Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 May 17;78(Pt 6):599–602. doi: 10.1107/S2056989022004972

First hydrogen-bonded adduct of sterically hindered 2-tert-butyl-4-methyl­phenol (TBMP) with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) via coupling of classical hydrogen bonds and C—H⋯π non-covalent inter­actions

Augusto Rivera a,*, Jaime Ríos-Motta a, Michael Bolte b
Editor: C Schulzkec
PMCID: PMC9431775  PMID: 36072145

Hydrogen bonding links the donor alcohol functional groups of two 2-tert-butyl-4-methyl­phenol mol­ecules to the central acceptor polyamine aminal cage TATD yielding the three mol­ecule adduct, half of which comprises the asymmetric unit in this crystal structure.

Keywords: crystal structure, co-crystalline adduct, hydrogen bonding, C—H⋯π inter­actions, TBMP, TATD

Abstract

The title compound, C8H16N4·2C11H16O, was synthesized from the corres­ponding sterically crowded phenol by treatment with the aminal cage polyamine. Single-crystal X-ray diffraction structural analysis revealed the three-mol­ecule aggregate to crystallize in the monoclinic space group P2/c with one half of a 1,3,6,8-tetra­aztri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one 2-tert-butyl-4-methyl­phenol mol­ecule per asymmetric unit. The crystal structure features inter­molecular O—H⋯N and C—H⋯O hydrogen bonds, as well as inter­molecular C—H⋯π inter­actions.

1. Chemical context

Co-crystals of phenols with various nitro­gen bases are model systems often used for studying the nature of the hydrogen bond (Majerz et al., 2007). In this context, not only the initial formation of a hydrogen-bonded adduct was investigated between a Mannich preformed reagent and the phenolic substrate (Burckhalter & Leib, 1961), but also the great inter­est in and chemical importance of the amino­alkyl­ation of aromatic substrates via the Mannich reaction was addressed (Tramontini et al., 1988). For a long time we have directed continuing efforts to the systematic study of hydrogen bonding and other non-covalent inter­actions of phenols with aminal cages (preformed Mannich bases) (Rivera et al., 2007, 2015a ,b , 2017a ,b , 2019). Herein we report the mechanochemical preparation and crystal structure of the title adduct prepared by mixing in an agate mortar the sterically hindered 2-tert-butyl-4-methyl­phenol (TBMP) with 1,3,6,8-tetra­azatri­cyclo­[4.4.1.13,8]dodecane (TATD) in a 2:1 ratio. The crystallographic information available for pure 2-tert-butyl-4-methyl­phenol (Beckmann et al., 2004) does not report O—H⋯O hydrogen bonds, which are commonly found in the crystal structures of alcohols, suggesting that the alcohol is sterically protected. The reaction of TBMP with TATD, in notable contrast to this, proceeds cleanly to give the title O—H⋯N hydrogen-bonded adduct exclusively. A search of the Cambridge Structural Database (version 5.42; Groom et al., 2016) for crystal structures containing hydrogen-bonded TBMP co-crystals with a hydrogen-bond acceptor resulted in zero hits, emphasizing the general rarity of this observation. The resultant crystal structure reported here also exhibits C—H⋯O hydrogen-bonding inter­actions, which constitute a fundamental force in maintaining crystal and three-dimensional chemical structures in chemistry and biology (Wang et al., 2019). 1.

2. Structural commentary

The title compound crystallizes in the monoclinic space group P2/c. The asymmetric unit comprises one half of a 1,3,6,8-tetra­azatri­cyclo­[4.4.1.13,8]dodecane (TATD) mol­ecule and one 2-tert-butyl-4-methyl­phenol (TBMP) mol­ecule held together by one inter­molecular O—H⋯N hydrogen bond [O⋯N = 2.8534 (15) Å; O—H⋯N = 161.6 (17)°; Table 1]. The complete adduct is generated by symmetry by a crystallographic twofold rotation axis, resulting in C2 symmetry for the three-mol­ecule aggregate (Fig. 1). Apart from the two neutral inter­molecular O—H⋯N bonds in the three-mol­ecule arrangement, as indicated by a PLATON analysis (Spek, 2020), there are four non-classical intra­molecular C—H⋯O hydrogen bonds between the TBMP phenol oxygen atoms and the ortho tert–butyl C—H bonds (two for each phenol oxygen atom O1; methyl group atoms C18—H18B and C20—H20A; geometric details are given in Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (2) 2.01 (2) 2.8534 (15) 161.6 (17)
C18—H18B⋯O1 0.98 2.30 2.966 (2) 124
C20—H20A⋯O1 0.98 2.41 3.058 (3) 124
C1—H1ACg1i 0.98 2.90 3.851 (2) 163

Symmetry code: (i) Inline graphic .

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines. Atoms labelled with the suffix A are generated using the symmetry operator (−x, y, −z +  Inline graphic ).

The –OH group is not perfectly co-planar with the benzene ring with a C16—C11—O1—H1 torsion angle of 18.0°. This angle differs from the corresponding more acute torsion angles in free 2-tert-butyl-4-methyl­phenol (0.73 and −0.36°; Beckmann et al., 2004) and other related sterically very congested phenols (Lutz & Spek, 2005). The observed C11—O1 bond length [1.376 (2) Å] is in a good agreement with the mean value of 1.377 Å reported for 2-tert-butyl-4-methyl­phenol (Beckmann et al., 2004).

The C—N1 bond lengths of the nitro­gen atom, which is engaged in the inter­molecular hydrogen bond to TBMP, are slightly elongated at 1.476 (2) Å (N1—C1), 1.469 (2) Å (N1—C3) and 1.468 (2) Å (N1—C5) compared to the mean value of 1.458 Å reported for the free aminal cage structure (Rivera et al., 2014) and compared to the C—N2 bond lengths here [1.452 (2) Å (N2—C1), 1.456 (2) Å (N2—C2), and 1.462 (2) Å (N2—C4)]. This indicates that the formation of the inter­molecular hydrogen bonds in the title compound affects the distribution of electron density around this hydrogen-bonded nitro­gen centre, resulting in an impact on the respective CH2—N single bonds in the heterocyclic cage system.

3. Supra­molecular features

The most prominent supra­molecular feature in this crystal structure is the formation of the expected three-mol­ecule aggregate sustained by two hy­droxy-O—H⋯N hydrogen bonds (Fig. 2). In the crystal packing, roughly in the a-axis direction, adjacent aggregates are linked by C—H⋯π inter­actions with a C—H⋯Cg distance of 3.851 (2) Å and a C—H⋯Cg angle of 163°, (Table 1). The C—H⋯π inter­action is facilitated between one methyl­ene group (C1—H1A) and a symmetry-derived ring (C11–C16; symmetry code: −x + 1, −y + 1, −z + 1). These non-covalent inter­actions lead to the formation of a crystal packing pattern in which the phenol mol­ecules are arranged in an alternating fashion, as is evident when viewed along the [101] direction (Fig. 3).

Figure 2.

Figure 2

The crystal packing of the title compound viewed roughly along the b-axis direction, showing the inter­molecular O—H⋯N hydrogen bonds and selected C—H⋯π inter­actions.

Figure 3.

Figure 3

A partial packing diagram viewed along [101] direction. Dashed lines indicate the inter­molecular O—H⋯N hydrogen bonds. Only H atoms involved in the hydrogen bonds are shown for clarity.

4. Database survey

Using the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Groom et al., 2016), a search for the title compound structure and names used in this article was conducted with CONQUEST (version 2021.2.0; Bruno et al., 2002). The crystal structures of both 2-tert-butyl-4-methyl­phenol (TBMP; Beckmann et al., 2004) and 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD; Rivera et al., 2014) are already known (refcodes: PAGMEQ and TAZTCD). 2-tert-Butyl-4-methyl­phenol crystallizes with two mol­ecules in the asymmetric unit, which exhibit non-classical intra­molecular C—H⋯O hydrogen bonds similar to what is found in the adduct structure reported here, plus weak inter­molecular O—H⋯π inter­actions. Tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane crystallizes with one quarter of a mol­ecule in the asymmetric unit. There are no significant differences in the metrical parameters between the structure of the title co-crystal and the singly crystallized entities except for the C—N distances discussed above (section 2).

Co-crystals of tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane have already been reported, i.e. with 3-nitro­phenol (Rivera et al., 2019), 4-iodo­phenol (Rivera et al., 2017a ), 4-chloro-3,5-di­methyl­phenol (Rivera et al., 2015a ), hydro­quinone (Rivera et al., 2007), and 4-bromo­phenol (Rivera et al., 2015b ) (refcodes: HOXGUZ, JELVII, QUFROA, WEXQIA, XULKOG).

In addition, one crystal structure with a singly protonated tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane was determined prev­iously, namely 3,6,8-tri­aza-1-azoniatri­cyclo­[4.4.1.13,8]dodecane 4-nitro­phenolate 4-nitro­phenol (Rivera et al., 2017b ; refcode: REYKAK).

In another closely related adduct structure, a slightly less sterically crowded alcohol was used bearing an iso-propyl instead of the tert-butyl substituent on the aromatic ring: tris-[5-methyl-2-(propan-2-yl)phenol]1,3,5,7-tetra­aza­tri­cyclo­[3.3.1.13,7]decane (Mazzeo et al., 2019; refcode: WUTDUN).

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) (1 mmol) and 2-tert-butyl-4-methyl­phenol (TBMP) (2 mmol) was ground using a mortar and pestle at room temperature for 15 min. Completion of the reaction was monitored by TLC. The mixture was recrystallized from n-hexa­ne:chloro­form (8:2) solution to obtain colourless crystals suitable for X-ray analysis, m.p. = 374–375 K. (yield: 85%).

6. Refinement

The structure of the title compound had been previously deposited by us and was thereby reported as a Private Communication (Bolte et al., 2021, refcode EWICAR). Crystal data, data collection and structure refinement details are summarized in Table 2. The oxygen-bound hydrogen atom was found and refined isotropically without restraints or constraints. Other hydrogen atoms were generated geometrically, and refined with a riding model with C—H = 0.98 Å, U iso(H) = 1.5U eq(C) for methyl, C—H = 0.99 Å, U iso(H) = 1.2U eq(C) for methyl­ene, and C—H = 0.95 Å, U iso(H) = 1.2U eq(C) for aromatic hydrogen atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C8H16N4·2C11H16O
M r 496.72
Crystal system, space group Monoclinic, P2/c
Temperature (K) 173
a, b, c (Å) 11.4741 (10), 7.6770 (5), 17.2226 (14)
β (°) 108.166 (6)
V3) 1441.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.28 × 0.27 × 0.11
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001)
T min, T max 0.554, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17127, 3307, 2862
R int 0.029
(sin θ/λ)max−1) 0.653
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.132, 1.05
No. of reflections 3307
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.19

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and XP in SHELXTL-Plus (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004972/yz2019sup1.cif

e-78-00599-sup1.cif (600.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004972/yz2019Isup2.hkl

e-78-00599-Isup2.hkl (264.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022004972/yz2019Isup3.cml

CCDC reference: 2092229

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C8H16N4·2C11H16O F(000) = 544
Mr = 496.72 Dx = 1.144 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
a = 11.4741 (10) Å Cell parameters from 17127 reflections
b = 7.6770 (5) Å θ = 3.6–27.8°
c = 17.2226 (14) Å µ = 0.07 mm1
β = 108.166 (6)° T = 173 K
V = 1441.5 (2) Å3 Plate, colourless
Z = 2 0.28 × 0.27 × 0.11 mm

Data collection

STOE IPDS II two-circle-diffractometer 2862 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.029
ω scans θmax = 27.6°, θmin = 3.6°
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) h = −14→14
Tmin = 0.554, Tmax = 1.000 k = −9→9
17127 measured reflections l = −22→22
3307 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.4499P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.26 e Å3
3307 reflections Δρmin = −0.19 e Å3
170 parameters Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.021 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.55515 (9) 0.67062 (14) 0.32614 (6) 0.0269 (2)
N2 0.41669 (11) 0.93222 (15) 0.28288 (7) 0.0334 (3)
C1 0.47468 (13) 0.80357 (18) 0.34461 (8) 0.0332 (3)
H1A 0.408781 0.741591 0.359229 0.040*
H1B 0.523629 0.867230 0.394010 0.040*
C2 0.30542 (14) 0.8720 (2) 0.22156 (10) 0.0469 (4)
H2A 0.265533 0.973760 0.188590 0.056*
H2B 0.248788 0.828122 0.250249 0.056*
C3 0.31959 (13) 0.7318 (2) 0.16366 (9) 0.0397 (3)
H3A 0.269762 0.630216 0.169446 0.048*
H3B 0.284425 0.775888 0.107144 0.048*
C4 0.500000 1.0300 (3) 0.250000 0.0418 (5)
H4A 0.449637 1.106627 0.206038 0.050* 0.5
H4B 0.550362 1.106630 0.293961 0.050* 0.5
C5 0.500000 0.5738 (2) 0.250000 0.0282 (4)
H5A 0.435761 0.497108 0.258605 0.034* 0.5
H5B 0.564238 0.497107 0.241395 0.034* 0.5
O1 0.65236 (10) 0.40303 (14) 0.44346 (6) 0.0399 (3)
H1 0.6079 (18) 0.482 (3) 0.4109 (12) 0.053 (5)*
C11 0.69530 (12) 0.46490 (16) 0.52226 (7) 0.0284 (3)
C12 0.79366 (11) 0.37879 (15) 0.57928 (7) 0.0247 (3)
C13 0.83508 (11) 0.45122 (17) 0.65783 (7) 0.0280 (3)
H13 0.901687 0.396088 0.697378 0.034*
C14 0.78431 (12) 0.59956 (17) 0.68142 (8) 0.0303 (3)
C15 0.68468 (14) 0.67652 (18) 0.62418 (8) 0.0343 (3)
H15 0.646455 0.775572 0.638772 0.041*
C16 0.64080 (14) 0.60914 (18) 0.54571 (8) 0.0350 (3)
H16 0.572159 0.662490 0.507184 0.042*
C17 0.85309 (13) 0.21469 (17) 0.55726 (7) 0.0313 (3)
C18 0.75571 (18) 0.0728 (2) 0.52590 (12) 0.0545 (5)
H18A 0.717684 0.045775 0.568135 0.082*
H18B 0.692811 0.114293 0.476635 0.082*
H18C 0.794385 −0.032304 0.512895 0.082*
C19 0.95174 (18) 0.1387 (3) 0.63136 (9) 0.0546 (5)
H19A 0.915053 0.109330 0.674008 0.082*
H19B 0.986240 0.033393 0.614917 0.082*
H19C 1.017007 0.224808 0.652530 0.082*
C20 0.91373 (19) 0.2589 (3) 0.49204 (11) 0.0565 (5)
H20A 0.852293 0.307854 0.443928 0.085*
H20B 0.979226 0.344302 0.514043 0.085*
H20C 0.948459 0.152887 0.476430 0.085*
C21 0.83767 (16) 0.6747 (2) 0.76656 (9) 0.0441 (4)
H21A 0.895241 0.591026 0.801301 0.066*
H21B 0.771345 0.698204 0.789736 0.066*
H21C 0.880912 0.783389 0.763689 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0282 (5) 0.0284 (5) 0.0214 (5) 0.0016 (4) 0.0039 (4) −0.0010 (4)
N2 0.0362 (6) 0.0291 (6) 0.0360 (6) 0.0066 (5) 0.0126 (5) 0.0002 (5)
C1 0.0423 (7) 0.0327 (7) 0.0270 (6) 0.0051 (6) 0.0141 (5) −0.0016 (5)
C2 0.0303 (7) 0.0566 (10) 0.0495 (9) 0.0131 (7) 0.0064 (6) −0.0033 (7)
C3 0.0268 (6) 0.0447 (8) 0.0407 (8) 0.0011 (6) 0.0006 (5) −0.0006 (6)
C4 0.0581 (13) 0.0249 (9) 0.0478 (12) 0.000 0.0242 (10) 0.000
C5 0.0356 (9) 0.0236 (8) 0.0228 (8) 0.000 0.0055 (7) 0.000
O1 0.0527 (6) 0.0388 (6) 0.0200 (4) 0.0145 (5) −0.0005 (4) −0.0011 (4)
C11 0.0373 (7) 0.0269 (6) 0.0199 (5) 0.0007 (5) 0.0072 (5) 0.0004 (4)
C12 0.0299 (6) 0.0228 (6) 0.0215 (5) −0.0008 (5) 0.0082 (4) −0.0006 (4)
C13 0.0303 (6) 0.0296 (6) 0.0223 (6) 0.0006 (5) 0.0058 (5) −0.0017 (5)
C14 0.0390 (7) 0.0282 (6) 0.0257 (6) −0.0038 (5) 0.0128 (5) −0.0048 (5)
C15 0.0496 (8) 0.0253 (6) 0.0321 (6) 0.0065 (6) 0.0189 (6) 0.0008 (5)
C16 0.0436 (7) 0.0323 (7) 0.0275 (6) 0.0111 (6) 0.0089 (5) 0.0055 (5)
C17 0.0414 (7) 0.0293 (6) 0.0218 (6) 0.0094 (5) 0.0077 (5) −0.0015 (5)
C18 0.0691 (11) 0.0254 (7) 0.0611 (10) 0.0007 (7) 0.0090 (9) −0.0098 (7)
C19 0.0657 (11) 0.0584 (10) 0.0316 (7) 0.0367 (9) 0.0033 (7) −0.0055 (7)
C20 0.0749 (12) 0.0587 (11) 0.0495 (9) 0.0235 (9) 0.0391 (9) 0.0062 (8)
C21 0.0546 (9) 0.0442 (8) 0.0326 (7) −0.0016 (7) 0.0122 (6) −0.0157 (6)

Geometric parameters (Å, º)

N1—C5 1.4680 (13) C13—C14 1.3961 (18)
N1—C3i 1.4694 (17) C13—H13 0.9500
N1—C1 1.4761 (17) C14—C15 1.3874 (19)
N2—C1 1.4517 (17) C14—C21 1.5159 (18)
N2—C2 1.456 (2) C15—C16 1.3868 (19)
N2—C4 1.4615 (16) C15—H15 0.9500
C1—H1A 0.9900 C16—H16 0.9500
C1—H1B 0.9900 C17—C20 1.533 (2)
C2—C3 1.510 (2) C17—C19 1.5328 (19)
C2—H2A 0.9900 C17—C18 1.533 (2)
C2—H2B 0.9900 C18—H18A 0.9800
C3—H3A 0.9900 C18—H18B 0.9800
C3—H3B 0.9900 C18—H18C 0.9800
C4—H4A 0.9900 C19—H19A 0.9800
C4—H4B 0.9900 C19—H19B 0.9800
C5—H5A 0.9900 C19—H19C 0.9800
C5—H5B 0.9900 C20—H20A 0.9800
O1—C11 1.3760 (15) C20—H20B 0.9800
O1—H1 0.88 (2) C20—H20C 0.9800
C11—C16 1.3920 (18) C21—H21A 0.9800
C11—C12 1.4086 (17) C21—H21B 0.9800
C12—C13 1.4016 (16) C21—H21C 0.9800
C12—C17 1.5353 (17)
C5—N1—C3i 113.69 (9) C14—C13—C12 123.91 (12)
C5—N1—C1 114.72 (9) C14—C13—H13 118.0
C3i—N1—C1 114.05 (11) C12—C13—H13 118.0
C1—N2—C2 114.42 (12) C15—C14—C13 117.82 (11)
C1—N2—C4 115.31 (10) C15—C14—C21 121.34 (12)
C2—N2—C4 114.44 (11) C13—C14—C21 120.83 (12)
N2—C1—N1 119.16 (10) C16—C15—C14 120.13 (12)
N2—C1—H1A 107.5 C16—C15—H15 119.9
N1—C1—H1A 107.5 C14—C15—H15 119.9
N2—C1—H1B 107.5 C15—C16—C11 121.33 (12)
N1—C1—H1B 107.5 C15—C16—H16 119.3
H1A—C1—H1B 107.0 C11—C16—H16 119.3
N2—C2—C3 117.06 (12) C20—C17—C19 107.96 (14)
N2—C2—H2A 108.0 C20—C17—C18 110.29 (14)
C3—C2—H2A 108.0 C19—C17—C18 106.91 (14)
N2—C2—H2B 108.0 C20—C17—C12 109.72 (12)
C3—C2—H2B 108.0 C19—C17—C12 112.10 (10)
H2A—C2—H2B 107.3 C18—C17—C12 109.81 (12)
N1i—C3—C2 116.84 (11) C17—C18—H18A 109.5
N1i—C3—H3A 108.1 C17—C18—H18B 109.5
C2—C3—H3A 108.1 H18A—C18—H18B 109.5
N1i—C3—H3B 108.1 C17—C18—H18C 109.5
C2—C3—H3B 108.1 H18A—C18—H18C 109.5
H3A—C3—H3B 107.3 H18B—C18—H18C 109.5
N2i—C4—N2 118.16 (16) C17—C19—H19A 109.5
N2i—C4—H4A 107.8 C17—C19—H19B 109.5
N2—C4—H4A 107.8 H19A—C19—H19B 109.5
N2i—C4—H4B 107.8 C17—C19—H19C 109.5
N2—C4—H4B 107.8 H19A—C19—H19C 109.5
H4A—C4—H4B 107.1 H19B—C19—H19C 109.5
N1—C5—N1i 119.17 (14) C17—C20—H20A 109.5
N1—C5—H5A 107.5 C17—C20—H20B 109.5
N1i—C5—H5A 107.5 H20A—C20—H20B 109.5
N1—C5—H5B 107.5 C17—C20—H20C 109.5
N1i—C5—H5B 107.5 H20A—C20—H20C 109.5
H5A—C5—H5B 107.0 H20B—C20—H20C 109.5
C11—O1—H1 110.4 (13) C14—C21—H21A 109.5
O1—C11—C16 120.38 (11) C14—C21—H21B 109.5
O1—C11—C12 119.23 (11) H21A—C21—H21B 109.5
C16—C11—C12 120.39 (11) C14—C21—H21C 109.5
C13—C12—C11 116.33 (11) H21A—C21—H21C 109.5
C13—C12—C17 121.39 (11) H21B—C21—H21C 109.5
C11—C12—C17 122.27 (10)
C2—N2—C1—N1 81.95 (16) C11—C12—C13—C14 0.39 (19)
C4—N2—C1—N1 −53.89 (17) C17—C12—C13—C14 −179.70 (12)
C5—N1—C1—N2 −52.30 (16) C12—C13—C14—C15 1.9 (2)
C3i—N1—C1—N2 81.31 (15) C12—C13—C14—C21 −177.37 (13)
C1—N2—C2—C3 −67.63 (18) C13—C14—C15—C16 −1.9 (2)
C4—N2—C2—C3 68.60 (19) C21—C14—C15—C16 177.41 (14)
N2—C2—C3—N1i −0.8 (2) C14—C15—C16—C11 −0.4 (2)
C1—N2—C4—N2i 53.56 (9) O1—C11—C16—C15 −178.23 (13)
C2—N2—C4—N2i −82.27 (10) C12—C11—C16—C15 2.9 (2)
C3i—N1—C5—N1i −81.55 (10) C13—C12—C17—C20 −115.74 (15)
C1—N1—C5—N1i 52.24 (8) C11—C12—C17—C20 64.16 (17)
O1—C11—C12—C13 178.33 (11) C13—C12—C17—C19 4.20 (19)
C16—C11—C12—C13 −2.75 (19) C11—C12—C17—C19 −175.90 (14)
O1—C11—C12—C17 −1.58 (19) C13—C12—C17—C18 122.88 (14)
C16—C11—C12—C17 177.35 (12) C11—C12—C17—C18 −57.22 (17)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.88 (2) 2.01 (2) 2.8534 (15) 161.6 (17)
C18—H18B···O1 0.98 2.30 2.966 (2) 124
C20—H20A···O1 0.98 2.41 3.058 (3) 124
C1—H1A···Cg1ii 0.98 2.90 3.851 (2) 163

Symmetry code: (ii) −x+1, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: Facultad de Ciencias, Universidad Nacional de Colombia (grant No. 53864).

References

  1. Beckmann, P. A., Paty, C., Allocco, E., Herd, M., Kuranz, C. & Rheingold, A. L. (2004). J. Chem. Phys. 120, 5309–5314. [DOI] [PubMed]
  2. Bolte, M., Rivera, A. & Rios-Motta, J. (2021). Private Communication (refcode EWICAR). CCDC, Cambridge, England.
  3. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  4. Burckhalter, J. H. & Leib, R. I. J. (1961). J. Org. Chem. 26, 4078–4083.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Lutz, M. & Spek, A. L. (2005). Acta Cryst. C61, o639–o641. [DOI] [PubMed]
  7. Majerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106–113.
  8. Mazzeo, P. P., Carraro, C., Monica, A., Capucci, D., Pelagatti, P., Bianchi, F., Agazzi, S., Careri, M., Raio, A., Carta, M., Menicucci, F., Belli, M., Michelozzi, M. & Bacchi, A. (2019). ACS Sustainable Chem. Eng. 7, 17929–17940.
  9. Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.
  11. Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 737–740. [DOI] [PMC free article] [PubMed]
  12. Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2017a). Acta Cryst. E73, 1692–1695. [DOI] [PMC free article] [PubMed]
  13. Rivera, A., Rojas, J. J., Sadat-Bernal, J., Ríos-Motta, J. & Bolte, M. (2019). Acta Cryst. C75, 1635–1643. [DOI] [PubMed]
  14. Rivera, A., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2017b). J. Struct. Chem. 58, 789–796.
  15. Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 463–465. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  20. Tramontini, M., Angiolini, L. & Ghedini, N. (1988). Polymer, 29, 771–788.
  21. Wang, J., Liu, C., Liu, X., Shao, L. & Zhang, X.-M. (2019). J. Phys. Org. Chem. 32, e3927.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004972/yz2019sup1.cif

e-78-00599-sup1.cif (600.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004972/yz2019Isup2.hkl

e-78-00599-Isup2.hkl (264.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022004972/yz2019Isup3.cml

CCDC reference: 2092229

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES