Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Aug 12;78(Pt 9):900–904. doi: 10.1107/S2056989022007927

Crystal structure, Hirshfeld surface analysis and geometry optimization of 2-hy­droxy­imino-N-[1-(pyrazin-2-yl)ethyl­idene]propano­hydrazide

Maksym O Plutenko a,*, Svitlana V Shishkina b,c, Oleg V Shishkin b, Vadim A Potaskalov d, Valentina A Kalibabchuk e
Editor: L Van Meerveltf
PMCID: PMC9443806  PMID: 36072521

The title compound, 2-hy­droxy­imino-N-[1-(2-pyrazin­yl)ethyl­idene]propane­hydrazide, is a ligand able to form polynuclear metal complexes. The mol­ecule is not planar due to a twist between the oxime and amide groups. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into supra­molecular chains.

Keywords: crystal structure, hydrazide, hydrazone, oxime, Schiff base, polynucleative ligand

Abstract

In the mol­ecule of the title compound, C9H11N5O2, the oxime and hydrazide groups are situated in a cis-position in relation to the C—C bond linking the two functional groups. The CH3C(=NOH)C(O)NH fragment deviates from planarity because of a twist between the oxime and amide groups. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains in the [013] and [0 Inline graphic 3] directions.

1. Chemical context

The combination in one mol­ecule of two donor sets of a different nature, such as oxime and hydrazide, might be the key to creating new asymmetric polynucleative ligands suitable for the formation of polynuclear complexes. In recent decades, a number of ligands based on 2-hy­droxy­imino­propane­hydrazide have been obtained. It was shown that such a type of ligand reveals a strong tendency for the formation of polynuclear complexes (Anwar et al., 2011, 2012; Fritsky et al., 2006; Jin et al., 2022). 1.

The title compound, 2-hy­droxy­imino-N-[1-(pyrazin-2-yl)ethyl­idene]propano­hydrazide (1), was first described in the work of Feng and co-workers (Feng et al., 2018). It acts as a ligand in three new polynuclear heterometal porous coordination polymers, which have displayed high CO2 adsorption uptake and high adsorption selectivity of CO2 over N2 and CH4. The present work is devoted to the synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis and quantum mechanical geometry optimization of 1.

2. Structural commentary

The title compound, 1, crystallizes in space group Pca21 (Fig. 1). The N—O and C—N bond lengths of the oxime group are 1.382 (3) and 1.278 (4) Å, respectively, which is typical for neutral moieties of this type (Fritsky et al., 1998, 2004). The N—N, N—C and C—O bond lengths of the hydrazide group [1.370 (3), 1.332 (4) and 1.229 (4) Å, respectively] are typical for 2-(hy­droxy­imino)­propane­hydrazide derivatives (Hegde et al., 2017; Malinkin et al., 2012; Moroz et al., 2009a ,b ; Plutenko et al., 2011). The oxime and the hydrazide groups are situated in a cis-position about the C7—C8 bond, which is also typical for 2-(hy­droxy­imino)­propane­hydrazide derivatives. Such a conformation is stabilized additionally by an H4⋯N5 attractive inter­action (2.33 Å). Despite the distance being shorter than the sum of the van der Waals radii (2.67 Å; Zefirov, 1997) the inter­action cannot be classified as an intra­molecular hydrogen bond because of the acute N4—H⋯N5 angle (101°).

Figure 1.

Figure 1

The mol­ecular structure of the title compound 1 with displacement ellipsoids shown at the 50% probability level.

The CH3C(=NOH)C(O)NH fragment deviates from planarity (r.m.s. deviation of 0.362 Å) because of a twist between the oxime and the amide groups about the C7—C8 bond. The maximum deviations are 0.8763 (9) and 0.3355 (18) Å, respectively, for hydrogen (H9C) and non-hydrogen (O1) atoms. The O1—C7—C8—N5 torsion angle is 165.1 (3)°, significantly less than the average value in 2-(hy­droxy­imino)­propane­hydrazide derivatives published previ­ously [172.1 (4)°]. Thus, such a twist distortion of the mol­ecule seems to be a result of the crystal packing.

3. Supra­molecular features

In the crystal, mol­ecules are linked by O2—H2⋯O1i and C2—H2A⋯O2ii inter­molecular hydrogen bonds [symmetry codes: (i) −x +  Inline graphic , y + 1, z +  Inline graphic ; (ii) −x +  Inline graphic , y − 1, z −  Inline graphic ], forming zigzag chains in the [013] and [0 Inline graphic 3] crystallographic directions (Fig. 2). These chains alternate in the [100] direction and are linked by C4—H4A⋯N2iii inter­molecular hydrogen bonds [symmetry code: (iii) −x + 1, −y − 1, z +  Inline graphic ]. Details of the hydrogen-bond geometry are given in Table 1.

Figure 2.

Figure 2

Crystal packing of the title compound 1. Hydrogen bonds are indicated by dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.94 2.741 (3) 167
C2—H2A⋯O2ii 0.93 2.35 3.243 (5) 161
C4—H4A⋯N2iii 0.93 2.67 3.451 (6) 142

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (d norm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface of the title compound mapped over d norm, in the colour range −0.6441 to 1.3084 a.u. is shown in Fig. 3. According to the Hirshfeld surface, O2—H2⋯O1 and C4—H4A⋯N2 are the most noticeable inter­molecular inter­actions. In addition, a C2—H2A⋯O2 weak inter­molecular inter­action is observed.

Figure 3.

Figure 3

The Hirshfeld surface of the title mol­ecule 1 mapped over d norm, showing the close contacts.

A fingerprint plot delineated into specific inter­atomic contacts contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (d i, d e) pair with the full fingerprint plot outlined in grey. Fig. 4 shows the two-dimensional fingerprint plots of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The most significant contribution to the Hirshfeld surface is from H⋯H (41.9%) contacts. In addition, N⋯H/H⋯N (20.5%) and O⋯H/H⋯O (15.4%) are highly significant contributions to the total Hirshfeld surface. The O⋯H/H⋯O fingerprint plot (Fig. 4 d) reveals two sharp spikes along 1.9 Å < di + de < 2.4 Å, which are associated with the O2—H2⋯O1 hydrogen bond.

Figure 4.

Figure 4

A view of the two-dimensional fingerprint plots for the title compound 1 showing (a) all inter­actions, and delineated into (b) H⋯H (41.9%), (c) N⋯H/H⋯N (20.5%) and (d) O⋯H/H⋯O (15.4%) contacts.

5. Geometry optimization

The DFT quantum-chemical calculations were performed at the B3LYP/6-311 G(d,p) level (Becke, 1993) as implemented in PSI4 software package (Parrish et al., 2017). The GFN2-xTB (Bannwarth et al., 2019) calculations were applied with xtb 6.4 package (Grimme, 2019). The structure optimization of the title compound was performed starting from the X-ray geometry and the resulting geometric values were compared with experimental values (Table 2, Fig. 5). The r.m.s. deviations are 0.380 and 0.362 Å for DFT and GFN2-xTB, respectively.

Table 2. Comparison of selected geometric data (A,°) from calculated and X-ray data.

  X-ray DFT GFN2-xTB
Oxime moiety      
C8=N5 1.278 (4) 1.285 1.273
N5—O2 1.382 (3) 1.394 1.389
C8—N5—O2 111.4 (2) 112.1 116.0
Hydrazide moiety      
C7=O1 1.229 (4) 1.218 1.208
C7—N4 1.332 (4) 1.382 1.368
N3—N4 1.370 (3) 1.351 1.336
O1—C7—N4 124.1 (3) 124.6 124.7
Other      
C5=N3 1.278 (4) 1.292 1.279
O1—C7—C8—N5 165.1 (3) 179.9 179.0

Figure 5.

Figure 5

Overlay between the mol­ecule obtained from experimental (orange) and DFT optimization (blue).

The calculated geometric parameters are in good agreement with experimental values. It is important to note that the accuracy of the semi-empirical GFN2-xTB method is close to that of the DFT calculations, even though GFN2-xTB calculations are significantly computationally ‘cheaper’ (∼2·103 times faster for the calculations described here).

The most significant difference between the calculated and X-ray geometries is the absence of a twist deformation between the oxime and the amide groups in the case of QM calculated geometries. This might be additional evidence that the twist distortion of the mol­ecule is due to effects of the crystal packing. The largest differences between the X-ray and calculated bond lengths are observed for the hydrazide moiety: N3—N4 is slightly longer (0.019 and 0.034 Å for DFT and GFN2-xTB, respectively) and C7—N4 is shorter (0.050 and 0.036 Å for DFT and GFN2-xTB, respectively) than calculated. Such calculation errors are probably typical for hydrazide derivatives at this level of theory (Anitha et al., 2019; Malla et al., 2022). The HOMO–LUMO gap calculated by DFT method is 0.159 a.u. and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −0.23063 and −0.07178 a.u., respectively.

6. Database survey

A search in the Cambridge Structural Database (CSD version 5.43, update of March 2022; Groom et al., 2016) resulted in seven hits for 2-(hy­droxy­imino)­propane­hydrazide derivatives: CUDBEJ, DUDHOA, OBUXIU, PUVPED, PUVPED01, WARCEZ and WARCID (Hegde et al., 2017; Malinkin et al., 2012; Moroz et al., 2009a ,b ; Plutenko et al., 2011). Most of them deviate slightly from planarity: r.m.s. deviations are in the range 0.247-0.390 Å with maximum deviations of non-hydrogen atoms from the best plane in the range 0.098–0.340 Å. At the same time PUVPED and PUVPED01 are not planar, mainly because of a twist of the di­carbonyl­hydrazine group [the C—N—N—C torsion angle is 96.54 (15)°].

157 hits relate to organometallic substances based on 2-(hy­droxy­imino)­propane­hydrazide derivatives. Most of them are polynuclear 3d and 4f metal complexes (discrete mol­ecules and MOFs). The maximum number of metal centres per mol­ecule for the discrete complexes of this type is 12 (Anwar et al., 2011, 2012; Moroz et al., 2012).

7. Synthesis and crystallization

The title compound was prepared according to a slightly modified procedure (Feng et al., 2018). A solution of 2-(hy­droxy­imino)­propane­hydrazide (0.702 g, 5 mmol) in methanol (50 ml) was treated with 2-acetyl­pyrazine (0.732 g, 5 mmol) and the mixture was heated under reflux for 1.5 h. After that, the solvent was evaporated under vacuum and the product was recrystallized from methanol. Yield 1.141 g (86%). 1H NMR, 400.13 MHz, (DMSO-d 6): 11.97 (s, 1H, OH), 10.21 (s, 1H, NH), 9.31 (s, 1H, pyrazine-3), 8.56 (s, 1H, pyrazine-5), 8.55 (s, 1H, pyrazine-6), 2.37 (s, 3H, hydrazonic CH3), 2.02 (s, 3H, CH3). IR (KBr, cm−1): 1658 (CO amid I), 1034 (NO oxime). Analysis calculated for C9H11N5O2: C 48.86, H 5.01, N 31.66%; found: C 48.49, H 5.22, N 31.42%.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All the hydrogen atoms were positioned geometrically (N—H = 0.85, C—H = 0.93–0.96 Å) and refined using a riding model with U iso = nU eq of the carrier atom (n = 1.5 for methyl groups and n = 1.2 for other hydrogen atoms).

Table 3. Experimental details.

Crystal data
Chemical formula C9H11N5O2
M r 221.23
Crystal system, space group Orthorhombic, P c a21
Temperature (K) 293
a, b, c (Å) 24.367 (2), 4.3979 (5), 10.1424 (9)
V3) 1086.89 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.8 × 0.4 × 0.1
 
Data collection
Diffractometer Xcallibur3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.646, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2381, 1540, 1254
R int 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.088, 1.01
No. of reflections 1540
No. of parameters 148
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.11, −0.13
Absolute structure Flack x determined using 351 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −1.7 (10)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 2009) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007927/vm2270sup1.cif

e-78-00900-sup1.cif (155.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007927/vm2270Isup2.hkl

e-78-00900-Isup2.hkl (124.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007927/vm2270Isup3.cdx

CCDC reference: 2195126

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C9H11N5O2 Dx = 1.352 Mg m3
Mr = 221.23 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 1825 reflections
a = 24.367 (2) Å θ = 2.4–25.3°
b = 4.3979 (5) Å µ = 0.10 mm1
c = 10.1424 (9) Å T = 293 K
V = 1086.89 (18) Å3 Plate, colourless
Z = 4 0.8 × 0.4 × 0.1 mm
F(000) = 464

Data collection

Xcallibur3 diffractometer 1254 reflections with I > 2σ(I)
area detector scans Rint = 0.023
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) θmax = 25.0°, θmin = 3.3°
Tmin = 0.646, Tmax = 1.000 h = −13→28
2381 measured reflections k = −5→4
1540 independent reflections l = −12→10

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0439P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.11 e Å3
1540 reflections Δρmin = −0.13 e Å3
148 parameters Absolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −1.7 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.76287 (9) 0.3026 (5) 0.3893 (2) 0.0552 (6)
N1 0.54406 (13) −0.2364 (8) 0.5790 (3) 0.0652 (9)
C1 0.58360 (13) −0.1186 (7) 0.5054 (3) 0.0481 (9)
O2 0.80114 (8) 0.9769 (6) 0.7178 (3) 0.0571 (6)
H2 0.785835 1.067394 0.778171 0.086*
C2 0.58576 (16) −0.1796 (10) 0.3721 (4) 0.0696 (12)
H2A 0.613875 −0.093141 0.322655 0.084*
N2 0.54979 (15) −0.3547 (9) 0.3114 (3) 0.0802 (11)
N3 0.66429 (11) 0.1682 (6) 0.4996 (3) 0.0446 (6)
C3 0.51042 (17) −0.4693 (10) 0.3865 (5) 0.0718 (13)
H3 0.483903 −0.592846 0.348009 0.086*
N4 0.70225 (10) 0.3562 (6) 0.5568 (3) 0.0457 (7)
H4 0.696761 0.411873 0.635489 0.055*
C4 0.50756 (17) −0.4124 (11) 0.5171 (4) 0.0766 (13)
H4A 0.479179 −0.498671 0.565696 0.092*
N5 0.76423 (10) 0.7824 (5) 0.6578 (3) 0.0447 (7)
C5 0.62427 (13) 0.0788 (7) 0.5713 (3) 0.0467 (8)
C6 0.61725 (16) 0.1548 (10) 0.7154 (4) 0.0674 (10)
H6A 0.648915 0.087367 0.763582 0.101*
H6B 0.585142 0.054609 0.748914 0.101*
H6C 0.613240 0.370690 0.725479 0.101*
C7 0.74946 (14) 0.4146 (6) 0.4956 (3) 0.0406 (7)
C8 0.78699 (12) 0.6303 (7) 0.5654 (3) 0.0421 (7)
C9 0.84549 (13) 0.6475 (9) 0.5264 (4) 0.0657 (11)
H9A 0.853496 0.847820 0.494094 0.099*
H9B 0.852677 0.501055 0.458348 0.099*
H9C 0.868223 0.604687 0.601444 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0616 (13) 0.0633 (14) 0.0408 (14) −0.0086 (12) 0.0065 (12) −0.0188 (13)
N1 0.0593 (18) 0.086 (2) 0.0508 (18) −0.0195 (17) −0.0002 (17) 0.0000 (18)
C1 0.0450 (18) 0.0568 (19) 0.043 (2) −0.0026 (16) −0.0017 (17) −0.0026 (18)
O2 0.0580 (13) 0.0618 (14) 0.0516 (14) −0.0040 (12) −0.0033 (13) −0.0277 (12)
C2 0.065 (2) 0.094 (3) 0.050 (3) −0.031 (2) 0.004 (2) −0.011 (2)
N2 0.077 (2) 0.107 (3) 0.056 (2) −0.033 (2) −0.003 (2) −0.016 (2)
N3 0.0455 (14) 0.0463 (14) 0.0422 (14) −0.0036 (13) −0.0015 (14) −0.0097 (13)
C3 0.061 (2) 0.084 (3) 0.071 (3) −0.022 (2) −0.017 (2) −0.002 (3)
N4 0.0499 (15) 0.0495 (15) 0.0377 (14) −0.0044 (13) 0.0022 (15) −0.0159 (13)
C4 0.063 (2) 0.103 (3) 0.064 (3) −0.032 (2) −0.006 (2) 0.011 (3)
N5 0.0538 (17) 0.0427 (13) 0.0375 (16) 0.0001 (13) −0.0038 (14) −0.0112 (13)
C5 0.0482 (18) 0.0527 (18) 0.0392 (18) 0.0012 (16) −0.0016 (18) −0.0059 (16)
C6 0.069 (2) 0.091 (3) 0.042 (2) −0.012 (2) 0.005 (2) −0.011 (2)
C7 0.0492 (17) 0.0382 (15) 0.0342 (19) 0.0017 (14) 0.0011 (16) −0.0074 (16)
C8 0.0481 (16) 0.0432 (15) 0.0350 (17) −0.0003 (14) 0.0021 (16) −0.0053 (16)
C9 0.0555 (19) 0.080 (2) 0.062 (3) −0.0123 (19) 0.014 (2) −0.030 (2)

Geometric parameters (Å, º)

O1—C7 1.229 (4) N4—H4 0.8452
N1—C1 1.325 (4) N4—C7 1.332 (4)
N1—C4 1.336 (5) C4—H4A 0.9300
C1—C2 1.379 (5) N5—C8 1.278 (4)
C1—C5 1.477 (4) C5—C6 1.509 (5)
O2—H2 0.8200 C6—H6A 0.9600
O2—N5 1.382 (3) C6—H6B 0.9600
C2—H2A 0.9300 C6—H6C 0.9600
C2—N2 1.319 (5) C7—C8 1.496 (4)
N2—C3 1.325 (5) C8—C9 1.482 (5)
N3—N4 1.370 (3) C9—H9A 0.9600
N3—C5 1.279 (4) C9—H9B 0.9600
C3—H3 0.9300 C9—H9C 0.9600
C3—C4 1.350 (6)
C1—N1—C4 116.5 (3) N3—C5—C1 115.8 (3)
N1—C1—C2 120.3 (3) N3—C5—C6 124.7 (3)
N1—C1—C5 117.6 (3) C5—C6—H6A 109.5
C2—C1—C5 122.2 (3) C5—C6—H6B 109.5
N5—O2—H2 109.5 C5—C6—H6C 109.5
C1—C2—H2A 118.5 H6A—C6—H6B 109.5
N2—C2—C1 123.1 (4) H6A—C6—H6C 109.5
N2—C2—H2A 118.5 H6B—C6—H6C 109.5
C2—N2—C3 115.8 (4) O1—C7—N4 124.1 (3)
C5—N3—N4 117.4 (3) O1—C7—C8 120.5 (3)
N2—C3—H3 119.0 N4—C7—C8 115.4 (3)
N2—C3—C4 122.1 (4) N5—C8—C7 114.4 (3)
C4—C3—H3 119.0 N5—C8—C9 125.9 (3)
N3—N4—H4 117.9 C9—C8—C7 119.6 (3)
C7—N4—N3 120.1 (3) C8—C9—H9A 109.5
C7—N4—H4 121.4 C8—C9—H9B 109.5
N1—C4—C3 122.3 (4) C8—C9—H9C 109.5
N1—C4—H4A 118.9 H9A—C9—H9B 109.5
C3—C4—H4A 118.9 H9A—C9—H9C 109.5
C8—N5—O2 111.4 (2) H9B—C9—H9C 109.5
C1—C5—C6 119.5 (3)
O1—C7—C8—N5 165.1 (3) N2—C3—C4—N1 0.2 (8)
O1—C7—C8—C9 −16.1 (5) N3—N4—C7—O1 −2.1 (5)
N1—C1—C2—N2 −0.3 (7) N3—N4—C7—C8 178.2 (2)
N1—C1—C5—N3 174.5 (3) N4—N3—C5—C1 178.8 (2)
N1—C1—C5—C6 −4.0 (5) N4—N3—C5—C6 −2.7 (5)
C1—N1—C4—C3 0.1 (6) N4—C7—C8—N5 −15.2 (4)
C1—C2—N2—C3 0.6 (6) N4—C7—C8—C9 163.6 (3)
O2—N5—C8—C7 −179.9 (3) C4—N1—C1—C2 −0.1 (6)
O2—N5—C8—C9 1.4 (5) C4—N1—C1—C5 179.5 (3)
C2—C1—C5—N3 −5.8 (5) C5—C1—C2—N2 −179.9 (3)
C2—C1—C5—C6 175.6 (4) C5—N3—N4—C7 168.4 (3)
C2—N2—C3—C4 −0.5 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.94 2.741 (3) 167
C2—H2A···O2ii 0.93 2.35 3.243 (5) 161
C4—H4A···N2iii 0.93 2.67 3.451 (6) 142

Symmetry codes: (i) −x+3/2, y+1, z+1/2; (ii) −x+3/2, y−1, z−1/2; (iii) −x+1, −y−1, z+1/2.

Funding Statement

This work was supported by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of the scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv.

References

  1. Anitha, A. G., Arunagiri, C. & Subashini, A. (2019). Acta Cryst. E75, 109–114. [DOI] [PMC free article] [PubMed]
  2. Anwar, M. U., Dawe, L. N., Alam, M. S. & Thompson, L. K. (2012). Inorg. Chem. 51, 11241–11250. [DOI] [PubMed]
  3. Anwar, M. U., Dawe, L. N. & Thompson, L. K. (2011). Dalton Trans. 40, 8079–8082. [DOI] [PubMed]
  4. Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671. [DOI] [PubMed]
  5. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  6. Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Feng, D.-D., Dong, H.-M., Liu, Z.-Y., Zhao, X.-J. & Yang, E.-C. (2018). Dalton Trans. 47, 15344–15352. [DOI] [PubMed]
  9. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. [DOI] [PubMed]
  10. Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.
  11. Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.
  12. Grimme, S. (2019). xtb 6.4. Mulliken Center for Theoretical Chemistry, University of Bonn, Germany.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Hegde, D., Naik, G. N., Vadavi, R. S., Barretto, D. A. & Gudasi, K. B. (2017). Inorg. Chim. Acta, 461, 301–315.
  15. Jin, Y.-S., Wang, X., Zhang, N., Liu, C.-M. & Kou, H.-Z. (2022). Cryst. Growth Des. 22, 1263–1269.
  16. Malinkin, S. O., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna–Kontecka, E., Pavlenko, V. A., Pavlova, S., Nordlander, E. & Fritsky, I. O. (2012). Eur. J. Inorg. Chem. pp. 1639–1649.
  17. Malla, M. A., Bansal, R., Butcher, R. J. & Gupta, S. K. (2022). Acta Cryst. E78, 1–7. [DOI] [PMC free article] [PubMed]
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  19. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  20. Moroz, Y. S., Kalibabchuk, V. A., Gumienna-Kontecka, E., Skopenko, V. V. & Pavlova, S. V. (2009a). Acta Cryst. E65, o2413. [DOI] [PMC free article] [PubMed]
  21. Moroz, Y. S., Konovalova, I. S., Iskenderov, T. S., Pavlova, S. V. & Shishkin, O. V. (2009b). Acta Cryst. E65, o2242. [DOI] [PMC free article] [PubMed]
  22. Parrish, R. M., Burns, L. A., Smith, D. G. A., Simmonett, A. C., DePrince, A. E. III, Hohenstein, E. G., Bozkaya, U., Sokolov, A. Yu., Di Remigio, R., Richard, R. M., Gonthier, J. F., James, A. M., McAlexander, H. R., Kumar, A., Saitow, M., Wang, X., Pritchard, B. P., Verma, P., Schaefer, H. F. III, Patkowski, K., King, R. A., Valeev, E. F., Evangelista, F. A., Turney, J. M., Crawford, T. D. & Sherrill, C. D. (2017). J. Chem. Theory Comput. 13, 3185–3197. [DOI] [PMC free article] [PubMed]
  23. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  24. Plutenko, M. O., Lampeka, R. D., Moroz, Y. S., Haukka, M. & Pavlova, S. V. (2011). Acta Cryst. E67, o3282–o3283. [DOI] [PMC free article] [PubMed]
  25. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Tokyo, Japan.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  29. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  30. Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007927/vm2270sup1.cif

e-78-00900-sup1.cif (155.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007927/vm2270Isup2.hkl

e-78-00900-Isup2.hkl (124.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007927/vm2270Isup3.cdx

CCDC reference: 2195126

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES