Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Keywords: DNA nanomaterial, function, preparation, biomedical application
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Nos. 21925401, 22174038, and 21904037) and the Natural Science Foundation of Hunan Province (Nos. 2022JJ20005 and 2020JJ4173).
Contributor Information
Jie Tan, Email: tanjie0416@hnu.edu.cn.
Quan Yuan, Email: yuanquan@whu.edu.cn.
References
- [1].Ma W J, Zhan Y X, Zhang Y X, Mao C C, Xie X P, Lin Y F. The biological applications of DNA nanomaterials: Current challenges and future directions. Sig. Transduct. Target. Ther. 2021;6:351. doi: 10.1038/s41392-021-00727-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Keller A, Linko V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem., Int. Ed. 2020;59:15818–15833. doi: 10.1002/anie.201916390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Shen L Y, Wang P F, Ke Y G. DNA nanotechnology-based biosensors and therapeutics. Adv. Healthc. Mater. 2021;10:e2002205. doi: 10.1002/adhm.202002205. [DOI] [PubMed] [Google Scholar]
- [4].Levinthal C. The mechanism of DNA replication and genetic recombination in phage. Proc. Natl. Acad. Sci. USA. 1956;42:394–404. doi: 10.1073/pnas.42.7.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Rich A. Molecular structure of the nucleic acids. Rev. Mod. Phys. 1959;31:191–199. doi: 10.1103/RevModPhys.31.191. [DOI] [Google Scholar]
- [6].Rajwar A, Kharbanda S, Chandrasekaran A R, Gupta S, Bhatia D. Designer, programmable 3D DNA nanodevices to probe biological systems. ACS Appl. Bio Mater. 2020;3:7265–7277. doi: 10.1021/acsabm.0c00916. [DOI] [PubMed] [Google Scholar]
- [7].Madsen M, Gothelf K V. Chemistries for DNA nanotechnology. Chem. Rev. 2019;119:6384–6458. doi: 10.1021/acs.chemrev.8b00570. [DOI] [PubMed] [Google Scholar]
- [8].Paukstelis P J, Nowakowski J, Birktoft J J, Seeman N C. Crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 2004;11:1119–1126. doi: 10.1016/j.chembiol.2004.05.021. [DOI] [PubMed] [Google Scholar]
- [9].Seeman N C, Sleiman H F. DNA nanotechnology. Nat. Rev. Mater. 2018;3:17068. doi: 10.1038/natrevmats.2017.68. [DOI] [Google Scholar]
- [10].Zhang D Y, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 2011;3:103–113. doi: 10.1038/nchem.957. [DOI] [PubMed] [Google Scholar]
- [11].Kallenbach N R, Ma R I, Seeman N C. An immobile nucleic acid junction constructed from oligonucleotides. Nature. 1983;305:829–831. doi: 10.1038/305829a0. [DOI] [Google Scholar]
- [12].Seeman N C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982;99:237–247. doi: 10.1016/0022-5193(82)90002-9. [DOI] [PubMed] [Google Scholar]
- [13].Hong F, Zhang F, Liu Y, Yan H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev. 2017;117:12584–12640. doi: 10.1021/acs.chemrev.6b00825. [DOI] [PubMed] [Google Scholar]
- [14].Aldaye F A, Palmer A L, Sleiman H F. Assembling materials with DNA as the guide. Science. 2008;321:1795–1799. doi: 10.1126/science.1154533. [DOI] [PubMed] [Google Scholar]
- [15].Liang H, Zhang X B, Lv Y F, Gong L, Wang R W, Zhu X Y, Yang R H, Tan W H. Functional DNA-containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014;47:1891–1901. doi: 10.1021/ar500078f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Xie S T, Ai L L, Cui C, Fu T, Cheng X D, Qu F L, Tan W H. Functional aptamer-embedded nanomaterials for diagnostics and therapeutics. ACS Appl. Mater. Interfaces. 2021;13:9542–9560. doi: 10.1021/acsami.0c19562. [DOI] [PubMed] [Google Scholar]
- [17].Qi H D, Xu Y W, Hu P, Yao C, Yang D Y. Construction and applications of DNA-based nanomaterials in cancer therapy. Chin. Chem. Lett. 2022;33:1131–1140. doi: 10.1016/j.cclet.2021.09.026. [DOI] [Google Scholar]
- [18].Pinheiro A V, Han D R, Shih W M, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011;6:763–772. doi: 10.1038/nnano.2011.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Kwon P S, Ren S K, Kwon S J, Kizer M E, Kuo L L, Xie M, Zhu D, Zhou F, Zhang F M, Kim D, et al. Designer DNA architecture offers precise and multivalent spatial patternrecognition for viral sensing and inhibition. Nat. Chem. 2020;12:26–35. doi: 10.1038/s41557-019-0369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Shaikh S, Younis M, Yuan L D. Functionalized DNA nanostructures for bioimaging. Coord. Chem. Rev. 2022;469:214648. doi: 10.1016/j.ccr.2022.214648. [DOI] [Google Scholar]
- [21].Jones M R, Seeman N C, Mirkin C A. Programmable materials and the nature of the DNA bond. Science. 2015;347:1260901. doi: 10.1126/science.1260901. [DOI] [PubMed] [Google Scholar]
- [22].Hendrikse S I S, Gras S L, Ellis A V. Opportunities and challenges in DNA-hybrid nanomaterials. ACS Nano. 2019;13:8512–8516. doi: 10.1021/acsnano.9b06186. [DOI] [PubMed] [Google Scholar]
- [23].Li F, Li J, Dong B J, Wang F, Fan C H, Zuo X L. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chem. Soc. Rev. 2021;50:5650–5667. doi: 10.1039/D0CS01281E. [DOI] [PubMed] [Google Scholar]
- [24].Rothemund P W K. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. doi: 10.1038/nature04586. [DOI] [PubMed] [Google Scholar]
- [25].Ye D K, Zuo X L, Fan C H. DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu. Rev. Anal. Chem. 2018;11:171–195. doi: 10.1146/annurev-anchem-061417-010007. [DOI] [PubMed] [Google Scholar]
- [26].Hua Y, Ma J M, Li D C, Wang R D. DNA-based biosensors for the biochemical analysis: A review. Biosensors. 2022;12:183. doi: 10.3390/bios12030183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Chen R P, Blackstock D, Sun Q, Chen W. Dynamic protein assembly by programmable DNA strand displacement. Nat. Chem. 2018;10:474–481. doi: 10.1038/s41557-018-0016-9. [DOI] [PubMed] [Google Scholar]
- [28].Yates L A, Aramayo R J, Pokhrel N, Caldwell C C, Kaplan J A, Perera R L, Spies M, Antony E, Zhang X D. A structural and dynamic model for the assembly of replication protein A on single-stranded DNA. Nat. Commun. 2018;9:5447. doi: 10.1038/s41467-018-07883-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Park S Y, Lytton-Jean A K R, Lee B, Weigand S, Schatz G C, Mirkin C A. DNA-programmable nanoparticle crystallization. Nature. 2008;451:553–556. doi: 10.1038/nature06508. [DOI] [PubMed] [Google Scholar]
- [30].Chou L Y T, Zagorovsky K, Chan W C W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 2014;9:148–155. doi: 10.1038/nnano.2013.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Majewski P W, Michelson A, Cordeiro M A L, Tian C, Ma C L, Kisslinger K, Tian Y, Liu W Y, Stach E A, Yager K G, et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 2021;7:eabf0617. doi: 10.1126/sciadv.abf0617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [32].Wang K L, You M X, Chen Y, Han D, Zhu Z, Huang J, Williams K, Yang C J, Tan W H. Self-assembly of a bifunctional DNA carrier for drug delivery. Angew. Chem., Int. Ed. 2011;50:6098–6101. doi: 10.1002/anie.201008053. [DOI] [PubMed] [Google Scholar]
- [33].Hu Q Q, Li H, Wang L H, Gu H Z, Fan C H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019;119:6459–6506. doi: 10.1021/acs.chemrev.7b00663. [DOI] [PubMed] [Google Scholar]
- [34].Xu W T, He W C, Du Z H, Zhu L Y, Huang K L, Lu Y, Luo Y B. Functional nucleic acid nanomaterials: Development, properties, and applications. Angew. Chem., Int. Ed. 2021;60:6890–6918. doi: 10.1002/anie.201909927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [35].Li L L, Xing H, Zhang J J, Lu Y. Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Acc. Chem. Res. 2019;52:2415–2426. doi: 10.1021/acs.accounts.9b00167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Kim J, Jang D, Park H, Jung S, Kim D H, Kim W J. Functional-DNA-driven dynamic nanoconstructs for biomolecule capture and drug delivery. Adv. Mater. 2018;30:1707351. doi: 10.1002/adma.201707351. [DOI] [PubMed] [Google Scholar]
- [37].Bandy T J, Brewer A, Burns J R, Marth G, Nguyen T, Stulz E. DNA as supramolecular scaffold for functional molecules: Progress in DNA nanotechnology. Chem. Soc. Rev. 2011;40:138–148. doi: 10.1039/B820255A. [DOI] [PubMed] [Google Scholar]
- [38].Moon W J, Liu J W. Interfacing catalytic DNA with nanomaterials. Adv. Mater. Interfaces. 2020;7:2001017. doi: 10.1002/admi.202001017. [DOI] [Google Scholar]
- [39].Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L. The case for early detection. Nat. Rev. Cancer. 2003;3:243–252. doi: 10.1038/nrc1041. [DOI] [PubMed] [Google Scholar]
- [40].Wang Y, Liu X L, Wu L J, Ding L H, Effah C Y, Wu Y J, Xiong Y M, He L L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens. Bioelectron. 2022;195:113661. doi: 10.1016/j.bios.2021.113661. [DOI] [PubMed] [Google Scholar]
- [41].Sefah K, Shangguan D H, Xiong X L, O'Donoghue M B, Tan W H. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 2010;5:1169–1185. doi: 10.1038/nprot.2010.66. [DOI] [PubMed] [Google Scholar]
- [42].Mayer G, Ahmed M S L, Dolf A, Endl E, Knolle P A, Famulok M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 2010;5:1993–2004. doi: 10.1038/nprot.2010.163. [DOI] [PubMed] [Google Scholar]
- [43].Stoltenburg R, Reinemann C, Strehlitz B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007;24:381–403. doi: 10.1016/j.bioeng.2007.06.001. [DOI] [PubMed] [Google Scholar]
- [44].Yang G, Zhu C, Zhao L P, Li L S, Huang Y Y, Zhang Y K, Qu F. Pressure controllable aptamers picking strategy by targets competition. Chin. Chem. Lett. 2021;32:218–220. doi: 10.1016/j.cclet.2020.10.018. [DOI] [Google Scholar]
- [45].Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem. 2016;4:14. doi: 10.3389/fchem.2016.00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science. 2000;287:820–825. doi: 10.1126/science.287.5454.820. [DOI] [PubMed] [Google Scholar]
- [47].Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018;134:3–21. doi: 10.1016/j.addr.2018.04.007. [DOI] [PubMed] [Google Scholar]
- [48].Dunn M R, Jimenez R M, Chaput J C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017;1:0076. doi: 10.1038/s41570-017-0076. [DOI] [Google Scholar]
- [49].Luo J, Isaacs W B, Trent J M, Duggan D J. Looking beyond morphology: Cancer gene expression profiling using DNA microarrays. Cancer Invest. 2003;21:937–949. doi: 10.1081/CNV-120025096. [DOI] [PubMed] [Google Scholar]
- [50].Shangguan D H, Li Y, Tang Z W, Cao Z C, Chen H W, Mallikaratchy P, Sefah K, Yang C J, Tan W H. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA. 2006;103:11838–11843. doi: 10.1073/pnas.0602615103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Yang X B, Li N, Gorenstein D G. Strategies for the discovery of therapeutic aptamers. Expert Opin. Drug Discov. 2011;6:75–87. doi: 10.1517/17460441.2011.537321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Tabarzad M, Jafari M. Trends in the design and development of specific aptamers against peptides and proteins. Protein J. 2016;35:81–99. doi: 10.1007/s10930-016-9653-2. [DOI] [PubMed] [Google Scholar]
- [53].Teng I T, Li X W, Yadikar H A, Yang Z H, Li L, Lyu Y, Pan X S, Wang K K, Tan W H. Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein. J. Am. Chem. Soc. 2018;140:14314–14323. doi: 10.1021/jacs.8b08645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Wang Y J, Liu M Y, Gao J L. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA. 2020;117:13967–13974. doi: 10.1073/pnas.2008209117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Song Y L, Song J, Wei X Y, Huang M J, Sun M, Zhu L, Lin B Q, Shen H C, Zhu Z, Yang C Y. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 2020;92:9895–9900. doi: 10.1021/acs.analchem.0c01394. [DOI] [PubMed] [Google Scholar]
- [56].Ji D Y, Lyu K X, Zhao H Z, Kwok C K. Circular L-RNA aptamer promotes target recognition and controls gene activity. Nucleic Acids Res. 2021;49:7280–7291. doi: 10.1093/nar/gkab593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [57].Liu M, Yin Q X, Chang Y Y, Zhang Q, Brennan J D, Li Y F. In vitro selection of circular DNA aptamers for biosensing applications. Angew. Chem., Int. Ed. 2019;58:8013–8017. doi: 10.1002/anie.201901192. [DOI] [PubMed] [Google Scholar]
- [58].Mao Y, Gu J, Chang D R, Wang L, Yao L L, Ma Q H, Luo Z F, Qu H, Li Y F, Zheng L. Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Res. 2020;48:10680–10690. doi: 10.1093/nar/gkaa800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Yoshikawa A M, Rangel A, Feagin T, Chun E M, Wan L, Li A P, Moeckl L, Wu D N, Eisenstein M, Pitteri S, et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 2021;12:7106. doi: 10.1038/s41467-021-26933-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [60].Cheung Y W, Röthlisberger P, Mechaly A E, Weber P, Levi-Acobas F, Lo Y, Wong A W C, Kinghorn A B, Haouz A, Savage G P, et al. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl. Acad. Sci. USA. 2020;117:16790–16798. doi: 10.1073/pnas.2003267117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [61].Tan J, Zhao M M, Wang J, Li Z H, Liang L, Zhang L Q, Yuan Q, Tan W H. Regulation of protein activity and cellular functions mediated by molecularly evolved nucleic acids. Angew. Chem., Int. Ed. 2019;58:1621–1625. doi: 10.1002/anie.201809010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Jiang D W, Ni D L, Rosenkrans Z T, Huang P, Yan X Y, Cai W B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019;48:3683–3704. doi: 10.1039/C8CS00718G. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Lin Y H, Ren J S, Qu X G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014;26:4200–4217. doi: 10.1002/adma.201400238. [DOI] [PubMed] [Google Scholar]
- [64].Yu Z Z, Lou R X, Pan W, Li N, Tang B. Nanoenzymes in disease diagnosis and therapy. Chem. Commun. 2020;56:15513–15524. doi: 10.1039/D0CC05427E. [DOI] [PubMed] [Google Scholar]
- [65].Wang H, Wan K W, Shi X H. Recent advances in nanozyme research. Adv. Mater. 2019;31:e1805368. doi: 10.1002/adma.201805368. [DOI] [PubMed] [Google Scholar]
- [66].Chen M, Zhou H, Liu X K, Yuan T W, Wang W Y, Zhao C, Zhao Y F, Zhou F Y, Wang X, Xue Z, et al. Single iron site nanozyme for ultrasensitive glucose detection. Small. 2020;16:2002343. doi: 10.1002/smll.202002343. [DOI] [PubMed] [Google Scholar]
- [67].Li S S, Shang L, Xu B L, Wang S H, Gu K, Wu Q Y, Sun Y, Zhang Q H, Yang H L, Zhang F R, et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019;58:12624–12631. doi: 10.1002/anie.201904751. [DOI] [PubMed] [Google Scholar]
- [68].Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994;1:223–229. doi: 10.1016/1074-5521(94)90014-0. [DOI] [PubMed] [Google Scholar]
- [69].Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- [70].Liu K, Lat P K, Yu H Z, Sen D. Click-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne “click” reaction in water. Nucleic Acids Res. 2020;48:7356–7370. doi: 10.1093/nar/gkaa502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Ali M M, Wolfe M, Tram K, Gu J, Filipe C D M, Li Y F, Brennan J D. A DNAzyme-based colorimetric paper sensor for Helicobacter pylori. Angew. Chem., Int. Ed. 2019;58:9907–9911. doi: 10.1002/anie.201901873. [DOI] [PubMed] [Google Scholar]
- [72].Wang Y J, Nguyen K, Spitale R C, Chaput J C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 2021;13:319–326. doi: 10.1038/s41557-021-00645-x. [DOI] [PubMed] [Google Scholar]
- [73].Wei Z H, Yu Y F, Hu S Q, Yi X Y, Wang J X. Bifunctional diblock DNA-mediated synthesis of nanoflowershaped photothermal nanozymes for a highly sensitive colorimetric assay of cancer cells. ACS Appl. Mater. Interfaces. 2021;13:16801–16811. doi: 10.1021/acsami.0c21109. [DOI] [PubMed] [Google Scholar]
- [74].Li K, Wang K, Qin W W, Deng S H, Li D, Shi J Y, Huang Q, Fan C H. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J. Am. Chem. Soc. 2015;137:4292–4295. doi: 10.1021/jacs.5b00324. [DOI] [PubMed] [Google Scholar]
- [75].Satyavolu N S R, Tan L H, Lu Y. DNA-mediated morphological control of Pd-Au bimetallic nanoparticles. J. Am. Chem. Soc. 2016;138:16542–16548. doi: 10.1021/jacs.6b10983. [DOI] [PubMed] [Google Scholar]
- [76].Lu C, Tang L H, Gao F, Li Y Z, Liu J W, Zheng J K. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for highperformance detection and eradication of Escherichia coli O157: H7. Biosens. Bioelectron. 2021;187:113327. doi: 10.1016/j.bios.2021.113327. [DOI] [PubMed] [Google Scholar]
- [77].Zhang Y, Chan H F, Leong K W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013;65:104–120. doi: 10.1016/j.addr.2012.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Khezri B, Beladi Mousavi S M, Krejcová L, Heger Z, Sofer Z, Pumera M. Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv. Funct. Mater. 2019;29:1806696. doi: 10.1002/adfm.201806696. [DOI] [Google Scholar]
- [79].Shen S H, Wu Y S, Liu Y C, Wu D C. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017;12:4085–4109. doi: 10.2147/IJN.S132780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [80].Han S Y, Samanta A, Xie X J, Huang L, Peng J J, Park S J, Teh D B L, Choi Y, Chang Y T. All, A. H. et al. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv. Mater. 2017;29:1700244. doi: 10.1002/adma.201700244. [DOI] [PubMed] [Google Scholar]
- [81].Li J, Fan C H, Pei H, Shi J Y, Huang Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 2013;25:4386–4396. doi: 10.1002/adma.201300875. [DOI] [PubMed] [Google Scholar]
- [82].Zhang H M, Ma Y L, Xie Y, An Y, Huang Y S, Zhu Z, Yang C J. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci. Rep. 2015;5:10099. doi: 10.1038/srep10099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Roberts T C, Langer R, Wood M J A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020;19:673–694. doi: 10.1038/s41573-020-0075-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Venkataraman S, Hedrick J L, Ong Z Y, Yang C, Ee P L R, Hammond P T, Yang Y Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 2011;63:1228–1246. doi: 10.1016/j.addr.2011.06.016. [DOI] [PubMed] [Google Scholar]
- [85].Shao Y, Jia H Y, Cao T Y, Liu D S. Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 2017;50:659–668. doi: 10.1021/acs.accounts.6b00524. [DOI] [PubMed] [Google Scholar]
- [86].Huang F J, Chen M X, Zhou Z X, Duan R L, Xia F, Willner I. Spatiotemporal patterning of photoresponsive DNAbased hydrogels to tune local cell responses. Nat. Commun. 2021;12:2364. doi: 10.1038/s41467-021-22645-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [87].Zhang J, Guo Y Y, Pan G F, Wang P, Li Y H, Zhu X Y, Zhang C. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence. ACS Appl. Mater. Interfaces. 2020;12:21441–21449. doi: 10.1021/acsami.0c03360. [DOI] [PubMed] [Google Scholar]
- [88].Hu Y W, Gao S J, Lu H F, Ying J Y. Acid-resistant and physiological pH-responsive DNA hydrogel composed of A-motif and i-motif toward oral insulin delivery. J. Am. Chem. Soc. 2022;144:5461–5470. doi: 10.1021/jacs.1c13426. [DOI] [PubMed] [Google Scholar]
- [89].Ding F, Mou Q B, Ma Y, Pan G F, Guo Y Y, Tong G S, Choi C H J, Zhu X Y, Zhang C. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angew. Chem., Int. Ed. 2018;57:3064–3068. doi: 10.1002/anie.201711242. [DOI] [PubMed] [Google Scholar]
- [90].Zhang J, Guo Y Y, Ding F, Pan G F, Zhu X Y, Zhang C. A camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew. Chem., Int. Ed. 2019;58:13794–13798. doi: 10.1002/anie.201907380. [DOI] [PubMed] [Google Scholar]
- [91].Xiao D X, Li Y J, Tian T R, Zhang T X, Shi S R, Lu B Y, Gao Y, Qin X, Zhang M, Wei W, et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl. Mater. Interfaces. 2021;13:6109–6118. doi: 10.1021/acsami.0c23005. [DOI] [PubMed] [Google Scholar]
- [92].Fu W, Ma L, Ju Y, Xu J G, Li H, Shi S R, Zhang T, Zhou R H, Zhu J W, Xu R, et al. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv. Funct. Mater. 2021;31:2101435. doi: 10.1002/adfm.202101435. [DOI] [Google Scholar]
- [93].Wang D, Peng R Z, Peng Y B, Deng Z Y, Xu F Y, Su Y Y, Wang P E, Li L, Wang X Q, Ke Y G, et al. Hierarchical fabrication of DNA wireframe nanoarchitectures for efficient cancer imaging and targeted therapy. ACS Nano. 2020;14:17365–17375. doi: 10.1021/acsnano.0c07495. [DOI] [PubMed] [Google Scholar]
- [94].Wang Z R, Song L L, Liu Q, Tian R, Shang Y X, Liu F S, Liu S L, Zhao S, Han Z H, Sun J S, et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem., Int. Ed. 2021;60:2594–2598. doi: 10.1002/anie.202009842. [DOI] [PubMed] [Google Scholar]
- [95].Zhang L L, Abdullah R, Hu X X, Bai H R, Fan H H, He L, Liang H, Zou J M, Liu Y L, Sun Y, et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J. Am. Chem. Soc. 2019;141:4282–4290. doi: 10.1021/jacs.8b10795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [96].Willem de Vries J, Schnichels S, Hurst J, Strudel L, Gruszka A, Kwak M, Bartz-Schmidt K U, Spitzer M S, Herrmann A. DNA nanoparticles for ophthalmic drug delivery. Biomaterials. 2018;157:98–106. doi: 10.1016/j.biomaterials.2017.11.046. [DOI] [PubMed] [Google Scholar]
- [97].Shang Y X, Li N, Liu S B, Wang L, Wang Z G, Zhang Z, Ding B Q. Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 2020;32:2000294. doi: 10.1002/adma.202000294. [DOI] [PubMed] [Google Scholar]
- [98].Dey S, Fan C H, Gothelf K V, Li J, Lin C X, Liu L F, Liu N, Nijenhuis M A D, Saccà B, Simmel F C, et al. DNA origami. Nat. Rev. Methods Primers. 2021;1:13. doi: 10.1038/s43586-020-00009-8. [DOI] [Google Scholar]
- [99].Tokura Y, Jiang Y Y, Welle A, Stenzel M H, Krzemien K M, Michaelis J, Berger R, Barner-Kowollik C, Wu Y Z, Weil T. Bottom-up fabrication of nanopatterned polymers on DNA origami by in situ atom-transfer radical polymerization. Angew. Chem., Int. Ed. 2016;55:5692–5697. doi: 10.1002/anie.201511761. [DOI] [PubMed] [Google Scholar]
- [100].Fan S S, Wang D F, Kenaan A, Cheng J, Cui D X, Song J. Create nanoscale patterns with DNA origami. Small. 2019;15:1805554. doi: 10.1002/smll.201805554. [DOI] [PubMed] [Google Scholar]
- [101].Li N, Shang Y X, Xu R, Jiang Q, Liu J B, Wang L, Cheng Z H, Ding B Q. Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami. J. Am. Chem. Soc. 2019;141:17968–17972. doi: 10.1021/jacs.9b09308. [DOI] [PubMed] [Google Scholar]
- [102].Jun H, Zhang F, Shepherd T, Ratanalert S, Qi X D, Yan H, Bathe M. Autonomously designed free-form 2D DNA origami. Sci. Adv. 2019;5:eaav0655. doi: 10.1126/sciadv.aav0655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [103].Edwardson T G W, Lau K L, Bousmail D, Serpell C J, Sleiman H F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 2016;8:162–170. doi: 10.1038/nchem.2420. [DOI] [PubMed] [Google Scholar]
- [104].Shi P, Zhao N, Coyne J, Wang Y. DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 2019;10:2223. doi: 10.1038/s41467-019-10231-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Storhoff J J, Mirkin C A. Programmed materials synthesis with DNA. Chem. Rev. 1999;99:1849–1862. doi: 10.1021/cr970071p. [DOI] [PubMed] [Google Scholar]
- [106].Zhao H W, Liu S J, Wei Y, Yue Y H, Gao M R, Li Y B, Zeng X L, Deng X L, Kotov N A, Guo L, et al. Multiscale engineered artificial tooth enamel. Science. 2022;375:551–556. doi: 10.1126/science.abj3343. [DOI] [PubMed] [Google Scholar]
- [107].Zhou Y S, Deng J J, Zhang Y, Li C, Wei Z, Shen J L, Li J J, Wang F, Han B, Chen D, et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications. Adv. Mater. 2022;34:2202180. doi: 10.1002/adma.202202180. [DOI] [PubMed] [Google Scholar]
- [108].Wu S S, Zhang M Z, Song J, Weber S, Liu X G, Fan C H, Wu Y Z. Fine customization of calcium phosphate nanostructures with site-specific modification by DNA templated mineralization. ACS Nano. 2021;15:1555–1565. doi: 10.1021/acsnano.0c08998. [DOI] [PubMed] [Google Scholar]
- [109].Tokura Y, Harvey S, Chen C J, Wu Y Z, Ng D Y W, Weil T. Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization. Angew. Chem., Int. Ed. 2018;130:1603–1607. doi: 10.1002/ange.201711560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [110].Winterwerber P, Harvey S, Ng D Y W, Weil T. Photocontrolled dopamine polymerization on DNA origami with nanometer resolution. Angew. Chem., Int. Ed. 2020;59:6144–6149. doi: 10.1002/anie.201911249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Yang Y, Wang J, Shigematsu H, Xu W M, Shih W M, Rothman J E, Lin C X. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 2016;8:476–483. doi: 10.1038/nchem.2472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [112].Zhang Z, Yang Y, Pincet F, Llaguno M C, Lin C X. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 2017;9:653–659. doi: 10.1038/nchem.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [113].Perrault S D, Shih W M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano. 2014;8:5132–5140. doi: 10.1021/nn5011914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [114].Kurokawa C, Fujiwara K, Morita M, Kawamata I, Kawagishi Y, Sakai A, Murayama Y, Nomura S I M, Murata S, Takinoue M, et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl. Acad. Sci. USA. 2017;114:7228–7233. doi: 10.1073/pnas.1702208114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [115].Nummelin S, Kommeri J, Kostiainen M A, Linko V. Evolution of structural DNA nanotechnology. Adv. Mater. 2018;30:1703721. doi: 10.1002/adma.201703721. [DOI] [PubMed] [Google Scholar]
- [116].Jiang D W, England C G, Cai W B. DNA nanomaterials for preclinical imaging and drug delivery. J. Control. Release. 2016;239:27–38. doi: 10.1016/j.jconrel.2016.08.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [117].Meng H M, Liu H, Kuai H L, Peng R Z, Mo L T, Zhang X B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 2016;45:2583–2602. doi: 10.1039/C5CS00645G. [DOI] [PubMed] [Google Scholar]
- [118].Zhang J J, Lan T, Lu Y. Molecular engineering of functional nucleic acid nanomaterials toward in vivo applications. Adv. Healthcare Mater. 2019;8:1801158. doi: 10.1002/adhm.201801158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Zhang Y Z, Tu J, Wang D Q, Zhu H T, Maity S K, Qu X M, Bogaert B, Pei H, Zhang H B. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 2018;30:1703658. doi: 10.1002/adma.201703658. [DOI] [PubMed] [Google Scholar]
- [120].Du Y, Dong S J. Nucleic acid biosensors: Recent advances and perspectives. Anal. Chem. 2017;89:189–215. doi: 10.1021/acs.analchem.6b04190. [DOI] [PubMed] [Google Scholar]
- [121].Xiao M S, Lai W, Man T T, Chang B B, Li L, Chandrasekaran A R, Pei H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev. 2019;119:11631–11717. doi: 10.1021/acs.chemrev.9b00121. [DOI] [PubMed] [Google Scholar]
- [122].Yang F, Li Q, Wang L H, Zhang G J, Fan C H. Frameworknucleic-acid-enabled biosensor development. ACS Sens. 2018;3:903–919. doi: 10.1021/acssensors.8b00257. [DOI] [PubMed] [Google Scholar]
- [123].Li H K, Ye H L, Zhao X X, Sun X L, Zhu Q Q, Han Z Y, Yuan R R, He H M. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chin. Chem. Lett. 2021;32:2851–2855. doi: 10.1016/j.cclet.2021.02.042. [DOI] [Google Scholar]
- [124].Song P, Li M, Shen J W, Pei H, Chao J, Su S, Aldalbahi A, Wang L H, Shi J Y, Song S P, et al. Dynamic modulation of DNA hybridization using allosteric DNA tetrahedral nanostructures. Anal. Chem. 2016;88:8043–8049. doi: 10.1021/acs.analchem.6b01373. [DOI] [PubMed] [Google Scholar]
- [125].Chang D R, Zakaria S, Esmaeili Samani S, Chang Y Y, Filipe C D M, Soleymani L, Brennan J D, Liu M, Li Y F. Functional nucleic acids for pathogenic bacteria detection. Acc. Chem. Res. 2021;54:3540–3549. doi: 10.1021/acs.accounts.1c00355. [DOI] [PubMed] [Google Scholar]
- [126].Zhu X Y, Wang R Y, Zhou X H, Shi H C. Free-energydriven lock/open assembly-based optical DNA sensor for cancerrelated microRNA detection with a shortened time-to-result. ACS Appl. Mater. Interfaces. 2017;9:25789–25795. doi: 10.1021/acsami.7b06579. [DOI] [PubMed] [Google Scholar]
- [127].Xiao M S, Wang X W, Li L, Pei H. Stochastic RNA walkers for intracellular MicroRNA imaging. Anal. Chem. 2019;91:11253–11258. doi: 10.1021/acs.analchem.9b02265. [DOI] [PubMed] [Google Scholar]
- [128].Xiao M S, Zou K, Li L, Wang L H, Tian Y, Fan C H, Pei H. Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection. Angew. Chem., Int. Ed. 2019;58:15448–15454. doi: 10.1002/anie.201906438. [DOI] [PubMed] [Google Scholar]
- [129].Ebrahimi S B, Samanta D, Mirkin C. A. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc. 2020;142:11343–11356. doi: 10.1021/jacs.0c04978. [DOI] [PubMed] [Google Scholar]
- [130].Chai H, Miao P. Ultrasensitive assay of ctDNA based on DNA triangular prism and three-way junction nanostructures. Chin. Chem. Lett. 2021;32:783–786. doi: 10.1016/j.cclet.2020.06.030. [DOI] [Google Scholar]
- [131].Zhang J, Hou M F, Chen G Y, Mao H F, Chen W Q, Wang W S, Chen J H. An electrochemical biosensor based on DNA “nano-bridge” for amplified detection of exosomal microRNAs. Chin. Chem. Lett. 2021;32:3474–3478. doi: 10.1016/j.cclet.2021.04.056. [DOI] [Google Scholar]
- [132].Liu J M, Zhang Y, Xie H B, Zhao L, Zheng L, Ye H M. Applications of catalytic hairpin assembly reaction in biosensing. Small. 2019;15:1902989. doi: 10.1002/smll.201902989. [DOI] [PubMed] [Google Scholar]
- [133].Wang J, Ma Q Q, Zheng W, Liu H Y, Yin C Q, Wang F B, Chen X Y, Yuan Q, Tan W H. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano. 2017;11:8185–8191. doi: 10.1021/acsnano.7b03128. [DOI] [PubMed] [Google Scholar]
- [134].Zhan S S, Wu Y G, Wang L M, Zhan X J, Zhou P. A minireview on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016;86:353–368. doi: 10.1016/j.bios.2016.06.075. [DOI] [PubMed] [Google Scholar]
- [135].Duan Z J, Tan L X, Duan R L, Chen M X, Xia F, Huang F J. Photoactivated biosensing process for dictated ATP detection in single living cells. Anal. Chem. 2021;93:11547–11556. doi: 10.1021/acs.analchem.1c02049. [DOI] [PubMed] [Google Scholar]
- [136].Zhu D, Wei Y Q, Sun T, Zhang C W, Ang L, Su S, Mao X H, Li Q, Fan C H, Zuo X L, et al. Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs. Anal. Chem. 2021;93:2226–2234. doi: 10.1021/acs.analchem.0c04092. [DOI] [PubMed] [Google Scholar]
- [137].Wang X J, Kong D R, Guo M Q, Wang L Q, Gu C J, Dai C H, Wang Y, Jiang Q F, Ai Z L, Zhang C, et al. Rapid SARS-CoV-2 nucleic acid testing and pooled assay by tetrahedral DNA nanostructure transistor. Nano Lett. 2021;21:9450–9457. doi: 10.1021/acs.nanolett.1c02748. [DOI] [PubMed] [Google Scholar]
- [138].Wu Y G, Ji D Z, Dai C H, Kong D R, Chen Y H, Wang L Q, Guo M Q, Liu Y Q, Wei D C. Triple-probe DNA framework-based transistor for SARS-CoV-2 10-in-1 pooled testing. Nano Lett. 2022;22:3307–3316. doi: 10.1021/acs.nanolett.2c00415. [DOI] [PubMed] [Google Scholar]
- [139].Shyu A B, Wilkinson M F, van Hoof A. Messenger RNA regulation: To translate or to degrade. EMBO J. 2008;27:471–481. doi: 10.1038/sj.emboj.7601977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [140].He L, Lu D Q, Liang H, Xie S T, Luo C, Hu M M, Xu L J, Zhang X B, Tan W H F. resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano. 2017;11:4060–4066. doi: 10.1021/acsnano.7b00725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [141].Bushati N, Cohen S M. microRNA functions. Annu. Rev. Cell. Dev. Biol. 2007;23:175–205. doi: 10.1146/annurev.cellbio.23.090506.123406. [DOI] [PubMed] [Google Scholar]
- [142].Lu T X, Rothenberg M E. MicroRNA. J. Allergy Clin. Immunol. 2018;141:1202–1207. doi: 10.1016/j.jaci.2017.08.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [143].Zhu D, Huang J X, Lu B, Zhu Y, Wei Y Q, Zhang Q, Guo X X, Yuwen L H, Su S, Chao J, et al. Intracellular microRNA imaging with MoS2-supported nonenzymatic catassembly of DNA hairpins. ACS Appl. Mater. Interfaces. 2019;11:20725–20733. doi: 10.1021/acsami.9b04883. [DOI] [PubMed] [Google Scholar]
- [144].Zhou W J, Li D X, Xiong C Y, Yuan R, Xiang Y. Multicolor-encoded reconfigurable DNA nanostructures enable multiplexed sensing of intracellular microRNAs in living cells. ACS Appl. Mater. Interfaces. 2016;8:13303–13308. doi: 10.1021/acsami.6b03165. [DOI] [PubMed] [Google Scholar]
- [145].Chen B, Wang Y T, Ma W J, Cheng H, Sun H H, Wang H Z, Huang J, He X X, Wang K M. A mimosa-inspired cellsurface- anchored ratiometric DNA nanosensor for high-resolution and sensitive response of target tumor extracellular pH. Anal. Chem. 2020;92:15104–15111. doi: 10.1021/acs.analchem.0c03250. [DOI] [PubMed] [Google Scholar]
- [146].Zhao J, Gao J H, Xue W T, Di Z H, Xing H, Lu Y, Li L L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc. 2018;140:578–581. doi: 10.1021/jacs.7b11161. [DOI] [PubMed] [Google Scholar]
- [147].Shao Y L, Zhao J, Yuan J Y, Zhao Y L, Li L L. Organellespecific photoactivation of DNA nanosensors for precise profiling of subcellular enzymatic activity. Angew. Chem., Int. Ed. 2021;60:8923–8931. doi: 10.1002/anie.202016738. [DOI] [PubMed] [Google Scholar]
- [148].Jani M S, Zou J Y, Veetil A T, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 2020;16:660–666. doi: 10.1038/s41589-020-0491-3. [DOI] [PubMed] [Google Scholar]
- [149].Ahmed R, Oborski M J, Hwang M, Lieberman F S, Mountz J M. Malignant gliomas: Current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag. Res. 2014;6:149–170. doi: 10.2147/CMAR.S54726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [150].Pei H, Zuo X L, Zhu D, Huang Q, Fan C H. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 2014;47:550–559. doi: 10.1021/ar400195t. [DOI] [PubMed] [Google Scholar]
- [151].Yang, Q.; Chang, X.; Lee, J. Y.; Olivera, T. R.; Saji, M.; Wisniewski, H.; Kim, S.; Zhang, F. Recent advances in selfassembled DNA nanostructures for bioimaging. ACS Appl. Bio Mater., in press, 10.1021/acsabm.2c00128. [DOI] [PubMed]
- [152].Tan J, Li H, Ji C L, Zhang L, Zhao C X, Tang L M, Zhang C X, Sun Z J, Tan W H, Yuan Q. Electron transfertriggered imaging of EGFR signaling activity. Nat. Commun. 2022;13:594. doi: 10.1038/s41467-022-28213-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [153].Li L L, Wu P W, Hwang K, Lu Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 2013;135:2411–2414. doi: 10.1021/ja310432u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [154].Zhong L, Cai S X, Huang Y Q, Yin L T, Yang Y L, Lu C H, Yang H H. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mRNAs detection and imaging. Anal. Chem. 2018;90:12059–12066. doi: 10.1021/acs.analchem.8b02847. [DOI] [PubMed] [Google Scholar]
- [155].Xiao F, Lin L, Chao Z C, Shao C, Chen Z, Wei Z X, Lu J X, Huang Y S, Li L Q, Liu Q, et al. Organic spherical nucleic acids for the transport of a NIR-II-emitting dye across the bloodbrain barrier. Angew. Chem., Int. Ed. 2020;59:9702–9710. doi: 10.1002/anie.202002312. [DOI] [PubMed] [Google Scholar]
- [156].Tao X Q, Liao Z Y, Zhang Y Q, Fu F, Hao M Q, Song Y, Song E Q. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chin. Chem. Lett. 2021;32:791–795. doi: 10.1016/j.cclet.2020.07.020. [DOI] [Google Scholar]
- [157].Ma Y X, Mao G B, Huang W R, Wu G Q, Yin W, Ji X H, Deng Z S, Cai Z M, Zhang X E, He Z K, et al. Quantum dot nanobeacons for single RNA labeling and imaging. J. Am. Chem. Soc. 2019;141:13454–13458. doi: 10.1021/jacs.9b04659. [DOI] [PubMed] [Google Scholar]
- [158].Zhou W, Han Y, Beliveau B J, Gao X H. Combining Qdot nanotechnology and DNA nanotechnology for sensitive single-cell imaging. Adv. Mater. 2020;32:1908410. doi: 10.1002/adma.201908410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [159].Zheng D, Seferos D S, Giljohann D A, Patel P C, Mirkin C A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009;9:3258–3261. doi: 10.1021/nl901517b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [160].Wang W J, Satyavolu N S R, Wu Z K, Zhang J R, Zhu J J, Lu Y. Near-infrared photothermally activated DNAzyme-gold nanoshells for imaging metal ions in living cells. Angew. Chem., Int. Ed. 2017;56:6798–6802. doi: 10.1002/anie.201701325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [161].Lin Y, Yang Z L, Lake R J, Zheng C B, Lu Y. Enzymemediated endogenous and bioorthogonal control of a DNAzyme fluorescent sensor for imaging metal ions in living cells. Angew. Chem., Int. Ed. 2019;58:17061–17067. doi: 10.1002/anie.201910343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [162].Peng H Y, Li X F, Zhang H Q, Le X C. A microRNAinitiated DNAzyme motor operating in living cells. Nat. Commun. 2017;8:14378. doi: 10.1038/ncomms14378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [163].Gao Y S, Zhang S B, Wu C W, Li Q, Shen Z F, Lu Y, Wu Z S. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice. ACS Nano. 2021;15:19211–19224. doi: 10.1021/acsnano.1c04260. [DOI] [PubMed] [Google Scholar]
- [164].Wang Q, Tan K Y, Wang H, Shang J H, Wan Y Q, Liu X Q, Weng X C, Wang F A. Orthogonal demethylase-activated deoxyribozyme for intracellular imaging and gene regulation. J. Am. Chem. Soc. 2021;143:6895–6904. doi: 10.1021/jacs.1c00570. [DOI] [PubMed] [Google Scholar]
- [165].Angell C, Xie S B, Zhang L F, Chen Y. DNA nanotechnology for precise control over drug delivery and gene therapy. Small. 2016;12:1117–1132. doi: 10.1002/smll.201502167. [DOI] [PubMed] [Google Scholar]
- [166].Li J Y, Mooney D J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016;1:16071. doi: 10.1038/natrevmats.2016.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [167].Cheng R, Meng F H, Deng C, Klok H A, Zhong Z Y. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647–3657. doi: 10.1016/j.biomaterials.2013.01.084. [DOI] [PubMed] [Google Scholar]
- [168].Dai Z W, Leung H M, Lo P K. Stimuli-responsive selfassembled DNA nanomaterials for biomedical applications. Small. 2017;13:1602881. doi: 10.1002/smll.201602881. [DOI] [PubMed] [Google Scholar]
- [169].Lu C H, Willner B, Willner I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACS Nano. 2013;7:8320–8332. doi: 10.1021/nn404613v. [DOI] [PubMed] [Google Scholar]
- [170].Yuan Y, Gu Z, Yao C, Luo D, Yang D Y. Nucleic acid-based functional nanomaterials as advanced cancer therapeutics. Small. 2019;15:1900172. doi: 10.1002/smll.201900172. [DOI] [PubMed] [Google Scholar]
- [171].Ouyang C H, Zhang S B, Xue C, Yu X, Xu H, Wang Z M, Lu Y, Wu Z S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamerbased targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc. 2020;142:1265–1277. doi: 10.1021/jacs.9b09782. [DOI] [PubMed] [Google Scholar]
- [172].Yang L, Sun H, Liu Y, Hou W J, Yang Y, Cai R, Cui C, Zhang P H, Pan X S, Li X W, et al. Self-assembled aptamergrafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery. Angew. Chem., Int. Ed. 2018;57:17048–17052. doi: 10.1002/anie.201809753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [173].Zhuang X X, Ma X W, Xue X D, Jiang Q, Song L L, Dai L R, Zhang C Q, Jin S B, Yang K N, Ding B Q, et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano. 2016;10:3486–3495. doi: 10.1021/acsnano.5b07671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [174].Wu T T, Liu J B, Liu M M, Liu S L, Zhao S, Tian R, Wei D S, Liu Y Z, Zhao Y, Xiao H H, et al. A nanobodyconjugated DNA nanoplatform for targeted platinum-drug delivery. Angew. Chem., Int. Ed. 2019;58:14224–14228. doi: 10.1002/anie.201909345. [DOI] [PubMed] [Google Scholar]
- [175].Ma, W. J.; Yang, Y. T.; Zhu, J. W.; Jia, W. Q.; Zhang, T.; Liu, Z. Q.; Chen, X. Y.; Lin, Y. F. Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer. Adv. Mater., in press, 10.1002/adma.202109609. [DOI] [PubMed]
- [176].Li M Y, Wang C L, Di Z H, Li H, Zhang J F, Xue W T, Zhao M P, Zhang K, Zhao Y L, Li L L. Engineering multifunctional DNA hybrid nanospheres through coordinationdriven self-assembly. Angew. Chem., Int. Ed. 2019;58:1350–1354. doi: 10.1002/anie.201810735. [DOI] [PubMed] [Google Scholar]
- [177].Chen G, Liu D, He C B, Gannett T R, Lin W B, Weizmann Y. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. J. Am. Chem. Soc. 2015;137:3844–3851. doi: 10.1021/ja512665z. [DOI] [PubMed] [Google Scholar]
- [178].Liu J B, Song L L, Liu S L, Jiang Q, Liu Q, Li N, Wang Z G, Ding B Q. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018;18:3328–3334. doi: 10.1021/acs.nanolett.7b04812. [DOI] [PubMed] [Google Scholar]
- [179].Liu Q L, Bi C, Li J L, Liu X J, Peng R Z, Jin C, Sun Y, Lyu Y F, Liu H, Wang H J, et al. Generating giant membrane vesicles from live cells with preserved cellular properties. Research (Wash D C) 2019;2019:6523970. doi: 10.34133/2019/6523970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [180].Luo C, Hu X X, Peng R Z, Huang H D, Liu Q L, Tan W H. Biomimetic carriers based on giant membrane vesicles for targeted drug delivery and photodynamic/photothermal synergistic therapy. ACS Appl. Mater. Interfaces. 2019;11:43811–43819. doi: 10.1021/acsami.9b11223. [DOI] [PubMed] [Google Scholar]