparation, N.S.D.; writing—review and editing, N.S.D., A.P. and P.S.; supervision, P.S. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Hua Y., Bentley M.D., Cole B.J.W., Murray K.D., Alford A.R. Triterpenes from the Outer Bark of Betula nigra. J. Wood Chem. Technol. 1991;11:503–516. doi: 10.1080/02773819108051090. [DOI] [Google Scholar]
  • 2.Rastogi S., Pandey M.M., Kumar Singh Rawat A. Medicinal Plants of the Genus Betula—Traditional Uses and a Phytochemical–Pharmacological Review. J. Ethnopharmacol. 2015;159:62–83. doi: 10.1016/j.jep.2014.11.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Demirci B., Paper D.H., Demirci F., Can Başer K.H., Franz G. Essential Oil of Betula Pendula Roth. Buds. Evid. Based Complement. Altern. Med. 2004;1:301–303. doi: 10.1093/ecam/neh041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Blondeau D., St-Pierre A., Bourdeau N., Bley J., Lajeunesse A., Desgagné-Penix I. Antimicrobial Activity and Chemical Composition of White Birch (Betula papyrifera Marshall) Bark Extracts. Microbiologyopen. 2020;9:e00944. doi: 10.1002/mbo3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Julkunen-Tiitto R., Rousi M., Bryant J., Sorsa S., Keinänen M., Sikanen H. Chemical Diversity of Several Betulaceae Species: Comparison of Phenolics and Terpenoids in Northern Birch Stems. Trees. 1996;11:16–22. doi: 10.1007/s004680050053. [DOI] [Google Scholar]
  • 6.Foster S., Duke J.A. Medicinal Plants. Houghton Mifflin Company; Boston, MA, USA: 1990. [Google Scholar]
  • 7.Stritch L. Betula lenta. Botanic Gardens Conservation International; Richmond, UK: 2014. The IUCN Red List of Threatened Species 2014: E.T194483A2340770. [Google Scholar]
  • 8.Elias T.S., Dykeman P.A. Edible Wild Plants: A North American Field Guide to Over 200 Natural Foods. Sterling; New York, NY, USA: 2009. [Google Scholar]
  • 9.Cole B.J., Bentley M., Hua Y. Triterpenoid Extractives in the Outer Bark of Betula lenta (Black Birch) Holzforschung. 1991;45:265–268. doi: 10.1515/hfsg.1991.45.4.265. [DOI] [Google Scholar]
  • 10.Van Wyk B.-E., Wink M. Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and Their Uses. 2nd ed. CABI; Wallingford, UK: 2017. [Google Scholar]
  • 11.Dosoky N.S., Setzer W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int. J. Mol. Sci. 2021;22:2380. doi: 10.3390/ijms22052380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Frey C. Detection of Synthetic Flavorant Addition to Some Essential Oils by Selected Ion Monitoring GC/MS. In: Lawrence B.M., Mookherjee B.D., Willis B.J., editors. Flavors and Fragrances: A World Perspective, Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Washington, DC, USA, 16–20 November 1986. Elsevier; Amsterdam, The Netherlands: 1988. [Google Scholar]
  • 13.Ojha P.K., Poudel D.K., Dangol S., Rokaya A., Timsina S., Satyal P., Setzer W.N. Volatile Constituent Analysis of Wintergreen Essential Oil and Comparison with Synthetic Methyl Salicylate for Authentication. Plants. 2022;11:1090. doi: 10.3390/plants11081090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Cuchet A., Jame P., Anchisi A., Schiets F., Oberlin C., Lefèvre J.-C., Carénini E., Casabianca H. Authentication of the Naturalness of Wintergreen (Gaultheria Genus) Essential Oils by Gas Chromatography, Isotope Ratio Mass Spectrometry and Radiocarbon Assessment. Ind. Crops Prod. 2019;142:111873. doi: 10.1016/j.indcrop.2019.111873. [DOI] [Google Scholar]
  • 15.Murphy B.J., Carlson R.E., Howa J.D., Wilson T.M., Buch R.M. Determining the Authenticity of Methyl Salicylate in Gaultheria procumbens L. and Betula lenta L. Essential Oils Using Isotope Ratio Mass Spectrometry. J. Essent. Oil Res. 2021;33:442–451. doi: 10.1080/10412905.2021.1925362. [DOI] [Google Scholar]
  • 16.Le Grand F., George G., Akoka S. Natural Abundance 2H-ERETIC-NMR Authentication of the Origin of Methyl Salicylate. J. Agric. Food Chem. 2005;53:5125–5129. doi: 10.1021/jf050385a. [DOI] [PubMed] [Google Scholar]
  • 17.Nikolić M., Marković T., Mojović M., Pejin B., Savić A., Perić T., Marković D., Stević T., Soković M. Chemical Composition and Biological Activity of Gaultheria procumbens L. Essential Oil. Ind. Crops Prod. 2013;49:561–567. doi: 10.1016/j.indcrop.2013.06.002. [DOI] [Google Scholar]
  • 18.Decarlo A., Johnson S., Ouédraogo A., Dosoky N.S., Setzer W.N. Chemical Composition of the Oleogum Resin Essential Oils of Boswellia dalzielii from Burkina Faso. Plants. 2019;8:223. doi: 10.3390/plants8070223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Michel P., Owczarek A., Matczak M., Kosno M., Szymański P., Mikiciuk-Olasik E., Kilanowicz A., Wesołowski W., Olszewska M. Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules. 2017;22:412. doi: 10.3390/molecules22030412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Woods K.E., Chhetri B.K., Jones C.D., Goel N., Setzer W.N. Bioactivities and Compositions of Betula nigra Essential Oils. J. Med. Act. Plants. 2013;2:1–9. [Google Scholar]
  • 21.Klika K.D., Demirci B., Salminen J.-P., Ovcharenko V.V., Vuorela S., Can Başer K.H., Pihlaja K. New, Sesquiterpenoid-Type Bicyclic Compounds from the Buds of Betula pubescens−Ring-Contracted Products Of β-Caryophyllene? Eur. J. Org. Chem. 2004;2004:2627–2635. doi: 10.1002/ejoc.200300808. [DOI] [Google Scholar]
  • 22.Zyryanova O.A., Terazawa M., Koike T., Zyryanov V.I. White Birch Trees as Resource Species of Russia: Their Distribution, Ecophysiological Features, Multiple Utilizations. Eurasian J. For. Res. 2010;13:25–40. [Google Scholar]
  • 23.Weston R.J., Smith G.J. Sesquiterpenes from the Inner Bark of the Silver Birch and the Paper Birch. Nat. Prod. Commun. 2012;7:1934578X1200700. doi: 10.1177/1934578X1200700202. [DOI] [PubMed] [Google Scholar]
  • 24.Abyshev A.Z., Agaev E.M., Guseinov A.B. Studies of the Chemical Composition of Birch Bark Extracts (Cortex betula) from the Betulaceae Family. Pharm. Chem. J. 2007;41:419–423. doi: 10.1007/s11094-007-0091-5. [DOI] [Google Scholar]
  • 25.Do T.K.T., Hadji-Minaglou F., Antoniotti S., Fernandez X. Authenticity of Essential Oils. TrAC Trends Anal. Chem. 2015;66:146–157. doi: 10.1016/j.trac.2014.10.007. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Plants are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES