Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Aug 18;78(Pt 9):922–925. doi: 10.1107/S2056989022007848

Crystal structure and Hirshfeld surface analysis of N-(2,6-di­methyl­phen­yl)-2-[3-hy­droxy-2-oxo-3-(2-oxoprop­yl)indolin-1-yl]acetamide

Intissar Nchioua a, Abdulsalam Alsubari b,*, Joel T Mague c, Youssef Ramli a,
Editor: A Bricenod
PMCID: PMC9443800  PMID: 36072528

The cup-shaped conformation of the title mol­ecule is largely determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, double layers of mol­ecules are formed by O—H⋯O and C—H⋯O hydrogen bonds.

Keywords: crystal structure, hydrogen bond, indole, aryl­acetamide, Hirshfeld surface

Abstract

The cup-shaped conformation of the title mol­ecule, C21H22N2O4, is largely determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, double layers of mol­ecules are formed by O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was performed, which confirms the regions that are active for inter­molecular inter­actions.

1. Chemical context

1H-Indole-2,3-dione, also known as isatin, represents a synthetically useful substrate that can be used to prepare a broad range of heterocyclic compounds, including examples of pharmacological significance (Bekircan & Bektas, 2008). Its derivates are biologically active and have significant importance in medicinal chemistry (Feng et al., 2010). They show potent anti­convulsant activity at low concentrations (Mathur & Nain, 2014), as well as anti­bacterial (Hu et al., 2017), anti­cancer (Ding et al., 2020) and anti­tubercular (Nath et al., 2020) activities. Aryl­acetamide-based compounds have attracted increasing attention because of their important pharmacological activities (Beccalli et al., 2007; Valeur & Bradley, 2009; Allen & Williams, 2011; Missioui et al., 2021, 2022a ,b ,c ). As part of our inter­est in the identification of bioactive compounds, we report herein on the synthesis, crystal structure and Hirshfeld surface analysis of the title aryl­acetamide-based derivative containing an isatin moiety, namely N-(2,6-di­methyl­phen­yl)-2-[3-hy­droxy-2-oxo-3-(2-oxoprop­yl)indolin-1-yl]acetamide (Fig. 1) 1.

Figure 1.

Figure 1

The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular N—H⋯O hydrogen bond and C=O⋯ring inter­action are depicted, respectively by violet and light-blue dashed lines.

2. Structural commentary

The mol­ecule adopts a cup-shaped conformation (Fig. 1), which is largely determined by the intra­molecular N2—H2A⋯O3 hydrogen bond (Table 1). As this places O3 directly over the five-membered ring [O3⋯centroid = 2.7062 (8) Å, C10⋯centroid = 2.9956 (9) Å, C10=O3⋯centroid = 99.56 (9)°], there is the possibility of an added C=O⋯π inter­action reinforcing the observed conformation. The indole moiety is slightly non-planar as seen from the 1.89 (3)° dihedral angle between the mean planes of its constituent rings. The dihedral angle between the mean plane of the C1/C6/C7/C8/N1 ring and that of the C12/C13/N2/O4 unit is 82.83 (5)° while that between the latter plane and the mean plane of the C14–C19 ring is 72.24 (4)°. All bond distances and bond angles appear as expected for the given formulation.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.864 (15) 1.942 (15) 2.7829 (9) 164.1 (14)
N2—H2A⋯O3 0.874 (15) 2.154 (15) 3.0193 (10) 170.3 (13)
C3—H3⋯O4ii 0.95 2.44 3.3280 (12) 155
C9—H9A⋯O4iii 0.99 2.33 3.2537 (11) 154
C11—H11B⋯O4iii 0.98 2.59 3.2988 (12) 129
C12—H12A⋯O1iv 0.99 2.60 3.5835 (11) 173

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

3. Supra­molecular features

In the crystal, centrosymmetric dimers are formed by self-complementary O1—H1⋯O2 hydrogen bonds (Table 1) and these units are assembled into corrugated layers parallel to the bc plane by C3—H3⋯O4 hydrogen bonds (Table 1 and Fig. 2). Although these layers clearly contain large pores, they are combined in pairs across centers of symmetry by C9—H9A⋯O4, C11—H11B⋯O4 and C12—H12A⋯O1 hydrogen bonds (Table 1) so that the pores in one layer are capped by mol­ecules in the second and the resulting double layer has no significant pores (Fig. 3).

Figure 2.

Figure 2

A plan view of a portion of one layer viewed along the a-axis direction. O—H⋯O and C—H⋯O hydrogen bonds are depicted, respectively, by red and black dashed lines while intra­molecular inter­actions and non-inter­acting hydrogen atoms are omitted for clarity.

Figure 3.

Figure 3

Packing viewed along the b-axis direction with O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines. Intra­molecular inter­actions and non-inter­acting hydrogen atoms are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43 updated to March 2022; Groom et al., 2016) with the fragment A provided 28 hits, most of which contained a benzyl group attached to the ring nitro­gen atom. Of these, seven [DEVVUY (Liu et al., 2018), DIDVAO (Makaev et al., 2006), ODUWIV (Duan et al., 2013), PUZBAQ (Becerra et al., 2020), PUZBEU (Becerra et al., 2020), PUZBIY (Becerra et al., 2020) and PUZBOE (Becerra et al., 2020)] are most similar to the title mol­ecule having a β-carbonyl group in the substituent attached to the saturated carbon of the five-membered ring. As in the title compound, all of these form dimers through complementary O— H⋯O hydrogen bonds between the hy­droxy and keto groups and these units are also further assembled into chains and/or layers by hydrogen-bonding inter­actions. 4.

5. Hirshfeld surface analysis

The analysis was performed with CrystalExplorer 21.5 (Spackman et al., 2021) with the details of the pictorial output described in a recent publication (Tan et al., 2019). Fig. 4 shows the d norm surface for the asymmetric unit plotted over the limits −0.6060 to 1.5193 a.u. together with three adjacent mol­ecules that are hydrogen-bonded to it. The one on the lower left, adjacent to the pair of intense red spots, is the second half of one inversion dimer with these red spots indicating the strong O1—H1⋯O2 hydrogen bonds (cf. Fig. 2). The mol­ecules above and below the surface are members of two adjacent layers of mol­ecules (cf. Fig. 3), which are linked by the C9—H9A⋯O4 hydrogen bonds (lighter red spots). Fig. 5 a presents a fingerprint plot of all inter­molecular inter­actions while Fig. 5 b shows the 55.2% of these attributable to H⋯H inter­actions. Fig. 5 c and 5d delineate the O⋯H/H⋯O (24.1%) and C⋯H/H⋯C (17.8%) inter­actions, respectively.

Figure 4.

Figure 4

The Hirshfeld surface for the title mol­ecule with three close neighbors added.

Figure 5.

Figure 5

Fingerprint plots for the title mol­ecule: (a) all contacts, (b) H⋯H contacts, (c) O⋯H/H⋯O contacts and (d) C⋯H/H⋯C contacts.

6. Synthesis and crystallization

Indoline-2,3-dione (0.1g, 0.0679 mmol) was taken up in 10 mL of acetone under stirring. Solid potassium carbonate (0.11 g, 0.815 mmol) was added in one portion. Then, the dark-colored suspension was raised to room temperature and stirred for a further 1 h. The appropriate 2-chloro-N-(2,6-di­methyl­phen­yl)acetamide (0.119 g, 0.0679 mmol) and potassium iodide (0.05 g, 0.301 mmol) were added. Then, the reaction mixture was stirred at 353.15–373 K for 2 h until the reaction was complete, which was confirmed using TLC (ethyl acetate:hexane, 40:60). The resulting solid was filtered and recrystallized from ethanol to give title compound as colorless crystals. Yield: 64%; m.p. 527.15–529.15 K. FT–IR (ATR, υ, cm−1) 3292 υ (N—H amide), 1021 υ (N—C amide), 1675 υ (C=O amide), 1708 υ (C=O lactam), 1615 υ (C=O ketone), 3073 υ(C—Harom), 1175 υ(C—N), 2952 υ(C—H, CH3), 3348 (O—H). 1H NMR (DMSO–d 6) δ ppm: 9.086 (s, 1H, NH); 7.011–7.338 (m, 7H, Harom); 6.134 (s, 1H, OH); 3.16-4.52 (2d, 2H, CH2); 2.03 (s, 6H, 2 CH3) 1.97 (s, 3H, CH3). 13C NMR (DMSO–d 6) δ ppm: 207.448 (C=O), 177.126 (C=Olactam), 166.770 (C=Oamide), 143.329; 135.794; 134.718; 131.196; 129.746; 128.268; 127.327; 124.150; 123.094; 109.196 (12CHarom), 72.740 (Cq), 51.075 (CH2—N), 40.200 (CH2—COCH3), 31.024 (CH3), 18.498 (2 CH3). Its mass spectrum showed a mol­ecular ion peak (MH+, m/z = 367.15799 and MNa+, m/z = 389.13943) that conforms to its mol­ecular formula C21H22N2O4

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms attached to carbon were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with isotropic displacement parameters tied to those of the attached atoms [U iso(H) = 1.2–1.5U eq(C)]. Those attached to nitro­gen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively.

Table 2. Experimental details.

Crystal data
Chemical formula C21H22N2O4
M r 366.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.8608 (5), 8.8352 (3), 15.5411 (6)
β (°) 98.468 (1)
V3) 1882.46 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.46 × 0.37 × 0.26
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.95, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 101980, 6815, 5846
R int 0.035
(sin θ/λ)max−1) 0.759
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.129, 1.07
No. of reflections 6815
No. of parameters 254
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.31

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022007848/zn2021sup1.cif

e-78-00922-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007848/zn2021Isup2.hkl

e-78-00922-Isup2.hkl (541.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007848/zn2021Isup3.cml

CCDC reference: 2194736

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, YR and AA; methodology, YR; investigation, IN; theoretical calculations, JTM; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

supplementary crystallographic information

Crystal data

C21H22N2O4 F(000) = 776
Mr = 366.40 Dx = 1.293 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.8608 (5) Å Cell parameters from 9714 reflections
b = 8.8352 (3) Å θ = 3.0–32.6°
c = 15.5411 (6) Å µ = 0.09 mm1
β = 98.468 (1)° T = 150 K
V = 1882.46 (12) Å3 Block, colourless
Z = 4 0.46 × 0.37 × 0.26 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 6815 independent reflections
Radiation source: fine-focus sealed tube 5846 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 7.3910 pixels mm-1 θmax = 32.6°, θmin = 3.0°
φ and ω scans h = −21→21
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −13→13
Tmin = 0.95, Tmax = 0.98 l = −23→23
101980 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: mixed
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.4122P] where P = (Fo2 + 2Fc2)/3
6815 reflections (Δ/σ)max = 0.001
254 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.01619 (5) 0.15240 (7) 0.58519 (4) 0.02331 (13)
H1 −0.0211 (11) 0.0551 (17) 0.5810 (10) 0.035*
O2 0.06628 (5) 0.15275 (7) 0.41710 (4) 0.02433 (13)
O3 0.27892 (5) 0.18850 (8) 0.55047 (5) 0.03248 (16)
O4 0.20771 (5) 0.56774 (9) 0.30204 (4) 0.02884 (15)
N1 0.10667 (5) 0.38567 (7) 0.47826 (4) 0.01780 (13)
N2 0.28454 (5) 0.43751 (9) 0.41823 (5) 0.02231 (14)
H2A 0.2780 (10) 0.3724 (17) 0.4593 (10) 0.035 (3)*
C1 0.12285 (6) 0.44754 (8) 0.56329 (5) 0.01798 (14)
C2 0.14520 (7) 0.59580 (9) 0.58717 (6) 0.02279 (16)
H2 0.154105 0.670797 0.545243 0.027*
C3 0.15409 (7) 0.63026 (10) 0.67608 (6) 0.02693 (17)
H3 0.169109 0.730952 0.694915 0.032*
C4 0.14134 (7) 0.51983 (11) 0.73723 (6) 0.02757 (18)
H4 0.147813 0.545934 0.797102 0.033*
C5 0.11902 (7) 0.37041 (10) 0.71126 (5) 0.02376 (16)
H5 0.110095 0.294882 0.752878 0.029*
C6 0.11028 (6) 0.33536 (9) 0.62380 (5) 0.01846 (14)
C7 0.08199 (6) 0.18914 (8) 0.57660 (5) 0.01790 (14)
C8 0.08473 (6) 0.23521 (9) 0.48075 (5) 0.01807 (14)
C9 0.15003 (6) 0.05606 (9) 0.60396 (5) 0.02081 (15)
H9A 0.147274 0.032787 0.665866 0.025*
H9B 0.125732 −0.033851 0.569376 0.025*
C10 0.25502 (6) 0.08274 (10) 0.59283 (6) 0.02231 (15)
C11 0.32861 (7) −0.02778 (12) 0.63580 (7) 0.0316 (2)
H11A 0.307193 −0.131044 0.619844 0.047*
H11B 0.335063 −0.015875 0.699085 0.047*
H11C 0.391777 −0.008787 0.616620 0.047*
C12 0.10666 (6) 0.47028 (9) 0.39869 (5) 0.01999 (14)
H12A 0.077300 0.570684 0.406183 0.024*
H12B 0.063673 0.417265 0.351674 0.024*
C13 0.20497 (6) 0.49478 (9) 0.36878 (5) 0.01973 (14)
C14 0.37969 (6) 0.45788 (11) 0.39438 (6) 0.02663 (18)
C15 0.42552 (8) 0.33352 (14) 0.36257 (7) 0.0365 (2)
C16 0.51776 (9) 0.3568 (2) 0.33836 (10) 0.0557 (4)
H16 0.550264 0.275060 0.315182 0.067*
C17 0.56220 (9) 0.4971 (2) 0.34769 (11) 0.0664 (5)
H17 0.625396 0.510315 0.332070 0.080*
C18 0.51564 (10) 0.6172 (2) 0.37936 (10) 0.0579 (4)
H18 0.547197 0.712839 0.385442 0.069*
C19 0.42263 (8) 0.60162 (14) 0.40288 (7) 0.0381 (2)
C20 0.37803 (12) 0.18097 (16) 0.35535 (11) 0.0515 (3)
H20A 0.315758 0.187197 0.316412 0.077*
H20B 0.366401 0.147447 0.413048 0.077*
H20C 0.420847 0.108401 0.331858 0.077*
C21 0.37171 (12) 0.73438 (15) 0.43604 (10) 0.0528 (3)
H21A 0.322214 0.772932 0.389673 0.079*
H21B 0.419331 0.814269 0.454501 0.079*
H21C 0.340299 0.702735 0.485625 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0214 (3) 0.0181 (3) 0.0320 (3) −0.0025 (2) 0.0089 (2) 0.0019 (2)
O2 0.0324 (3) 0.0196 (3) 0.0212 (3) −0.0036 (2) 0.0045 (2) −0.0041 (2)
O3 0.0261 (3) 0.0303 (3) 0.0419 (4) −0.0001 (3) 0.0079 (3) 0.0139 (3)
O4 0.0303 (3) 0.0361 (4) 0.0206 (3) 0.0004 (3) 0.0053 (2) 0.0107 (2)
N1 0.0230 (3) 0.0147 (3) 0.0162 (3) −0.0012 (2) 0.0045 (2) 0.0007 (2)
N2 0.0221 (3) 0.0242 (3) 0.0213 (3) 0.0006 (2) 0.0051 (2) 0.0069 (2)
C1 0.0214 (3) 0.0153 (3) 0.0178 (3) −0.0010 (2) 0.0045 (2) −0.0007 (2)
C2 0.0296 (4) 0.0157 (3) 0.0237 (3) −0.0032 (3) 0.0062 (3) −0.0013 (3)
C3 0.0348 (4) 0.0198 (4) 0.0266 (4) −0.0037 (3) 0.0057 (3) −0.0062 (3)
C4 0.0356 (5) 0.0269 (4) 0.0203 (3) −0.0020 (3) 0.0044 (3) −0.0053 (3)
C5 0.0311 (4) 0.0226 (4) 0.0179 (3) −0.0012 (3) 0.0049 (3) 0.0008 (3)
C6 0.0226 (3) 0.0153 (3) 0.0179 (3) −0.0010 (2) 0.0044 (2) −0.0002 (2)
C7 0.0206 (3) 0.0145 (3) 0.0193 (3) −0.0019 (2) 0.0050 (2) 0.0012 (2)
C8 0.0196 (3) 0.0155 (3) 0.0193 (3) −0.0005 (2) 0.0037 (2) −0.0005 (2)
C9 0.0235 (3) 0.0157 (3) 0.0236 (3) 0.0004 (3) 0.0045 (3) 0.0029 (3)
C10 0.0236 (3) 0.0200 (3) 0.0236 (3) 0.0015 (3) 0.0044 (3) 0.0010 (3)
C11 0.0271 (4) 0.0310 (4) 0.0374 (5) 0.0081 (3) 0.0072 (3) 0.0093 (4)
C12 0.0228 (3) 0.0196 (3) 0.0180 (3) 0.0010 (3) 0.0043 (3) 0.0041 (2)
C13 0.0237 (3) 0.0186 (3) 0.0173 (3) −0.0003 (3) 0.0044 (3) 0.0011 (2)
C14 0.0215 (3) 0.0354 (5) 0.0230 (4) −0.0008 (3) 0.0034 (3) 0.0095 (3)
C15 0.0299 (4) 0.0478 (6) 0.0334 (5) 0.0128 (4) 0.0102 (4) 0.0136 (4)
C16 0.0342 (5) 0.0853 (11) 0.0517 (7) 0.0270 (6) 0.0199 (5) 0.0313 (7)
C17 0.0237 (5) 0.1103 (14) 0.0668 (9) 0.0030 (7) 0.0118 (5) 0.0503 (10)
C18 0.0323 (5) 0.0797 (10) 0.0591 (8) −0.0212 (6) −0.0020 (5) 0.0332 (8)
C19 0.0328 (5) 0.0454 (6) 0.0342 (5) −0.0131 (4) −0.0010 (4) 0.0135 (4)
C20 0.0586 (8) 0.0398 (6) 0.0598 (8) 0.0159 (6) 0.0215 (7) −0.0014 (6)
C21 0.0691 (9) 0.0350 (6) 0.0522 (7) −0.0196 (6) 0.0019 (6) −0.0015 (5)

Geometric parameters (Å, º)

O1—C7 1.4242 (10) C9—H9B 0.9900
O1—H1 0.864 (15) C10—C11 1.4965 (13)
O2—C8 1.2248 (9) C11—H11A 0.9800
O3—C10 1.2167 (11) C11—H11B 0.9800
O4—C13 1.2266 (10) C11—H11C 0.9800
N1—C8 1.3655 (10) C12—C13 1.5187 (11)
N1—C1 1.4170 (10) C12—H12A 0.9900
N1—C12 1.4450 (10) C12—H12B 0.9900
N2—C13 1.3467 (11) C14—C15 1.3956 (15)
N2—C14 1.4329 (11) C14—C19 1.4005 (15)
N2—H2A 0.874 (15) C15—C16 1.4002 (16)
C1—C2 1.3840 (11) C15—C20 1.497 (2)
C1—C6 1.3948 (11) C16—C17 1.382 (3)
C2—C3 1.4026 (12) C16—H16 0.9500
C2—H2 0.9500 C17—C18 1.370 (3)
C3—C4 1.3913 (13) C17—H17 0.9500
C3—H3 0.9500 C18—C19 1.3976 (17)
C4—C5 1.4017 (13) C18—H18 0.9500
C4—H4 0.9500 C19—C21 1.499 (2)
C5—C6 1.3818 (11) C20—H20A 0.9800
C5—H5 0.9500 C20—H20B 0.9800
C6—C7 1.5087 (11) C20—H20C 0.9800
C7—C9 1.5279 (11) C21—H21A 0.9800
C7—C8 1.5501 (11) C21—H21B 0.9800
C9—C10 1.5091 (12) C21—H21C 0.9800
C9—H9A 0.9900
C7—O1—H1 106.6 (10) C10—C11—H11B 109.5
C8—N1—C1 110.76 (6) H11A—C11—H11B 109.5
C8—N1—C12 123.77 (7) C10—C11—H11C 109.5
C1—N1—C12 125.35 (6) H11A—C11—H11C 109.5
C13—N2—C14 120.85 (7) H11B—C11—H11C 109.5
C13—N2—H2A 120.0 (9) N1—C12—C13 116.66 (7)
C14—N2—H2A 118.0 (9) N1—C12—H12A 108.1
C2—C1—C6 122.48 (7) C13—C12—H12A 108.1
C2—C1—N1 127.85 (7) N1—C12—H12B 108.1
C6—C1—N1 109.65 (6) C13—C12—H12B 108.1
C1—C2—C3 116.96 (8) H12A—C12—H12B 107.3
C1—C2—H2 121.5 O4—C13—N2 123.73 (8)
C3—C2—H2 121.5 O4—C13—C12 118.34 (7)
C4—C3—C2 121.27 (8) N2—C13—C12 117.91 (7)
C4—C3—H3 119.4 C15—C14—C19 122.55 (10)
C2—C3—H3 119.4 C15—C14—N2 118.49 (9)
C3—C4—C5 120.58 (8) C19—C14—N2 118.96 (9)
C3—C4—H4 119.7 C14—C15—C16 117.43 (13)
C5—C4—H4 119.7 C14—C15—C20 121.16 (10)
C6—C5—C4 118.55 (8) C16—C15—C20 121.41 (12)
C6—C5—H5 120.7 C17—C16—C15 120.95 (14)
C4—C5—H5 120.7 C17—C16—H16 119.5
C5—C6—C1 120.16 (7) C15—C16—H16 119.5
C5—C6—C7 130.47 (7) C18—C17—C16 120.38 (11)
C1—C6—C7 109.27 (7) C18—C17—H17 119.8
O1—C7—C6 109.46 (6) C16—C17—H17 119.8
O1—C7—C9 110.96 (6) C17—C18—C19 121.27 (14)
C6—C7—C9 114.71 (7) C17—C18—H18 119.4
O1—C7—C8 107.99 (6) C19—C18—H18 119.4
C6—C7—C8 101.59 (6) C18—C19—C14 117.39 (13)
C9—C7—C8 111.59 (6) C18—C19—C21 120.81 (13)
O2—C8—N1 125.24 (7) C14—C19—C21 121.80 (10)
O2—C8—C7 126.03 (7) C15—C20—H20A 109.5
N1—C8—C7 108.66 (6) C15—C20—H20B 109.5
C10—C9—C7 114.46 (6) H20A—C20—H20B 109.5
C10—C9—H9A 108.6 C15—C20—H20C 109.5
C7—C9—H9A 108.6 H20A—C20—H20C 109.5
C10—C9—H9B 108.6 H20B—C20—H20C 109.5
C7—C9—H9B 108.6 C19—C21—H21A 109.5
H9A—C9—H9B 107.6 C19—C21—H21B 109.5
O3—C10—C11 121.37 (8) H21A—C21—H21B 109.5
O3—C10—C9 121.73 (8) C19—C21—H21C 109.5
C11—C10—C9 116.90 (7) H21A—C21—H21C 109.5
C10—C11—H11A 109.5 H21B—C21—H21C 109.5
C8—N1—C1—C2 −178.96 (8) C6—C7—C8—N1 −2.55 (8)
C12—N1—C1—C2 −2.79 (13) C9—C7—C8—N1 −125.24 (7)
C8—N1—C1—C6 −0.65 (9) O1—C7—C9—C10 177.23 (7)
C12—N1—C1—C6 175.53 (7) C6—C7—C9—C10 −58.09 (9)
C6—C1—C2—C3 −0.55 (13) C8—C7—C9—C10 56.75 (9)
N1—C1—C2—C3 177.57 (8) C7—C9—C10—O3 −13.37 (12)
C1—C2—C3—C4 0.25 (14) C7—C9—C10—C11 167.08 (8)
C2—C3—C4—C5 −0.08 (15) C8—N1—C12—C13 −98.64 (9)
C3—C4—C5—C6 0.18 (14) C1—N1—C12—C13 85.66 (9)
C4—C5—C6—C1 −0.47 (13) C14—N2—C13—O4 −0.69 (13)
C4—C5—C6—C7 −176.29 (8) C14—N2—C13—C12 −179.30 (8)
C2—C1—C6—C5 0.68 (13) N1—C12—C13—O4 −179.12 (8)
N1—C1—C6—C5 −177.74 (7) N1—C12—C13—N2 −0.44 (11)
C2—C1—C6—C7 177.32 (7) C13—N2—C14—C15 −107.45 (10)
N1—C1—C6—C7 −1.11 (9) C13—N2—C14—C19 71.84 (12)
C5—C6—C7—O1 64.33 (11) C19—C14—C15—C16 −0.29 (15)
C1—C6—C7—O1 −111.85 (7) N2—C14—C15—C16 178.98 (9)
C5—C6—C7—C9 −61.13 (12) C19—C14—C15—C20 179.24 (11)
C1—C6—C7—C9 122.69 (7) N2—C14—C15—C20 −1.49 (15)
C5—C6—C7—C8 178.34 (9) C14—C15—C16—C17 1.46 (18)
C1—C6—C7—C8 2.16 (8) C20—C15—C16—C17 −178.06 (13)
C1—N1—C8—O2 179.22 (8) C15—C16—C17—C18 −1.3 (2)
C12—N1—C8—O2 2.97 (12) C16—C17—C18—C19 −0.1 (2)
C1—N1—C8—C7 2.07 (9) C17—C18—C19—C14 1.18 (18)
C12—N1—C8—C7 −174.18 (7) C17—C18—C19—C21 −178.97 (13)
O1—C7—C8—O2 −64.57 (10) C15—C14—C19—C18 −1.01 (15)
C6—C7—C8—O2 −179.67 (8) N2—C14—C19—C18 179.73 (10)
C9—C7—C8—O2 57.64 (10) C15—C14—C19—C21 179.15 (11)
O1—C7—C8—N1 112.55 (7) N2—C14—C19—C21 −0.12 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.864 (15) 1.942 (15) 2.7829 (9) 164.1 (14)
N2—H2A···O3 0.874 (15) 2.154 (15) 3.0193 (10) 170.3 (13)
C3—H3···O4ii 0.95 2.44 3.3280 (12) 155
C9—H9A···O4iii 0.99 2.33 3.2537 (11) 154
C11—H11B···O4iii 0.98 2.59 3.2988 (12) 129
C12—H12A···O1iv 0.99 2.60 3.5835 (11) 173

Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1.

Funding Statement

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

  1. Allen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405–3415. [DOI] [PubMed]
  2. Beccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318–5365. [DOI] [PubMed]
  3. Becerra, D., Castillo, J., Insuasty, B., Cobo, J. & Glidewell, C. (2020). Acta Cryst. C76, 433–445. [DOI] [PMC free article] [PubMed]
  4. Bekircan, O. & Bektas, H. (2008). Molecules, 13, 2126–2135. [DOI] [PMC free article] [PubMed]
  5. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  7. Ding, Z., Zhou, M. & Zeng, C. (2020). Arch. Pharm. Chem. Life Sci. 353, 1900367–380.
  8. Duan, Z., Han, J., Qian, P., Zhang, Z., Wang, Y. & Pan, Y. (2013). Org. Biomol. Chem. 11, 6456–6459. [DOI] [PubMed]
  9. Feng, L. S., Liu, M. L., Wang, B., Chai, Y., Hao, X. Q., Meng, S. & Guo, H. Y. (2010). Eur. J. Med. Chem. 45, 3407–3412. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hu, Y. Q., Zhang, S., Xu, Z., Lv, Z. S., Liu, M. L. & Feng, L. S. (2017). Eur. J. Med. Chem. 141, 335–345. [DOI] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Liu, X.-W., Yang, J., Wang, G.-L., Gong, Y., Feng, T.-T., Liu, X.-L., Cao, Y., Zhou, Y. & Yuan, W.-C. (2018). J. Heterocycl. Chem. 55, 351–359.
  14. Makaev, F. Z., Radul, O. M., Gdaniec, M., Malinovsky, S. T. & Gudima, A. P. (2006). Zh. Strukt. Khim. 47, 803.
  15. Mathur, G. & Nain, S. (2014). Med. Chem. 4, 417–427.
  16. Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132–143.
  17. Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484–494.
  18. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595–103613. [DOI] [PMC free article] [PubMed]
  19. Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420–433.
  20. Nath, R., Pathania, S., Grover, G. & Akhtar, M. J. (2020). J. Mol. Struct. 1222, 128900–993.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  25. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  26. Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022007848/zn2021sup1.cif

e-78-00922-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007848/zn2021Isup2.hkl

e-78-00922-Isup2.hkl (541.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007848/zn2021Isup3.cml

CCDC reference: 2194736

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES