Skip to main content
PLOS One logoLink to PLOS One
. 2022 Sep 1;17(9):e0273747. doi: 10.1371/journal.pone.0273747

Effects of walking impairment on mental health burden, health risk behavior and quality of life in patients with intermittent claudication: A cross-sectional path analysis

Farhad Rezvani 1,*, Mara Pelt 1, Martin Härter 1, Jörg Dirmaier 1
Editor: Kenji Hashimoto2
PMCID: PMC9436130  PMID: 36048797

Abstract

Introduction

Intermittent claudication is the leading symptom of peripheral artery disease (leg pain when walking). The present study investigates the extent to which walking impairment is associated with health-related quality of life, mental health and health risk behavior.

Methods

A theory-based, cross-sectional path model was empirically examined using pre-intervention baseline data from a multicenter, randomized-controlled trial of patients with intermittent claudication (PAD-TeGeCoach). Data were available from 1 696 patients who completed a battery of questionnaires between April 14, 2018 and March 12, 2019, including measures of walking impairment (Walking Impairment Questionnaire), health-related quality of life (SF-12), mental burden (GAD-7, PHQ-9), nicotine- and alcohol-related risk behavior (Fagerström-Test, AUDIT-C). Sociodemographic characteristics and comorbid conditions were included in the postulated model a priori to minimize confounding effects.

Results

Walking impairment was associated with an increase in depressive (β = -.36, p < .001) and anxiety symptoms (β = -.24, p < .001). The prevalence of depressive and anxiety symptoms was 48.3% and 35.5%, respectively, with female patients and those of younger age being at greater risk. Depressive symptoms were predictive of an increased tobacco use (β = .21; p < .001). Walking impairment had adverse effects on physical quality of life, both directly (β = .60, p < .001) and indirectly mediated through depressive symptoms (β = -.16, p < .001); and indirectly on mental quality of life mediated through depressive (β = -.43, p < .001) and anxiety symptoms (β = -.35, p < .001).

Discussion

The findings underscore the need for a comprehensive treatment strategy in patients with intermittent claudication. Measures to improve walking impairment (e.g. exercise training) are key to enhance quality of life and should be the primary treatment. As a key mediator of mental quality of life, depressive and anxiety symptoms should be addressed by rigorously including mental health treatment. Risky health behaviors should be approached by promoting behavior change (e.g. smoking cessation) as a secondary prevention of peripheral artery disease.

Introduction

Peripheral Artery Disease (PAD) affects up to 240 million people worldwide and ranks as the third leading cause of atherosclerotic morbidity after coronary artery disease and stroke [1], making it one of the leading causes of disability [24]. The hallmark symptom in symptomatic PAD patients is Intermittent Claudication (IC), which is characterized by muscle pain in the legs during walking and which subsides with short periods of rest [5]. Confronted with walking impairment and reduced mobility, these symptoms reflect the progressive narrowing of the peripheral arteries and the resulting reduction of blood supply [6, 7] that, if left untreated, can result in amputation [8] and death [9].

There is growing evidence that psychosocial factors are linked to functional outcomes and play a substantial role in the pathogenesis of PAD [10]. Depressive and anxiety symptoms are highly prevalent among PAD patients [1113], which in turn have been shown to be associated with poor walking ability [1418] and severe leg symptoms (i.e. pain at rest) [12], putting PAD patients at greater (long term) risk for mortality and other adverse PAD events [1317, 1922]. Prior studies have also demonstrated the negative impact of PAD and IC symptoms on health-related quality of life (HRQoL) [2326], which again was found to have prognostic value in predicting long-term survival in PAD patients [27]. Experiencing depressive symptoms are associated with significantly lower HRQoL compared with their non-depressed counterparts, highlighting the impact of mental health symptoms on the PAD patient’s subjective appraisal of their health status [28, 29].

While the association of mental health status with PAD is well established, an important next step is to understand the underlying mechanisms (and directionality) to allow targeted interventions. Although still subject of vigorous debate [10], several potential behavioral mediators have been proposed; one of them, tobacco smoking, which is known as a potent risk factor for developing PAD, was also found to be a important factor in the relationship between depression and subsequent PAD events [19]. Likewise, mental distress has been reported to be associated with increased amounts of alcohol consumption [30], which in turn has been identified as a risk factor for PAD [3136]. Overall, the current evidence indicates risky health behaviors as a pathway through which mental health burden is causing poor PAD outcomes [10].

The present study addresses several important questions for the psychosocial management of symptomatic PAD, with the goal to determine whether and how walking impairment is associated with diminished HRQoL and mental burden in PAD patients that suffer from IC. With increased interest in health status and patient-based measures in cardiovascular research, identifying their respective determinants is increasingly important. Furthermore, this study also investigates the impact of mental health problems (i.e. depressive and anxiety symptoms) with risky health behaviors (i.e. alcohol and tobacco consumption), which in the long-term could be major drivers of a negative clinical PAD course [10]. A theory-driven, cross-sectional path model based on previous literature was therefore postulated (Fig 1) and empirically examined to explore the interrelationships among these constructs. The postulated model assumed an association between walking impairment and mental health burden (i.e. depressive and anxiety symptoms; Hypothesis 1), which in turn is linked to an increase in health risk behavior (i.e. tobacco smoking and alcohol drinking; Hypothesis 2). Moreover, walking impairment was hypothesized to have a direct, negative effect on physical HRQoL (Hypothesis 3) and an indirect, negative effect on mental HRQoL mediated by an increase of depressive and anxiety symptoms (Hypothesis 4). A better understanding of these relationships may foster the development of treatment strategies to improve HRQoL and emotional well-being in PAD patients, which may also indirectly have secondary benefits on PAD status.

Fig 1. Theory-based path analysis model regarding the influence of walking impairment on mental burden, health risk behavior, physical and mental HRQoL in PAD patients.

Fig 1

Methods

Design

The present path analysis uses cross-sectional baseline data (i.e. pre-intervention) drawn from a larger data set that was collected as part of a multicenter, randomized-controlled trial (RCT) designed to test the effectiveness of a 12-month long telemedicine-guided home-based exercise program for patients with IC, PAD-TeGeCoach (CT.gov trial registration: NCT03496948). Methods of the PAD-TeGeCoach effectiveness trial are reported elsewhere in detail [37]. Ethical approval was granted by the ethics committee of the Medical Association of Hamburg. All patients provided written informed consent.

Study population and recruitment

Participants were recruited using routinely collected health insurance data (electronic health records) from three German statutory health insurance funds (in German: Gesetzliche Krankenversicherung): Kaufmännische Krankenkasse, Techniker Krankenkasse, mhplus Krankenkasse. These three statutory health insurance funds together have approx. 12.1 million insured (TK: 10.5 million; KKH: 1.6 million; MH: 0.54 million) and cover 16.5% of all statutory insured citizens in Germany. Consequently, the patient population is likely to represent the PAD patient population presenting in a usual care setting.

Eligible patients were between 35 and 80 years old, and had a medically confirmed diagnosis of PAD at Fontaine stadium IIa (IC > 200 meters) or IIb (IC < 200 meters) within the last 36 months. Patients were excluded from the study if they had asymptomatic PAD within the last 12 months (Fontaine stadium I) or rest pain within the last 36 months (Fontaine stadium III or IV). Patients with active or recent participation in other PAD intervention trials, medical conditions that contradict physical activity, cognitive disorders, severe mental disorders (including a clinical diagnosis of substance use disorder), suicidality, life-threatening illnesses, ongoing hospitalization, and heart failure (NYHA class III/IV) were also excluded.

The study population was derived from the PAD-TeGeCoach RCT; approximately 63 000 who met the inclusion criteria were identified as potential participants and were invited to participate. Of those, 1 982 elected to participate (recruitment rate 3.2%) and were randomized either into the intervention arm or the routine care group (see S1 Fig). There were 11 participants who withdrew after enrollment (data deletion request n = 1, randomized without informed consent n = 1, met exclusion criteria n = 8, lack of verification of PAD diagnosis n = 1).

Measures

The data used for this study (i.e. baseline data from the PAD-TeGeCoach RCT) were collected between April 14, 2018 and March 12, 2019. Enrolled patients received a battery of self-administered questionnaires by mail (paper-pencil) and were asked to return them using a prepaid envelope. The participants could call the study team when they encountered problems completing the questionnaires. A total of 1 696 patients returned their study questionnaire, which falls within the usual range of mail surveys [38].

IC symptoms: Walking Impairment Questionnaire (WIQ)

The Walking Impairment Questionnaire (WIQ) is a well-established instrument of assessing walking impairment for different degrees of difficulty across three domains: walking distance, walking speed and stair-climbing. Response options for all items comprise a five-point Likert scale ranging from “unable to do” to “no difficulty”. Domain scores are generated by multiplying the score for each item by a weighting factor based on the degree of difficulty and then summing all the products together. Scores are then divided by the maximum score of the respective domain to obtain a percentage score, from 0% (i.e. fully impaired) to 100% (i.e. not impaired). WIQ scores are strongly correlated with maximum walking distance [39, 40], objective measures of walking impairment [41], as well as the ankle-brachial index [42].

Generic HRQoL: SF-12

The SF-12 is a self-assessment questionnaire with 12 items measuring generic HRQoL [43]. The instrument covers eight health domains: physical functioning, role limitations due to physical health problems, bodily pain, general health, vitality, social functioning, role limitations due to emotional problems and mental health. These domains result in two summary measure scores: Physical Component Summary and the Mental Component Summary. Summary measure scores range from 0 (lowest HRQoL) to 100 (highest HRQoL). The SF-12 is a short version of the SF-36 with good psychometric properties [43]. The SF-12 has been used extensively in both cross-sectional and longitudinal PAD studies to assess (changes in) health status [e.g. 44, 45]. The Mental Component Summary score of the SF-12 was shown to be a valid measure of mental health in the general population [46, 47]. Furthermore, the Physical Component Summary score is associated with PAD severity as measured by the ankle-brachial index [45].

Depressive symptoms: PHQ-9

The PHQ-9 is a depression symptom screening instrument with 9 items asking patients how much they were bothered by symptoms over the last two weeks, with scores on a 4-point scale from ‘not at all’ to ‘nearly every day’. The sum score ranges from 0 to 27 and indicates the degree of depression. Scores of ≥ 5, ≥ 10, and ≥ 15 represent mild, moderate, and severe levels of depression, respectively. A cut-off score of ≥ 10 was found to have a sensitivity and specificity of 0.88 for detecting clinical depression [48].

Anxiety symptoms: GAD-7

The GAD-7 is a 7-item screening instrument assessing the core symptoms of generalized anxiety disorder (GAD) over the past two weeks. The answer options are identical to the PHQ-9, with scores on a 4-point scale from 0 (‘not at all’) to 3 (‘nearly every day’). The sum score ranges from 0 to 21 with cut-off scores of 5, 10 and 15 representing mild, moderate and severe levels of anxiety, respectively. A cutoff score of ≥ 10 has a sensitivity of 89% and a specificity of 82% for identifying GAD [49]. A study conducted in the German general population confirmed the instrument’s good psychometric properties [50].

Tobacco smoking: Fagerström Test

The Fagerström Test for Nicotine Dependence [51] is a screening instrument assessing nicotine dependence with respect to cigarette smoking. It consists of six items which are either scored from 0 to 3 (multiple choice items) or 0 to 1 (yes/no items). The sum score ranges from 0 to 10 with higher scores indicating more intense tobacco dependence. The FTND is a revised version of the Fagerström Tolerance Questionnaire (FTQ) [52] with equally good psychometric properties [53]. The Fagerström Test was completed only by those who identified themselves as smokers (n = 668).

Alcohol consumption: AUDIT-C

The Alcohol Use Disorders Identification Test-Consumption [54] is a short screening instrument consisting of the original AUDIT’s first three items assessing alcohol consumption. Items are scored on a scale ranging from 0 to 4. As a result, the sum score ranges from 0 to 12. Cut-off scores of 3 and 4 are used for women and men to identify patients at increased risk for alcohol-related disorders, whereas a cut-off score of 4 or 5 indicates risky consumption. Research confirmed the validity of the AUDIT-C and found equally good psychometric properties in the AUDIT-C as in the original version [55].

Other measures

Along with patient-reported outcome measures (PROMs), sociodemographic and biological variables (age, sex, height, weight, body mass index, education level, household income/economic status, marital status and employment status) and comorbidities (hyperlipidemia, diabetes mellitus, hypertension, lung disease and reduced kidney function) were self-reported during the baseline assessment.

Statistical analyses

Secondary analyses were performed using cross-sectional baseline data from a parent RCT (i.e. before study interventions were implemented; S1 Fig). Missing data in PROM items (i.e. incomplete information collected from a respondent) were handled via the Expectation-Maximization (EM) imputation algorithm in IBM SPSS Statistics 25, which is an effective and straightforward maximum likelihood technique to manage incomplete data so that there was be no systematic losses of participants who missed single items [56]. EM is recommended to be used in structural equation modeling [57]. An EM estimator is unbiased and efficient when the missing mechanism is missing completely at random or missing at random [58]. Moreover, the EM algorithm is effective when variables had up to 30% missing values. Consequently, participants that had an item nonresponse of > 30% were removed from the analysis dataset (n = 9). Accordingly, data from 1 687 PAD patients were used for this study. In addition, several PROMs were compared against normative data, which were available from previous studies (GAD-7 [50]; PHQ-9 [59, 60]; SF-12 [61]).

Taking consideration of existing literature, a theory-driven path analysis with full information maximum likelihood estimation was conducted to estimate the simultaneous interrelationships between the variables of interest (treated as continuous), while adjusting a priori for empirically identified confounders (i.e. in path models at p < .05: sociodemographic variables, body mass index, comorbidities). Path analysis, which is an extension of multiple regression analysis, is a type of structural equation modeling to clarify (potentially causal) relationships between the variables assessed. The absolute and relative goodness of fit of the models were assessed based on standard measures of fit; the CMIN/DF statistic (i.e. normed chi-square), the Tucker–Lewis index (TLI), the comparative fit index (CFI), and the root mean square error of approximation (RMSEA). CMIN/DF < 3 indicates an acceptable fit between hypothetical model and sample data [62]. The cut-off for good fit for TLI and CFI is ≥ 0.95 and ≥ 0.90. With values closer to 0 representing good fit, the cut-off for RMSEA, which is an absolute measure of fit, is < .08, indicating excellent fit between model specification and the observed data [63, 64]. Based on model fit indicators, the original model was modified by iteratively including and/or constraining paths and correlations. To arrive at a good model fit, model substructures were assessed based on (standardized) regression weights (i.e. magnitude and p < .05), residual error covariance and modification indices. Several iterations were carried out to arrive at the final revised model. Statistical analyses were performed using IBM SPSS Statistics 25 and SPSS Amos (IBM Corporation, Armonk, New York, United States). Effect sizes (i.e. magnitude of the relationships between path model parameters) were based on Pearson’s r correlation coefficients and the standardized beta coefficient (β), with small, medium and large effect sizes indicated by the following r’s/ β’s, respectively: .10, .30, .50. Effect sizes < .10 are considered negligible regardless of statistical significance in order to avoid possible overinterpretation of small effects.

Results

Study sample characteristics

Demographic, socioeconomic and clinical characteristics of the study sample are displayed in Table 1. Most patients were male (67.6%) with a mean age of 66.3 years (SD = 8.6 years; range: 35–81). 64.3% were married, and 81.6% had at least one child. The three most common self-reported comorbidities were hypertension (72.4%), high cholesterol (57.1%) and diabetes mellitus (25.9%). A number of patients had a history of a cardiovascular event; 12.9% of PAD patients suffered from a myocardial infarction (i.e. heart attack), 8.8% had a stroke in the past. Most patients received medication to help control their PAD and cardiovascular comorbidities, such as platelet function inhibitors (81.1%), antihypertensive agents (74.1%) or statins (58.2%). 29.5% underwent revascularization surgery.

Table 1. Characteristics of the study sample.

Variable n / M % / SD range
Sociodemographic characteristics
Gender
Female 525 31.1
Male 1 141 67.6
Age (in years) 66.29 8.63 35–81
Body Mass Index 28.07 5.04 15–76
Comorbidities/Diseases (multiple choices possible)
Myocardial infarction 217 12.9
Stroke 148 8.8
Metabolism disorder (high cholesterol) 964 57.1
Angina pectoris 224 13.3
Lung disease 270 16.0
Heart Failure 258 15.3
Hypertension 1 221 72.4
Diabetes 437 25.9
Cancer 155 9.2
Drugs (multiple choices possible)
Antihypertensive agents 1 250 74.1
Platelet function inhibitor 1 368 81.1
Statins 981 58.2
Other 918 54.4
Revascularization
Yes 498 29.5
No 931 55.2
PROMs
Walking Impairment (WIQ)
Walking distance 55.75 29.20 0–100
Walking speed 48.84 24.93 0–100
Stair Climbing 59.66 25.88 0–100
Generic HRQoL (SF-12)
Physical 37.92 9.78 12–61
Mental 51.03 11.18 13–70
Mental health
Depressiveness (PHQ-9)
Mild (5–9) 509 30.2
Moderate(10–14) 212 12.6
Severe (15–27) 92 5.5
Generalized Anxiety (GAD-7)
Mild (5–9) 435 25.8
Moderate(10–14) 119 7.1
Severe (15–21) 45 2.7
Health Risk behavior
Alcohol consumption (AUDIT-C)
Risk of alcohol related disorder (= 3 in women; = 4 in men) 272 16.1
Risky consumption (≥4 in women; ≥5 in men) 491 29.1
Tobacco dependence (Fagerström, n = 668)
Low (0–2) 156 23.4
Moderate (3–4) 220 32.9
Strong (5–6) 180 26.9
Very strong dependence (7–10) 112 16.8

Some participants did not provide complete information; the number of responses (n) may therefore deviate from the final dataset (N = 1 687).

Descriptive statistics

Mental burden

The estimated proportion of patients with mild depressive symptoms (PHQ-9 score 5–9) was 30.2% (n = 509). Moderate or severe depressive symptoms, which has been reported to indicate clinical depression, were found in 18.1% (n = 304) of patients (PHQ-9 score ≥ 10). Mild anxiety symptoms (GAD-7 score 5–9) were found in 25.8% (n = 435) of patients, while 9.7% (n = 164) had moderate to severe anxiety symptoms (GAD-7 score ≥ 10) and thus showed signs of clinical anxiety. Compared to the general German population [50, 59, 60], the study population showed substantially higher levels of depression (approx. 84th percentile), and anxiety symptoms (approx. 69th percentile).

Health risk behavior

Among the smokers subgroup (n = 668, 39.6% of study participants), low or moderate level of tobacco dependence (Fagerström score 0–4) was identified in 56.3% of patients (n = 376, 22.3% of study participants). The estimated proportion of patients with high or very high tobacco dependence among smokers (Fagerström score 5–10) was 43.7% (n = 292, 17.3% of study participants). Regarding alcohol use, 16.1% (n = 272) were at risk of alcohol-related disorder (AUDIT-C score = 3 in women; = 4 in men), while 29.1% (n = 491) were screened positive for risky consumption (AUDIT-C score ≥ 4 in women; ≥ 5 in men).

HRQoL

In comparison to the non-clinical German population [61], physical aspects of HRQoL among PAD patients appeared to be severely impaired (approx. 17th percentile; SF-12 physical composite score: M = 37.92, SD = 9.78), whereas mental aspects of HRQoL were only mildly compromised (approx. 45th percentile; SF-12 mental composite score M = 51.03, SD = 11.18).

Path analysis

Original and revised model through respecification

A theory-driven path analysis (Fig 2) was performed to evaluate the interrelationships between walking impairment (WIQ), HRQoL (SF-12 mental and physical composite scores), health risk behavior (AUDIT-C; Fagerström-Test) and mental health measures (GAD7; PHQ9). The original model failed to show a sufficiently good fit (CMIN/DF = 10.223; TLI = .942; CFI = .981; RMSEA = .074). As a next step, the model was controlled for potentially confounding effects (i.e. sociodemographic factors, body mass index, comorbidities) and respecified accordingly; goodness-of-fit indices indicated to include age and sex as confounders (represented by grey lines in Fig 2). After controlling for confounding effects, the goodness-of-fit indices showed a better fit to the observed data (CMIN/DF = 7.506; TLI = .939; CFI = .982; RMSEA = .062). Modification indices and residual variances indicated to add one path to the original model, as represented by a red line in Fig 2, which further improved the overall model fit (CMIN/DF = 2.743; TLI = .984; CFI = .996; RMSEA = .032). As a last step, two paths and one error covariance that were not significant were constrained to 0 (represented by thin lines in Fig 2). The results from all model iterations are presented in S2 File. Following these iterations, the goodness-of-fit indices showed an excellent fit between the observed data and the revised model (CMIN/DF = 2.345; TLI = .987; CFI = .996; RMSEA = .028). The final revised model, with accompanying path coefficients (i.e. standardized regression weights) and squared multiple correlations, is presented in Fig 2. The results of the decomposition of effects based on the path analysis model are shown in Table 2.

Fig 2. Final path analysis model testing the influence of walking impairment on mental burden, health risk behavior, physical and mental HRQoL in PAD patients (N = 1 687).

Fig 2

The numbers on the arrows are standardized regression coefficients (β) that indicate the magnitude of effects between variables (coefficients < .10 not shown). Pathways are represented by thick lines, pathways that were constrained to 0 due to model respecification are represented by thin lines. Grey lines represent added covariates to the model (i.e. age, sex) for adjustment of confounding (coefficients not shown; see Table 2). The numbers above the boxes indicate the total proportion of variance explained in the model (R2).

Table 2. Decomposition of direct effects from the path analysis (Regression and error covariances).
Effect B / Cov S.E. β / r z p R2
On Walking Impairment .013
 Of Sex 5.369 1.261 .104 4.257 ***
 Of Age -.156 .068 -.056 -2.293 .022
On Anxiety Symptoms .133
 Of Sex -.792 .203 -.090 -3.909 ***
 Of Age -.120 .011 -.254 -11.048 ***
 Of Walking Impairment -.040 .004 -.237 -10.395 ***
On Depressiveness .189
 Of Sex -.960 .224 -.096 -4.282 ***
 Of Age -.120 .012 -.221 -9.964 ***
 Of Walking Impairment -.069 .004 -.356 -16.104 ***
On Physical HRQoL .446
 Of Depressiveness -.328 .040 -.157 -8.116 ***
 Of Walking Impairment .243 .008 .596 31.732 ***
On Mental HRQoL .549
 Of Anxiety Symptoms -.955 .071 -.350 -13.434 ***
 Of Depressiveness -1.031 .063 -.432 -16.388 ***
On Alcohol Drinking .092
 Of Sex 1.512 .123 .291 12.315 ***
 Of Age -.022 .007 -.079 -3.250 .001
 Of Anxiety Symptoms -.035 .014 -.059 -2.420 .016
On Tobacco Smoking .119
 Of Sex .381 .180 .078 2.114 .035
 Of Age -.063 .010 -.239 -6.372 ***
 Of Depressiveness .101 .018 .208 5.549 ***
Covariance Between Sex
 And Age .424 .099 .106 4.290 ***
Error Covariance Between Depressiveness
 And Anxiety Symptoms 12.208 .490 .764 24.906 ***
Error Covariance Between Mental HRQoL
 And Physical HRQoL -13.726 1.366 -.252 -10.047 ***

Table columns: unstandardized beta (B) or covariance (Cov) coefficient, the standard error for the unstandardized beta or covariance (S.E.), the standardized beta (β) or Pearson correlation coefficient (r), the critical ratio (z), and the probability value (p; *** < .001). β / r >.10 are highlighted in bold.

Walking impairment, mental health burden and health risk behavior

Limitations due to IC symptoms were associated with an overall increase in mental burden; in the model, walking impairment had a moderate direct effect on depressive symptoms (β = -.36) and, to a lesser extent, on anxiety symptoms (β = -.24). The model explained 19% and 13% of the variance in depressive and anxiety symptoms, with age and sex accounting for a large portion of the total explained variance (Table 2).

Depressive symptoms, in turn, had a small to moderate direct effect on the amount of tobacco smoking (β = .21), while anxiety symptoms had a negligible direct effect on alcohol drinking (β = -.06). The model explained 12% and 9% of the variance in tobacco and alcohol use, but again with age and sex accounting for the large portion of the explained variance. The indirect effects of walking impairment on tobacco and alcohol use mediated through mental health burden (i.e. depressive and anxiety symptoms) are considered negligible (total indirect β’s < .10).

Walking impairment on health-related quality of life

Walking impairment had a large direct effect on lower physical HRQoL (β = .60). In addition, walking impairment was also substantially predictive of lower mental HRQoL, although fully mediated by an increase in depressive and anxiety symptoms (total indirect β = .24). Overall, the model explained 45% and 55% of the variance in physical and mental HRQoL.

Discussion

Mental health

The descriptive results show that patients with PAD are at much higher risk of presenting depressive symptoms compared with the general population [59, 60]. The reported prevalence is in good agreement with previous studies [17]; for instance, depression or depressive symptoms have been observed in 16% [14], 19.6% [13], 21.7% [15], 24% [65], 30% [12], up to 36.1% shortly before revascularization [66], compared to 48.3% showing at least mild depressive symptoms in this study, and of these, 18.1% showings signs of clinical depression (PHQ-9 score > = 10). Finally, results from the path model confirm that young female PAD patients are at modestly higher risk to develop depressive symptoms [17, 29, 67, 68].

Moreover, the path analysis results support the hypothesis that poor walking ability contributes to depressive symptoms [1417, 65, 69]. These findings support previous studies that show an association between PAD outcomes and depressive symptoms. PAD patients suffering from depressive symptoms are more likely to have other clinical symptoms such as chest discomfort, shortness of breath, and heart palpitations [15]. In addition, comorbid depressive symptoms are associated with an increased risk of PAD events [19], secondary cardiovascular events [22], major amputations [20, 70] and mortality [13]. Finally, PAD patients with depressive symptoms are less willing to exercise [69] and more likely to have recurrent symptoms after revascularization [66], which may further aggravate PAD symptoms. Although the current indicate a single direction of effect, the relationship between depression and PAD outcomes has been hypothesized to be bi-directional in a mutually reinforcing cycle, meaning that PAD outcomes are thought to increase depression and vice versa [71].

The body of literature examining other mental health issues in PAD patients is limited, as much of the literature tends to focus on the relationship between depression and PAD. That being said, the descriptive results show that PAD patients are also at much higher risk of having comorbid anxiety symptoms compared with the general population [50]. Anxiety symptoms were observed in 35.6%, which is comparable to 30% [12] and 24.4% [11] in other studies. The path analysis results support the hypothesis that poor walking ability contributes to anxiety symptoms. As for depression, it is reasonable to assume that anxiety disorders and PAD outcomes are also in a bidirectional relationship, as anxiety has been previously identified as a risk factor for the development of IC [18] and is associated with severe leg symptoms (i.e. pain at rest) [12]. Furthermore, it was shown that anxiety enhances the detrimental effect of depressive symptoms on health status after revascularization [72]. Future studies should further explore this association and whether tailored mental health interventions would improve PAD outcomes.

Health risk behavior

The descriptive results also demonstrate that PAD patients, especially men of younger age, are at great risk of engaging in health risk behavior such as tobacco use and excessive alcohol consumption. In the present study, 45.2% of patients were identified to be at risk of an alcohol-related disorder or exhibit risky alcohol consumption, compared to 39% found in a previous study [73]. Additionally, 39.6% of PAD patients were identified as smokers. Other research investigating home-based exercise programs in PAD patients reported smoking frequencies ranging from as little as 21.4% [44] up to 86.1% [74], suggesting a considerable heterogeneity between studies. Such health risk behavior can cause profound damage to vascular health. In particular, tobacco use is the single most important cause and leading risk factor of PAD [3] with a threshold- [75], dose-response-relationship [76], fostering progression of functional impairment [77, 78] and thereby resulting in a reduced HRQoL [78]. In terms of alcohol consumption, a U- or J-shape dose-response relationship between alcohol use and PAD has been suggested in various studies, meaning that low-to-moderate alcohol consumption, (particularly of red wine [79]) may result in a reduction of cardiovascular events and mortality [3234, 80], while heavy/risky drinking is severely detrimental to PAD [3136].

Mounting evidence suggests that risky health behaviors are part of the underlying mechanistic link between mental health status and PAD outcomes [10]. The path analysis results support the hypothesis that mental distress results in an increased desire to smoke among PAD patients [19], which in turn may contribute to the pathogenesis and deterioration of PAD. Regardless of PAD status, smoking is generally suggested as a self-medication strategy to cope with mental distress [81, 82]. However, there is evidence of a bidirectional relationship between depression and smoking, in which depressive symptoms lead to self-medication by smoking, which in turn causes changes in the dopaminergic system leading to depressed mood [82]—a vicious that eventually leads to a further deterioration of PAD.

One unanticipated result of the study was that mental burden was not associated with an increase in alcohol use. In the general population, the current literature suggests a causal linkage of alcohol use increasing the risk for depression, while alcohol being used to self-medicate symptoms of depression to reduce emotional distress [83]. These findings cannot be confirmed for PAD patients, suggesting that alcohol use plays no major role in the mechanistic relationship between mental distress and negative PAD outcomes. However, it is important to note that patients with a clinically diagnosed affective and/or substance use disorder were excluded from the study, which may have affected the current results. It is possible that severely depressed patients and those suffering severely from anxiety are more likely to show stronger signs of alcohol use disorder [84], which however remains to be investigated in further studies.

HRQoL

Compared to the general population, PAD patients were also found to have an impaired HRQoL, which is largely consistent with previous studies that have demonstrated poor HRQoL in PAD patients [45, 85, 86]. Similar to previous studies [23, 24, 45, 85], lower HRQoL was more evident for the physical aspects of HRQoL.

Moreover, in accordance with previous findings [2326], the current path analysis support the hypothesis that poor HRQoL is largely related to increasing walking impairment. For mental HRQoL, this effect was largely mediated by the PAD patient’s magnitude of depressive and anxiety symptoms, which highlights that the reduction of HRQoL is to large extent due to IC’s detrimental effect on mental health [46]. The detrimental effect of mental health on HRQoL measures has been well demonstrated in previous studies [28, 29]. Similarly, in patients with chronic heart failure, depression predicted physical and mental aspects of HRQoL [87]. Notably, these effects were independent of other physically debilitating comorbidities that also have an impact on patients’ HRQoL (e.g. lung diseases).

Implications for clinical practice

The path analysis results provide a reasonable explanation of the complex interaction between functional walking limitations, mental burden, health risk behavior and quality of life in PAD patients, holding important clinical and public health implications. First and foremost, improving IC symptoms is a vital treatment approach for PAD patients, since walking impairment was found to be a crucial determinant of mental burden and HRQoL. Because the improvement of HRQoL is a key therapeutic goal in the treatment of PAD patients, staying physically active with appropriate exercise programs and other treatment modalities to improve walking impairment (e.g. revascularization) remains an integral key part of PAD treatment. The secondary benefits of walking improvement on HRQoL through exercise therapy is well established [8890]. Importantly, to monitor changes in walking impairment as a result of treatment, the treating clinicians should use patient-reported measures of functional disability [25, 26], as these are the primary predictor of HRQoL [25, 26]. In contrast, HRQoL in PAD patients is only marginally associated with clinical markers as well as objective measurements of walking impairment [9193], or HRQoL assessments of physicians [94], suggesting that the experience of HRQoL is not fully reflected by these surrogate measures. The importance of HRQoL, reflecting the physical, social and mental well-being of PAD patients, is being increasingly recognized by physicians and stakeholders (patients, relatives, etc.) as a significant indicator of treatment success [95, 96], which is nowadays also acknowledged in several international guidelines [5, 97, 98].

Second, the presence of mental health issues has been related to adverse health outcomes and influences the prognosis and treatment response of PAD, which points to the importance of integrating psychological aspects into therapy conversations. To break the self-perpetuating circle between mental health burden and PAD progression (i.e., amputation, cardiovascular events) [1317, 1922], vascular care providers should pay close attention to mental health challenges of PAD patients by integrating mental health care providers in an interdisciplinary/collaborative care model [17], which likely would have secondary benefits in reducing PAD risk and improving HRQoL. In patients with corona artery disease, previous studies have demonstrated the positive impact of depression and anxiety care and stress management on cardiovascular and psychological outcomes [99101]. Likewise, the treatment of depressive symptoms improve physical functioning in older adults [102], which should therefore be considered a viable therapeutic approach in the management of PAD. Remarkably, there is already a guideline on addressing depression for patients with coronary artery disease [103], recommending to use the PHQ-9 to screen for depression, but not yet for PAD, which should be urgently addressed in the near future as psychosocial stressors play a critical role in PAD development and progression. For instance, psychological distress [104], including work-related stress [105], was found to elevate the risk for PAD and show a poor PAD recovery pathway [29].

Third, reducing health risk behavior should always be a key target of PAD management for effectively reducing adverse PAD outcomes, as tobacco and excessive alcohol use are known to be potent factors in the development and progression of PAD. Changes in health risk behavior should be also addressed through the delivery of PAD lifestyle interventions ([106], e.g. smoking cessation programs), which are usually guided by conceptual frameworks for risk behavior modification (for an overview, see [107]). The use of lifestyle interventions is currently low, although they have substantial secondary cardiovascular benefits and may prevent further worsening of PAD [106]. Finally, it has been speculated that depressed patients use smoking as a form of self-medication to relieve symptoms; accordingly, modifying risk health behaviors could be achieved by improving mental health. In fact, there is good evidence that psychological interventions are effective in reducing smoking by people with mental health problems [108], which may in turn have a beneficial effect on the patient’s PAD status and HRQoL.

Limitations

Several potential limitations must be mentioned when interpreting the findings of this study. Since all measures were collected cross-sectional, no certain conclusions can be drawn about temporal and causal relationships. Therefore, the directional arrows in the path analysis should be interpreted with great caution, as path analysis cannot prove causality out of a cross-sectional study (which can be proven only through the correct research design), but rather intended to test whether the data are consistent with the postulated causal model based on theoretical considerations. With that said, the current models can help to generate causal hypotheses for future studies, even more so given the “real-world” setting of this study with a study sample that is highly representative of PAD patients with IC.

Furthermore, despite the largely theory-driven approach, it is important to treat some of the results with caution, as some of them show trivial effect sizes although being statistically significant. For path analysis, an adequate sample size should normally be ten times the amount of the parameters as a rule of thumb, whereas in this study the sample is almost 200 times higher, which increases the power of detecting very small effects resulting in statistical significance. Although larger studies such as this one are unquestionably valuable and generally viewed as a favorable development, with all parameter values estimated with higher accuracy, it is important to consider how clinically and practically ‘relevant’ these effects really are in relation to prior literature. Therefore, to avoid an overinterpretation of effects (‘large sample size fallacy’), it is important to interpret all effects in the model appropriately according to their size, and not treat statistical significance synonymously with practical significance [109]. At the same time, the large sample size can be regarded as a strength of the study, as the current findings comprise robust evidence and are most likely not caused by a statistical artifact.

Conclusions

In conclusion, the present results demonstrate that PAD patients often experience substantial impairment in terms of functional health status, mental burden and HRQoL. In order to better understand the complex relationship between these factors, the study sought to integrate clinical indicators and psychosocial aspects of PAD into a single theoretical model, thereby supporting a more comprehensive, multimodal therapeutic approach to PAD. The findings clearly indicate the importance of not only including somatic health status in the treatment of PAD, but also accounting for psychosocial aspects in PAD. To expand the explanatory ability of the complex relationships in the field of PAD, future research should put greater efforts in a theory-based approach using more sophisticated multivariate data analysis techniques (e.g. structural equation models) that defines the entire set of relationships.

Supporting information

S1 Fig. Flow chart of the randomized-controlled trial.

(TIF)

S1 File. All relevant study data (SPSS file).

(SAV)

S2 File. Model iterations.

(PDF)

Acknowledgments

We would like to thank Finja Mäueler, who assisted us with great enthusiasm and commitment in the preparation of the manuscript.

Data Availability

All relevant data are included in the S1 File (SAV).

Funding Statement

This study received funding from the German Innovation Fund (01NVF17013) of the Federal Joint Committee (G- BA), the highest decision- making body of the joint self- government of physicians, dentists, hospitals and health insurance funds in Germany. The use of grant funds is monitored by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR). Neither the G- BA nor the DLR was involved in the actual conduct of this work (ie, study design, data collection and analysis, decision to publish, or preparation of the manuscript).

References

  • 1.Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40. doi: 10.1016/S0140-6736(13)61249-0 [DOI] [PubMed] [Google Scholar]
  • 2.Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26. doi: 10.1161/CIRCRESAHA.116.303849 [DOI] [PubMed] [Google Scholar]
  • 3.Song P, Rudan D, Zhu Y, Fowkes FJI, Rahimi K, Fowkes FGR, et al. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019;7(8):e1020–e30. doi: 10.1016/S2214-109X(19)30255-4 [DOI] [PubMed] [Google Scholar]
  • 4.Sampson UK, Fowkes FG, McDermott MM, Criqui MH, Aboyans V, Norman PE, et al. Global and regional burden of death and disability from peripheral artery disease: 21 world regions, 1990 to 2010. Glob Heart. 2014;9(1):145–58.e21. doi: 10.1016/j.gheart.2013.12.008 [DOI] [PubMed] [Google Scholar]
  • 5.Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e686–e725. doi: 10.1161/CIR.0000000000000470 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hamburg NM, Creager MA. Pathophysiology of Intermittent Claudication in Peripheral Artery Disease. Circ J. 2017;81(3):281–9. doi: 10.1253/circj.CJ-16-1286 [DOI] [PubMed] [Google Scholar]
  • 7.Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res. 2015;116(9):1527–39. doi: 10.1161/CIRCRESAHA.116.303566 [DOI] [PubMed] [Google Scholar]
  • 8.Anand SS, Caron F, Eikelboom JW, Bosch J, Dyal L, Aboyans V, et al. Major Adverse Limb Events and Mortality in Patients With Peripheral Artery Disease: The COMPASS Trial. J Am Coll Cardiol. 2018;71(20):2306–15. doi: 10.1016/j.jacc.2018.03.008 [DOI] [PubMed] [Google Scholar]
  • 9.Agnelli G, Belch JJF, Baumgartner I, Giovas P, Hoffmann U. Morbidity and mortality associated with atherosclerotic peripheral artery disease: A systematic review. Atherosclerosis. 2020;293:94–100. doi: 10.1016/j.atherosclerosis.2019.09.012 [DOI] [PubMed] [Google Scholar]
  • 10.Ramirez JL, Drudi LM, Grenon SM. Review of biologic and behavioral risk factors linking depression and peripheral artery disease. Vasc Med. 2018;23(5):478–88. doi: 10.1177/1358863X18773161 [DOI] [PubMed] [Google Scholar]
  • 11.Aragao JA, de Andrade LGR, Neves OMG, Aragao ICS, Aragao FMS, Reis FP. Anxiety and depression in patients with peripheral arterial disease admitted to a tertiary hospital. J Vasc Bras. 2019;18:e20190002. doi: 10.1590/1677-5449.190002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Smolderen KG, Hoeks SE, Pedersen SS, van Domburg RT, L II de, Poldermans D. Lower-leg symptoms in peripheral arterial disease are associated with anxiety, depression, and anhedonia. Vasc Med. 2009;14(4):297–304. doi: 10.1177/1358863X09104658 [DOI] [PubMed] [Google Scholar]
  • 13.McDermott MM, Guralnik JM, Tian L, Kibbe MR, Ferrucci L, Zhao L, et al. Incidence and Prognostic Significance of Depressive Symptoms in Peripheral Artery Disease. J Am Heart Assoc. 2016;5(3):e002959. doi: 10.1161/JAHA.115.002959 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Smolderen KG, Aquarius AE, de Vries J, Smith OR, Hamming JF, Denollet J. Depressive symptoms in peripheral arterial disease: a follow-up study on prevalence, stability, and risk factors. J Affect Disord. 2008;110(1–2):27–35. doi: 10.1016/j.jad.2007.12.238 [DOI] [PubMed] [Google Scholar]
  • 15.Mc Dermott MM, Greenland P, Guralnik JM, Liu K, Criqui MH, Pearce WH, et al. Depressive symptoms and lower extremity functioning in men and women with peripheral arterial disease. J Gen Intern Med. 2003;18(6):461–7. doi: 10.1046/j.1525-1497.2003.20527.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ruo B, Liu K, Tian L, Tan J, Ferrucci L, Guralnik JM, et al. Persistent depressive symptoms and functional decline among patients with peripheral arterial disease. Psychosom Med. 2007;69(5):415–24. doi: 10.1097/PSY.0b013e318063ef5c [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Brostow DP, Petrik ML, Starosta AJ, Waldo SW. Depression in patients with peripheral arterial disease: A systematic review. Eur J Cardiovasc Nurs. 2017;16(3):181–93. doi: 10.1177/1474515116687222 [DOI] [PubMed] [Google Scholar]
  • 18.Bowlin SJ, Medalie JH, Flocke SA, Zyzanski SJ, Goldbourt U. Epidemiology of intermittent claudication in middle-aged men. Am J Epidemiol. 1994;140(5):418–30. doi: 10.1093/oxfordjournals.aje.a117264 [DOI] [PubMed] [Google Scholar]
  • 19.Grenon SM, Hiramoto J, Smolderen KG, Vittinghoff E, Whooley MA, Cohen BE. Association between depression and peripheral artery disease: insights from the heart and soul study. J Am Heart Assoc. 2012;1(4):e002667. doi: 10.1161/JAHA.112.002667 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Arya S, Lee S, Zahner GJ, Cohen BE, Hiramoto J, Wolkowitz OM, et al. The association of comorbid depression with mortality and amputation in veterans with peripheral artery disease. J Vasc Surg. 2018;68(2):536–45.e2. doi: 10.1016/j.jvs.2017.10.092 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wattanakit K, Williams JE, Schreiner PJ, Hirsch AT, Folsom AR. Association of anger proneness, depression and low social support with peripheral arterial disease: the Atherosclerosis Risk in Communities Study. Vasc Med. 2005;10(3):199–206. doi: 10.1191/1358863x05vm622oa [DOI] [PubMed] [Google Scholar]
  • 22.Cherr GS, Zimmerman PM, Wang J, Dosluoglu HH. Patients with depression are at increased risk for secondary cardiovascular events after lower extremity revascularization. J Gen Intern Med. 2008;23(5):629–34. doi: 10.1007/s11606-008-0560-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Dumville JC, Lee AJ, Smith FB, Fowkes FG. The health-related quality of life of people with peripheral arterial disease in the community: the Edinburgh Artery Study. Br J Gen Pract. 2004;54(508):826–31. [PMC free article] [PubMed] [Google Scholar]
  • 24.Breek JC, Hamming JF, De Vries J, Aquarius AE, van Berge Henegouwen DP. Quality of life in patients with intermittent claudication using the World Health Organisation (WHO) questionnaire. Eur J Vasc Endovasc Surg. 2001;21(2):118–22. doi: 10.1053/ejvs.2001.1305 [DOI] [PubMed] [Google Scholar]
  • 25.Gardner AW, Montgomery PS, Wang M, Xu C. Predictors of health-related quality of life in patients with symptomatic peripheral artery disease. J Vasc Surg. 2018;68(4):1126–34. doi: 10.1016/j.jvs.2017.12.074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Muller-Buhl U, Engeser P, Klimm HD, Wiesemann A. Quality of life and objective disease criteria in patients with intermittent claudication in general practice. Fam Pract. 2003;20(1):36–40. doi: 10.1093/fampra/20.1.36 [DOI] [PubMed] [Google Scholar]
  • 27.Issa SM, Hoeks SE, Scholte op Reimer WJ, Van Gestel YR, Lenzen MJ, Verhagen HJ, et al. Health-related quality of life predicts long-term survival in patients with peripheral artery disease. Vasc Med. 2010;15(3):163–9. doi: 10.1177/1358863X10364208 [DOI] [PubMed] [Google Scholar]
  • 28.Smolderen KG, Safley DM, House JA, Spertus JA, Marso SP. Percutaneous transluminal angioplasty: association between depressive symptoms and diminished health status benefits. Vasc Med. 2011;16(4):260–6. doi: 10.1177/1358863X11415568 [DOI] [PubMed] [Google Scholar]
  • 29.Qua Jelani, Mena-Hurtado C, Burg M, Soufer R, Gosch K, Jones PG, et al. Relationship Between Depressive Symptoms and Health Status in Peripheral Artery Disease: Role of Sex Differences. Journal of the American Heart Association. 2020;9(16):e014583. doi: 10.1161/JAHA.119.014583 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Hamer M, Molloy GJ, Stamatakis E. Psychological distress as a risk factor for cardiovascular events: pathophysiological and behavioral mechanisms. J Am Coll Cardiol. 2008;52(25):2156–62. doi: 10.1016/j.jacc.2008.08.057 [DOI] [PubMed] [Google Scholar]
  • 31.Yang S, Wang S, Yang B, Zheng J, Cai Y, Yang Z. Alcohol consumption is a risk factor for lower extremity arterial disease in Chinese patients with T2DM. Journal of diabetes research. 2017;2017. doi: 10.1155/2017/8756978 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Athyros VG, Liberopoulos EN, Mikhailidis DP, Papageorgiou AA, Ganotakis ES, Tziomalos K, et al. Association of Drinking Pattern and Alcohol Beverage Type With the Prevalence of Metabolic Syndrome, Diabetes, Coronary Heart Disease, Stroke, and Peripheral Arterial Disease in a Mediterranean Cohort. Angiology. 2007;58(6):689–97. doi: 10.1177/0003319707306146 [DOI] [PubMed] [Google Scholar]
  • 33.Fernández-Solà J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nature Reviews Cardiology. 2015;12(10):576–87. doi: 10.1038/nrcardio.2015.91 [DOI] [PubMed] [Google Scholar]
  • 34.Bell S, Daskalopoulou M, Rapsomaniki E, George J, Britton A, Bobak M, et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records. BMJ. 2017;356:j909. doi: 10.1136/bmj.j909 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Burgess S. Alcohol consumption and cardiovascular disease: A Mendelian randomization study. 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Vliegenthart R, Geleijnse JM, Hofman A, Meijer WT, van Rooij FJ, Grobbee DE, et al. Alcohol consumption and risk of peripheral arterial disease: the Rotterdam study. Am J Epidemiol. 2002;155(4):332–8. doi: 10.1093/aje/155.4.332 [DOI] [PubMed] [Google Scholar]
  • 37.Rezvani F, Heider D, Härter M, König H-H, Bienert F, Brinkmann J, et al. Telephone health coaching with exercise monitoring using wearable activity trackers (TeGeCoach) for improving walking impairment in peripheral artery disease: study protocol for a randomised controlled trial and economic evaluation. BMJ Open. 2020;10(6):e032146. doi: 10.1136/bmjopen-2019-032146 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Asch DA, Jedrziewski MK, Christakis NA. Response rates to mail surveys published in medical journals. J Clin Epidemiol. 1997;50(10):1129–36. doi: 10.1016/s0895-4356(97)00126-1 [DOI] [PubMed] [Google Scholar]
  • 39.Frans FA, Zagers MB, Jens S, Bipat S, Reekers JA, Koelemay MJ. The relationship of walking distances estimated by the patient, on the corridor and on a treadmill, and the Walking Impairment Questionnaire in intermittent claudication. J Vasc Surg. 2013;57(3):720–7.e1. doi: 10.1016/j.jvs.2012.09.044 [DOI] [PubMed] [Google Scholar]
  • 40.Tew G, Copeland R, Le Faucheur A, Gernigon M, Nawaz S, Abraham P. Feasibility and validity of self-reported walking capacity in patients with intermittent claudication. J Vasc Surg. 2013;57(5):1227–34. doi: 10.1016/j.jvs.2012.02.073 [DOI] [PubMed] [Google Scholar]
  • 41.McDermott MM, Liu K, Guralnik JM, Martin GJ, Criqui MH, Greenland P. Measurement of walking endurance and walking velocity with questionnaire: validation of the walking impairment questionnaire in men and women with peripheral arterial disease. J Vasc Surg. 1998;28(6):1072–81. doi: 10.1016/s0741-5214(98)70034-5 [DOI] [PubMed] [Google Scholar]
  • 42.Myers SA, Johanning JM, Stergiou N, Lynch TG, Longo GM, Pipinos II. Claudication distances and the Walking Impairment Questionnaire best describe the ambulatory limitations in patients with symptomatic peripheral arterial disease. J Vasc Surg. 2008;47(3):550–5. doi: 10.1016/j.jvs.2007.10.052 [DOI] [PubMed] [Google Scholar]
  • 43.Ware JE Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–33. doi: 10.1097/00005650-199603000-00003 [DOI] [PubMed] [Google Scholar]
  • 44.McDermott MM, Guralnik JM, Criqui MH, Ferrucci L, Zhao L, Liu K, et al. Home-based walking exercise in peripheral artery disease: 12-month follow-up of the GOALS randomized trial. J Am Heart Assoc. 2014;3(3):e000711. doi: 10.1161/JAHA.113.000711 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Wu AZ, Coresh J, Selvin E, Tanaka H, Heiss G, Hirsch AT, et al. Lower Extremity Peripheral Artery Disease and Quality of Life Among Older Individuals in the Community. Journal of the American Heart Association. 2017;6(1):e004519 doi: 10.1161/JAHA.116.004519 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Gill SC, Butterworth P, Rodgers B, Mackinnon A. Validity of the mental health component scale of the 12-item Short-Form Health Survey (MCS-12) as measure of common mental disorders in the general population. Psychiatry Res. 2007;152(1):63–71. doi: 10.1016/j.psychres.2006.11.005 [DOI] [PubMed] [Google Scholar]
  • 47.Vilagut G, Forero CG, Pinto-Meza A, Haro JM, De Graaf R, Bruffaerts R, et al. The mental component of the short-form 12 health survey (SF-12) as a measure of depressive disorders in the general population: results with three alternative scoring methods. Value Health. 2013;16(4):564–73. doi: 10.1016/j.jval.2013.01.006 [DOI] [PubMed] [Google Scholar]
  • 48.Kroenke K, Spitzer RL. The PHQ-9: A new depression diagnostic and severity measure. Psychiatric Annals. 2002;32(9):509–15. [Google Scholar]
  • 49.Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7. doi: 10.1001/archinte.166.10.1092 [DOI] [PubMed] [Google Scholar]
  • 50.Lowe B, Decker O, Muller S, Brahler E, Schellberg D, Herzog W, et al. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med Care. 2008;46(3):266–74. doi: 10.1097/MLR.0b013e318160d093 [DOI] [PubMed] [Google Scholar]
  • 51.Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991;86(9):1119–27. [DOI] [PubMed] [Google Scholar]
  • 52.Fagerström K-O. Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav. 1978;3(3–4):235–41. doi: 10.1016/0306-4603(78)90024-2 [DOI] [PubMed] [Google Scholar]
  • 53.Pomerleau CS, Carton SM, Lutzke ML, Flessland KA, Pomerleau OF. Reliability of the Fagerstrom tolerance questionnaire and the Fagerstrom test for nicotine dependence. Addict Behav. 1994;19(1):33–9. doi: 10.1016/0306-4603(94)90049-3 [DOI] [PubMed] [Google Scholar]
  • 54.Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch Intern Med. 1998;158(16):1789–95. doi: 10.1001/archinte.158.16.1789 [DOI] [PubMed] [Google Scholar]
  • 55.Meneses-Gaya C, Zuardi AW, Loureiro SR, Hallak JE, Trzesniak C, de Azevedo Marques JM, et al. Is the full version of the AUDIT really necessary? Study of the validity and internal construct of its abbreviated versions. Alcoholism: Clinical and Experimental Research. 2010;34(8):1417–24. doi: 10.1111/j.1530-0277.2010.01225.x [DOI] [PubMed] [Google Scholar]
  • 56.Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 1977;39(1):1–22. [Google Scholar]
  • 57.Hair JF. Multivariate data analysis. 2009.
  • 58.Dong Y, Peng C-YJ. Principled missing data methods for researchers. SpringerPlus. 2013;2(1):1–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Hinz A, Ernst J, Glaesmer H, Brähler E, Rauscher FG, Petrowski K, et al. Frequency of somatic symptoms in the general population: Normative values for the Patient Health Questionnaire-15 (PHQ-15). J Psychosom Res. 2017;96:27–31. doi: 10.1016/j.jpsychores.2016.12.017 [DOI] [PubMed] [Google Scholar]
  • 60.Kocalevent R-D, Hinz A, Brähler E. Standardization of the depression screener patient health questionnaire (PHQ-9) in the general population. Gen Hosp Psychiatry. 2013;35(5):551–5. doi: 10.1016/j.genhosppsych.2013.04.006 [DOI] [PubMed] [Google Scholar]
  • 61.Wirtz MA, Morfeld M, Glaesmer H, Brähler E. Normierung des SF-12 Version 2.0 zur Messung der gesundheitsbezogenen Lebensqualität in einer deutschen bevölkerungsrepräsentativen Stichprobe. Diagnostica. 2018. [Google Scholar]
  • 62.Kline RB. Principles and practice of structural equation modeling: Guilford publications; 2015. [Google Scholar]
  • 63.MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychol Methods. 1996;1(2):130. [Google Scholar]
  • 64.Lt Hu, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal. 1999;6(1):1–55. [Google Scholar]
  • 65.Arseven A, Guralnik JM, O’Brien E, Liu K, McDermott MM. Peripheral arterial disease and depressed mood in older men and women. Vasc Med. 2001;6(4):229–34. doi: 10.1177/1358836X0100600405 [DOI] [PubMed] [Google Scholar]
  • 66.Cherr GS, Wang J, Zimmerman PM, Dosluoglu HH. Depression is associated with worse patency and recurrent leg symptoms after lower extremity revascularization. J Vasc Surg. 2007;45(4):744–50. doi: 10.1016/j.jvs.2006.11.057 [DOI] [PubMed] [Google Scholar]
  • 67.Smolderen KG, Spertus JA, Vriens PW, Kranendonk S, Nooren M, Denollet J. Younger women with symptomatic peripheral arterial disease are at increased risk of depressive symptoms. J Vasc Surg. 2010;52(3):637–44. doi: 10.1016/j.jvs.2010.04.025 [DOI] [PubMed] [Google Scholar]
  • 68.Grenon SM, Cohen BE, Smolderen K, Vittinghoff E, Whooley MA, Hiramoto J. Peripheral arterial disease, gender, and depression in the Heart and Soul Study. J Vasc Surg. 2014;60(2):396–403. doi: 10.1016/j.jvs.2014.02.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Ragazzo L, Puech-Leao P, Wolosker N, de Luccia N, Saes G, Ritti-Dias RM, et al. Symptoms of anxiety and depression and their relationship with barriers to physical activity in patients with intermittent claudication. Clinics. 2021;76. doi: 10.6061/clinics/2021/e1802 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Abi-Jaoudé JG, Naiem AA, Edwards T, Lukaszewski M-A, Obrand DI, Steinmetz OK, et al. Comorbid Depression is Associated with Increased Major Adverse Limb Events in Peripheral Arterial Disease: A systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2022. doi: 10.1016/j.ejvs.2022.04.020 [DOI] [PubMed] [Google Scholar]
  • 71.Ramirez JL, Grenon SM. Depression and peripheral artery disease: why we should care and what we can do. CVIR Endovasc. 2018;1(1):14. doi: 10.1186/s42155-018-0017-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Pedersen SS, Denollet J, Spindler H, Ong AT, Serruys PW, Erdman RA, et al. Anxiety enhances the detrimental effect of depressive symptoms on health status following percutaneous coronary intervention. J Psychosom Res. 2006;61(6):783–9. doi: 10.1016/j.jpsychores.2006.06.009 [DOI] [PubMed] [Google Scholar]
  • 73.Garcia-Diaz AM, Marchena PJ, Toril J, Arnedo G, Muñoz-Torrero JFS, Yeste M, et al. Alcohol consumption and outcome in stable outpatients with peripheral artery disease. J Vasc Surg. 2011;54(4):1081–7. doi: 10.1016/j.jvs.2011.03.285 [DOI] [PubMed] [Google Scholar]
  • 74.Manfredini R, Lamberti N, Manfredini F, Straudi S, Fabbian F, Rodriguez Borrego MA, et al. Gender differences in outcomes following a pain-free, home-based exercise program for claudication. J Womens Health. 2019;28(9):1313–21. doi: 10.1089/jwh.2018.7113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Agarwal S. The association of active and passive smoking with peripheral arterial disease: results from NHANES 1999–2004. Angiology. 2009;60(3):335–45. doi: 10.1177/0003319708330526 [DOI] [PubMed] [Google Scholar]
  • 76.Willigendael EM, Teijink JA, Bartelink M-L, Kuiken BW, Boiten J, Moll FL, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65. doi: 10.1016/j.jvs.2004.08.049 [DOI] [PubMed] [Google Scholar]
  • 77.Gardner AW. The effect of cigarette smoking on exercise capacity in patients with intermittent claudication. Vasc Med. 1996;1(3):181–6. doi: 10.1177/1358863X9600100302 [DOI] [PubMed] [Google Scholar]
  • 78.Fritschi C, Collins EG, O’Connell S, McBurney C, Butler J, Edwards L. The effects of smoking status on walking ability and health-related quality-of-life in patients with peripheral arterial disease. The Journal of cardiovascular nursing. 2013;28(4):380. doi: 10.1097/JCN.0b013e31824af587 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Karatzi K, Papamichael C, Aznaouridis K, Karatzis E, Lekakis J, Matsouka C, et al. Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis. 2004;15(8). doi: 10.1097/00019501-200412000-00005 [DOI] [PubMed] [Google Scholar]
  • 80.Camargo CA, Stampfer MJ, Glynn RJ, Gaziano JM, Manson JE, Goldhaber SZ, et al. Prospective Study of Moderate Alcohol Consumption and Risk of Peripheral Arterial Disease in US Male Physicians. Circulation. 1997;95(3):577–80. doi: 10.1161/01.cir.95.3.577 [DOI] [PubMed] [Google Scholar]
  • 81.Friedman AS. Smoking to cope: Addictive behavior as a response to mental distress. J Health Econ. 2020;72:102323. doi: 10.1016/j.jhealeco.2020.102323 [DOI] [PubMed] [Google Scholar]
  • 82.Breslau N, Peterson EL, Schultz LR, Chilcoat HD, Andreski P. Major depression and stages of smoking: A longitudinal investigation. Arch Gen Psychiatry. 1998;55(2):161–6. [DOI] [PubMed] [Google Scholar]
  • 83.Bolton JM, Robinson J, Sareen J. Self-medication of mood disorders with alcohol and drugs in the National Epidemiologic Survey on Alcohol and Related Conditions. J Affect Disord. 2009;115(3):367–75. doi: 10.1016/j.jad.2008.10.003 [DOI] [PubMed] [Google Scholar]
  • 84.Sullivan LE, Fiellin DA, O’Connor PG. The prevalence and impact of alcohol problems in major depression: a systematic review. The American journal of medicine. 2005;118(4):330–41. doi: 10.1016/j.amjmed.2005.01.007 [DOI] [PubMed] [Google Scholar]
  • 85.Regensteiner JG, Hiatt WR, Coll JR, Criqui MH, Treat-Jacobson D, McDermott MM, et al. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS) Program. Vasc Med. 2008;13(1):15–24. doi: 10.1177/1358863X07084911 [DOI] [PubMed] [Google Scholar]
  • 86.Maksimovic M, Vlajinac H, Marinkovic J, Kocev N, Voskresenski T, Radak D. Health-related quality of life among patients with peripheral arterial disease. Angiology. 2014;65(6):501–6. doi: 10.1177/0003319713488640 [DOI] [PubMed] [Google Scholar]
  • 87.Faller H, Störk S, Schuler M, Schowalter M, Steinbüchel T, Ertl G, et al. Depression and disease severity as predictors of health-related quality of life in patients with chronic heart failure—a structural equation modeling approach. J Card Fail. 2009;15(4):286–92.e2. doi: 10.1016/j.cardfail.2008.10.022 [DOI] [PubMed] [Google Scholar]
  • 88.Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT. Exercise training for claudication. N Engl J Med. 2002;347(24):1941–51. doi: 10.1056/NEJMra021135 [DOI] [PubMed] [Google Scholar]
  • 89.Kruidenier LM, Viechtbauer W, Nicolai SP, Buller H, Prins MH, Teijink JA. Treatment for intermittent claudication and the effects on walking distance and quality of life. Vascular. 2012;20(1):20–35. doi: 10.1258/vasc.2011.ra0048 [DOI] [PubMed] [Google Scholar]
  • 90.Guidon M, McGee H. Exercise-based interventions and health-related quality of life in intermittent claudication: a 20-year (1989–2008) review. Eur J Cardiovasc Prev Rehabil. 2010;17(2):140–54. doi: 10.1097/HJR.0b013e3283377f08 [DOI] [PubMed] [Google Scholar]
  • 91.Chetter IC, Dolan P, Spark JI, Scott DJ, Kester RC. Correlating clinical indicators of lower-limb ischaemia with quality of life. Cardiovasc Surg. 1997;5(4):361–6. doi: 10.1016/s0967-2109(97)00011-2 [DOI] [PubMed] [Google Scholar]
  • 92.Barletta G, Perna S, Sabba C, Catalano A, O’Boyle C, Brevetti G. Quality of life in patients with intermittent claudication: relationship with laboratory exercise performance. Vasc Med. 1996;1(1):3–7. doi: 10.1177/1358863X9600100102 [DOI] [PubMed] [Google Scholar]
  • 93.Long J, Modrall JG, Parker BJ, Swann A, Welborn MB 3rd, Anthony T. Correlation between ankle-brachial index, symptoms, and health-related quality of life in patients with peripheral vascular disease. J Vasc Surg. 2004;39(4):723–7. doi: 10.1016/j.jvs.2003.12.006 [DOI] [PubMed] [Google Scholar]
  • 94.Pell JP. Impact of intermittent claudication on quality of life. The Scottish Vascular Audit Group. Eur J Vasc Endovasc Surg. 1995;9(4):469–72. doi: 10.1016/s1078-5884(05)80018-8 [DOI] [PubMed] [Google Scholar]
  • 95.Harwood AE, Totty JP, Broadbent E, Smith GE, Chetter IC. Quality of life in patients with intermittent claudication. Gefasschirurgie. 2017;22(3):159–64. doi: 10.1007/s00772-017-0269-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Freitag MH, Bayerl B, Alber K, Gensichen J, Nagel E, Wohlgemuth WA. Gesundheitsbezogene Lebensqualität als Priorisierungskriterium in der Therapie der peripheren arteriellen Verschlusskrankheit. 2013.
  • 97.Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816. doi: 10.1093/eurheartj/ehx095 [DOI] [PubMed] [Google Scholar]
  • 98.Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(1):S5–S67. [DOI] [PubMed] [Google Scholar]
  • 99.Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nature Reviews Cardiology. 2018;15(4):215. doi: 10.1038/nrcardio.2017.189 [DOI] [PubMed] [Google Scholar]
  • 100.Huffman JC, Mastromauro CA, Beach SR, Celano CM, DuBois CM, Healy BC, et al. Collaborative Care for Depression and Anxiety Disorders in Patients With Recent Cardiac Events: The Management of Sadness and Anxiety in Cardiology (MOSAIC) Randomized Clinical Trial. JAMA Internal Medicine. 2014;174(6):927–35. doi: 10.1001/jamainternmed.2014.739 [DOI] [PubMed] [Google Scholar]
  • 101.Huffman JC, Mastromauro CA, Sowden G, Fricchione GL, Healy BC, Januzzi JL. Impact of a depression care management program for hospitalized cardiac patients. Circ Cardiovasc Qual Outcomes. 2011;4(2):198–205. doi: 10.1161/CIRCOUTCOMES.110.959379 [DOI] [PubMed] [Google Scholar]
  • 102.Callahan CM, Kroenke K, Counsell SR, Hendrie HC, Perkins AJ, Katon W, et al. Treatment of depression improves physical functioning in older adults. J Am Geriatr Soc. 2005;53(3):367–73. doi: 10.1111/j.1532-5415.2005.53151.x [DOI] [PubMed] [Google Scholar]
  • 103.Lichtman JH, Bigger JT Jr, Blumenthal JA, Frasure-Smith N, Kaufmann PG, Lespérance Fo, et al. Depression and coronary heart disease: recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation. 2008;118(17):1768–75. doi: 10.1161/CIRCULATIONAHA.108.190769 [DOI] [PubMed] [Google Scholar]
  • 104.Batty GD, Russ TC, Stamatakis E, Kivimäki M. Psychological distress and risk of peripheral vascular disease, abdominal aortic aneurysm, and heart failure: pooling of sixteen cohort studies. Atherosclerosis. 2014;236(2):385–8. doi: 10.1016/j.atherosclerosis.2014.06.025 [DOI] [PubMed] [Google Scholar]
  • 105.Heikkilä K, Pentti J, Madsen IE, Lallukka T, Virtanen M, Alfredsson L, et al. Job strain as a risk factor for peripheral artery disease: a multi-cohort study. Journal of the American Heart Association. 2020;9(9):e013538. doi: 10.1161/JAHA.119.013538 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Berger JS, Ladapo JA. Underuse of Prevention and Lifestyle Counseling in Patients With Peripheral Artery Disease. J Am Coll Cardiol. 2017;69(18):2293–300. doi: 10.1016/j.jacc.2017.02.064 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Schwarzer R. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied psychology. 2008;57(1):1–29. [Google Scholar]
  • 108.Lightfoot K, Panagiotaki G, Nobes G. Effectiveness of psychological interventions for smoking cessation in adults with mental health problems: A systematic review. Br J Health Psychol. 2020;25(3):615–38. doi: 10.1111/bjhp.12431 [DOI] [PubMed] [Google Scholar]
  • 109.Lantz B. The large sample size fallacy. Scand J Caring Sci. 2013;27(2):487–92. doi: 10.1111/j.1471-6712.2012.01052.x [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Kenji Hashimoto

8 Jun 2022

PONE-D-21-26241Effects of walking impairment on mental health burden, health risk behavior and quality of life in patients with intermittent claudication: a cross-sectional path analysis.PLOS ONE

Dear Dr. Rezvani,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Although one reviewer made the decision of accept, other reviewer had several concerns about your manuscript. Please revise your manuscript according reviewer's comments.

Please submit your revised manuscript by Jul 23 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols.

We look forward to receiving your revised manuscript.

Kind regards,

Kenji Hashimoto, PhD

Section Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at 

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and 

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: I Don't Know

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This study investigated the effects of walking impairment on mental health burden, health risk behavior and quality

of life in patients with intermittent claudication.

This is a valuable paper for researchers and clinicians.

Although this type of decision outcome is rare, I recommend acceptance of the manuscript without any changes.

I thank the editor and the authors for giving me the opportunity for reading the manuscript.

Reviewer #2: This study aimed to examine the association between walking impairment, health-related quality of life, anxiety/depression, and health behaviors (nicotine/alcohol use).

A theory-driven path model was constructed, with inverse associations reported between walking impairment and mood symptoms, and subsequent tobacco use. These were all small effects. Walking impairment also was associated with lower mental health status, partially mediated through depression/anxiety experiences. The authors are underscoring the need for more comprehensive treatment strategies for PAD.

This is a very relevant message that the authors bring — I have the following feedback:

Abstract

please clarify setting and timeframe of the study, as well as numbers included into the study, and research design

Introduction

Nicely summarized

1) since this is a theory driven pathway analysis, it would be good to list the hypotheses informing your model.

Methods

- since this is a secondary data analysis of a trial, it would be helpful to have more details about the design of the trial, the conditions, and the different assessments and the timing of those assessments. Is there a visual representation of cohort derivation and assessments that can be provided?

- Why was the SF-12 chosen as the main health status instrument? Since this is a very generic instrument, it may not be as sensitive to the functioning that is specific and relevant to PAD

- I don’t understand the statement that says (line 135) “with regard to the mental scale, it was shown that it validly reflects depressiveness and anxiety disorders”

- It is unclear at which time points the assessments were done and how the intervention vs. control cohorts were different from each other and how the intervention could have impacted the outcomes/assessments, nor what the duration of follow up was.

- Missingness was handled by either elimination or imputation. Can more information be provided about the imputation algorithm and why not multiple imputation was considered? How were people with vs. without missing information different from each other? How were deaths handled?

- How were the iterations of the path model before and evaluated?

- Were the variables used as continuous variables?

- What interpretation guidelines were adopted to evaluate whether the effect sizes of the beta coefficients?

Results

- there seem to be some ad hoc adjustment to the theory based model with confounders added. It would be good to have the choice of confounders also be a priori considered about the theory driven model. It is unclear to me what criteria were used for the different iterations, other than the RMSEA values.

- Table 2 presents the regression results, but again, not clear as to what the time frames were and how many models were created. It is hard to follow along.

- After table 2, the results section becomes very hard to follow. All effects are given equal prominence, whereas some beta coefficients are clearly very low and may not be as relevant to emphasize.

- It is also unclear which aspects of the walking impairment was most associated with outcomes

Discussion

- The discussion seems to be a mix about the prevalence of the symptoms noted as well as a commentary on some of the health behaviors. I see less of a reflection on some of the directionality and targets for intervention, informed by the path modeling, other than that we should address smoking and mental health burden.

- I think a more focused discussion (after more structuring of the results) may be helpful to understand what novel insights have been derived, other than establishing the associations. It is also hard to judge the implications of the analyses without have a clear timeframe of the assessments and whether or not the assessments were repeated at intervals so as to re-construct patients’ pathways.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

**********

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2022 Sep 1;17(9):e0273747. doi: 10.1371/journal.pone.0273747.r002

Author response to Decision Letter 0


5 Aug 2022

--We would like to thank the editor and the reviewers for their useful feedback. We are happy that they overall find the paper informative. We have addressed all comments and revised the manuscript accordingly.

Please find our responses to each comment below. Revisions in the manuscript were tracked in response to each point.

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

--Response: The following information has been added to the Data Availability statement: “All relevant data are included in the Supporting Information file S2 (SAV).”

Review Comments to the Author

Reviewer #1:

This study investigated the effects of walking impairment on mental health burden, health risk behavior and qualityof life in patients with intermittent claudication. This is a valuable paper for researchers and clinicians. Although this type of decision outcome is rare, I recommend acceptance of the manuscript without any changes. I thank the editor and the authors for giving me the opportunity for reading the manuscript.

--Response: We are very pleased with the positive feedback from Reviewer #1. Thank you!

Reviewer #2:

This study aimed to examine the association between walking impairment, health-related quality of life, anxiety/depression, and health behaviors (nicotine/alcohol use). A theory-driven path model was constructed, with inverse associations reported between walking impairment and mood symptoms, and subsequent tobacco use. These were all small effects. Walking impairment also was associated with lower mental health status, partially mediated through depression/anxiety experiences. The authors are underscoring the need for more comprehensive treatment strategies for PAD.

This is a very relevant message that the authors bring — I have the following feedback:

Abstract

Please clarify setting and timeframe of the study, as well as numbers included into the study, and research design

Response: Good point, thank you. The timeframe of data collection (4/2017-12/2017), the number of patients included in the analysis (N=1696) and the original research design (randomized controlled trial) has been added to the revised abstract.

Introduction

Nicely summarized

--Response: Thank you!

Since this is a theory driven pathway analysis, it would be good to list the hypotheses informing your model.

--Response: We agree that listing the hypotheses would be useful to the reader in assessing the theory-based model. A brief description of the postulated model, along with the corresponding hypotheses, has been added to the revised introduction.

Methods

Since this is a secondary data analysis of a trial, it would be helpful to have more details about the design of the trial, the conditions, and the different assessments and the timing of those assessments. Is there a visual representation of cohort derivation and assessments that can be provided?

--Response: The previous version did not specify that only cross-sectional baseline data from the RCT were used. This information has now been added to the abstract and method section (Design and Statistical analyses). We have also included a flowchart as Supporting Information to illustrate which RCT data we used for this study (baseline assessment). Because only baseline data were used (i.e. pre-intervention), a description of the study arms and follow-up time points is not considered necessary.

Following the reviewer's suggestion, we have provided more background information about the recruitment process, allowing the reader to understand how the study population was derived. In addition, as noted in the manuscript, further details about the methods of the RCT (i.e. design, conditions, assessments, cohort derivation) are provided in the study protocol (Rezvani, Heider et al., 2020 in BMJ Open).

Why was the SF-12 chosen as the main health status instrument? Since this is a very generic instrument, it may not be as sensitive to the functioning that is specific and relevant to PAD

--Response: Despite being a generic health status instrument, the SF-12 and the longer versions SF-20/36 have been used extensively in both cross-sectional and longitudinal PAD studies. Furthermore, the SF-12 has been shown to validly capture health status (Wu, Coresh, Selvin, Tanaka, Heiss, Hirsch et al., 2017) and changes in health status in PAD patients (e.g. McDermott Guralnik Criqui Ferrucci Zhao et al., 2014). For clarity, this information has been added to the revised method section.

Although the VascuQoL-25 with five subscales was also collected, the SF-12 was used for the present research question to keep the model simple and allow straightforward conclusions to be drawn regarding the effect walking impairment on (mental and physical) quality of life.

I don’t understand the statement that says (line 135) “with regard to the mental scale, it was shown that it validly reflects depressiveness and anxiety disorders”

--Response: We agree that the original wording was somewhat misleading. The sentence was revised accordingly.

It is unclear at which time points the assessments were done and how the intervention vs. control cohorts were different from each other and how the intervention could have impacted the outcomes/assessments, nor what the duration of follow up was.

--Response: The study was cross-sectional in nature with no use of follow-up assessments from the RCT (baseline data, i.e. before study interventions were implemented. For clarity this information has been added to the abstract and the revised method section. In addition, we have included a flowchart as Supporting Information to illustrate which RCT data we used for this study.

Missingness was handled by either elimination or imputation. Can more information be provided about the imputation algorithm and why not multiple imputation was considered? How were people with vs. without missing information different from each other? How were deaths handled?

--Response: Expectation maximization was employed only for the purpose of imputing missing items. EM, which is an algorithm for computing maximum likelihood estimates, is an effective and straightforward technique to manage incomplete data at the item level (i.e. incomplete information collected from a respondent); see Dempster, Laird, & Rubin, 1977. As with Multiple Imputation, an EM estimator is unbiased and efficient when the missing mechanism is ignorable (i.e. missing completely at random or missing at random), see Dong & Peng, 2013 for further clarification. Moreover, it should be noted that the percentage of missing values in each column was approximately 3%, which means that the risk of introducing bias due to EM is considered negligible.

EM is commonly used in exploratory path models, e.g. Wurm, Tomasik, & Tesch-Römer, 2010; Schotanus-Dijkstra, Pieterse, Drossaert, Walburg, & Bohlmeijer, 2019) and is recommended when a single dataset is sought for exploratory path analysis (Hair, 2009). Following the reviewer's suggestion, we have added further details about EM to the statistical analysis section.

Deaths occurring during the RCT period were not relevant for this study as data were only analyzed cross-sectionally (i.e. baseline data only).

How were the iterations of the path model before and evaluated?

--Response: Changes to the model were based on the inspection of modification indices, and regression weights (i.e. magnitude and p < .05). Between each iteration, several goodness-of-fit parameters were examined until achieving satisfactory model fit (RMSEA, CMIN/DF statistic, Tucker–Lewis index, comparative fit index; see statistical analysis section).

In response to your comment, we have included all model iterations as supplementary material to make the sequence of model decisions more transparent.

Were the variables used as continuous variables?

--Response: All variables were treated as continuous variables. For clarity this information has been added to the method section.

What interpretation guidelines were adopted to evaluate whether the effect sizes of the beta coefficients?

--Response: The magnitude of the relationships between path model parameters were based on Pearson’s r correlation coefficients (equivalent to standardized beta coefficients), with small, medium and large effect sizes indicated respectively by the following r’s: .10, .30, .50. This information has been added to the method section. In addition, effect sizes <.10 are considered negligible and are not displayed in the final reversed model (Fig2) to avoid overinterpretation of small effects.

Results

There seem to be some ad hoc adjustment to the theory based model with confounders added. It would be good to have the choice of confounders also be a priori considered about the theory driven model.

--Response: Thank you for your valuable comment. Following your recommendation, we decided to insert the covariates a priori into the model to ensure that the relationship between two variables is not confounded/exaggerated. This resulted in an slightly improved model fit overall, with a minor change in the model. Because of the very small effect, this change has very little explanatory power, meaning that the modification of the model has no influence on the overall interpretation of the results.

It is unclear to me what criteria were used for the different iterations, other than the RMSEA values.

--Response: Changes to the model were based on the inspection of modification indices, and regression weights (i.e. magnitude and p < .05). Between each iteration, several goodness-of-fit parameters were examined until achieving satisfactory model fit (RMSEA, CMIN/DF statistic, Tucker–Lewis index, comparative fit index; see statistical analysis section). The iteration procedure is described under the section Path analysis -- Original and revised model through respecification.

In addition, we have included all model iterations as supplementary material to make the sequence of model decisions more transparent.

Table 2 presents the regression results, but again, not clear as to what the time frames were and how many models were created. It is hard to follow along.

--Response: The cross-sectional path model analysis was based on baseline data from a RCT (i.e. only one study point). For clarity this information has been added to the abstract and the revised method section. In addition, we have included a flowchart as Supporting Information to illustrate which RCT data was used for this study.

In the updated version of the manuscript, the original model included the hypothesized paths, with age and sex included as confounding variables, visualized in Figure 1. The second model included an additional path from depressiveness to physical health-related quality of life. Finally, two non-significant paths as well as one error covariance were constrained to zero. Please note that we have also included all model iterations as supplementary material to make the sequence of model decisions more transparent.

After table 2, the results section becomes very hard to follow. All effects are given equal prominence, whereas some beta coefficients are clearly very low and may not be as relevant to emphasize.

--Response: Thank you for your valuable comment. We have revised the results section with more emphasis on the relevant effects based on the formulated hypotheses and the proposed model, making it much simpler for the reader to understand what has been found. Additionally, effect sizes <.10 are considered negligible regardless of statistical significance in order to avoid possible overinterpretation of small effects. Finally, the effects of age and sex, which had been identified as confounders and included in the model, were removed from the results section.

It is also unclear which aspects of the walking impairment was most associated with outcomes

--Response: Although this is an interesting research topic in its own right, we believe it is beyond the scope of this paper. In particular, there is a lack of literature that would have allowed to postulate hypotheses about the different aspects of walking impairment, which would have inevitably led to a more exploratory, data-driven rather than hypothesis-informed construction of the a priori model.

That is, including the three subscales of the WIQ (walking distance, walking speed, stair-climbing) in the model instead of using the total score would have made the theory-based development, analysis and interpretation of the model much more complex. In our opinion, the major advantage of the current model lies in its simplicity with straightforward clinical implications for the treatment of PAD.

Discussion

The discussion seems to be a mix about the prevalence of the symptoms noted as well as a commentary on some of the health behaviors. I see less of a reflection on some of the directionality and targets for intervention, informed by the path modeling, other than that we should address smoking and mental health burden.

--Response: Thank you for your valuable comment. Following your comment, we have focused more closely on the results of the path analysis by discussing the potential directions of effects and its direct clinical implications by proposing targets for intervention. That being said, we are very cautious about making strong assumptions regarding the directionality of the effects, as this is a cross-sectional path analysis that precludes conclusions about causal/temporal relationships.

Conclusions that were made based on very small effects were removed from the discussion. Furthermore, for a better understanding, we have divided the discussion into four subheadings: 1) Discussion; 2) Implications for clinical practice; 3) Limitations; and 4) Conclusion.

I think a more focused discussion (after more structuring of the results) may be helpful to understand what novel insights have been derived, other than establishing the associations. It is also hard to judge the implications of the analyses without have a clear timeframe of the assessments and whether or not the assessments were repeated at intervals so as to re-construct patients’ pathways.

--Response: Following your comment, we have revised the results and discussion section accordingly. After more structuring of the results, we have focused more closely on the results of the path analysis and its direct clinical implications.

We apologize for the confusion regarding the timeframe of the assessments; as described in the methods section, this is a cross-sectional study based on baseline data from RCT (i.e. pre-intervention).

We thank Reviewer #2 for his/her careful reading and insightful questions, which we feel have improved the paper.

Decision Letter 1

Kenji Hashimoto

16 Aug 2022

Effects of walking impairment on mental health burden, health risk behavior and quality of life in patients with intermittent claudication: a cross-sectional path analysis.

PONE-D-21-26241R1

Dear Dr. Rezvani,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Kenji Hashimoto, PhD

Section Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation.

Reviewer #1: All comments have been addressed

**********

2. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

**********

3. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

**********

4. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

**********

5. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

**********

6. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: (No Response)

**********

7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

**********

Acceptance letter

Kenji Hashimoto

24 Aug 2022

PONE-D-21-26241R1

Effects of walking impairment on mental health burden, health risk behavior and quality of life in patients with intermittent claudication: a cross-sectional path analysis.

Dear Dr. Rezvani:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Prof. Kenji Hashimoto

Section Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Flow chart of the randomized-controlled trial.

    (TIF)

    S1 File. All relevant study data (SPSS file).

    (SAV)

    S2 File. Model iterations.

    (PDF)

    Data Availability Statement

    All relevant data are included in the S1 File (SAV).


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES