Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Aug 9;78(Pt 9):880–884. doi: 10.1107/S2056989022006041

Crystal structure and Hirshfeld surface analysis of ethyl (3E)-5-(4-fluoro­phen­yl)3-{[(4-meth­oxy­phen­yl)formamido]­imino}-7-methyl-2H,3H,5H-[1,3]thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate 0.25-hydrate

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Abdallah M Alfayomy e, Fatma A F Ragab f, Mokhtar A Abd ul-Malik g,*
Editor: M Weilh
PMCID: PMC9443807  PMID: 36072522

The di­hydro­pyrimidine ring in the title mol­ecule is distinctly non-planar. In the crystal, zigzag chains parallel to [010] are formed by N—H⋯N hydrogen bonds and are connected into layers parallel to (100) by O—H⋯O, O—H⋯F, C—H⋯O, C—H⋯F and C—H⋯N hydrogen bonds. Further C—H⋯O hydrogen bonds connect the layers.

Keywords: crystal structure, pyrimidine, thia­zole, hydrogen bond, Hirshfeld surface analysis

Abstract

In the title compound, C24H23FN4O4S·0.25H2O, the di­hydro­pyrimidine ring is distinctly non-planar, with the flap C atom deviating by 0.297 (2) Å from the least-squares plane. In the crystal, zigzag chains are formed by N—H⋯N hydrogen bonds parallel to [010] and are connected into layers parallel to (100) by O—H⋯O, O—H⋯F, C—H⋯O, C—H⋯F and C—H⋯N hydrogen bonds. Additional C—H⋯O hydrogen bonds connect the layers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (42.6%), O⋯H/H⋯O (16.8%) and C⋯H/H⋯C (15.5%) contacts.

1. Chemical context

Inter­est in the anti­cancer activities of di­hydro­pyrimidines (DHPMs) has been increasing since 1999, when monastrol was discovered (Mayer et al., 1999; Leizerman et al., 2004). In addition, 1,3,4-oxa­diazole has been reported to exhibit a significant anti­cancer activity (Yadagiri et al., 2015; Valente et al., 2014; El-Din et al., 2015). Since the combination of two or more pharmacophoric structural moieties can possibly augment the bioactivity, it was of inter­est to hybridize the DHPM moiety with 1,3,4-oxa­diazole, hoping to discover potent anti­cancer agents. 1.

In this context, a target compound was designed through the condensation of 6-methyl-4-aryl-1,2,3,4-tetra­hydro­pyrim­idine-2(1H)-thione derivatives and 2-(chloro­meth­yl)-5-aryl-1,3,4-oxa­diazole derivatives (Ragab et al., 2017). Unexpectedly, an intra­molecular cyclization and ring opening of 1,3,4-oxa­diazole occurred. The resulting product was chosen as an example of this series for further structural elucidation through X-ray crystallography. Herein we report the crystal structure and Hirshfeld analysis of the title compound, C24H23FN4O4S·0.25H2O.

2. Structural commentary

In the title compound (Fig. 1), the di­hydro­pyrimidine portion (N1/C3/C2/C1/N2/C4) of the central ring is planar to within 0.0286 (9) Å (r.m.s. deviation of the fitted atoms = 0.0211 Å), with the flap C1 atom being 0.297 (2) Å out of this plane towards the bonded 4-fluoro­phenyl group. A puckering analysis (Cremer & Pople, 1975) of this ring yielded the parameters Q = 0.2074 (15) Å, θ = 112.1 (4)° and φ = 3.5 (4)°. The dihedral angle between the C5–C10 phenyl ring and the least-squares plane of the di­hydro­pyrimidine plane is 88.76 (5)°. The C4/N2/C15/C16/S1 ring is planar to within 0.0191 (8) Å (r.m.s. deviation of the fitted atoms = 0.0140 Å) and is inclined to the N1/C3/C2/C1/N2/C4 plane by 3.99 (9)°. The dihedral angle between the C4/N2/C15/C16/S1 ring and the C18–C23 phenyl ring is 9.28 (8)°.

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected into zigzag chains running parallel to [010] by N4—H4⋯N1 hydrogen bonds (Table 1). The chains are connected into (100) layers by O5—H5B⋯O3 and O5—H5A⋯F1 hydrogen bonds involving the water mol­ecule, as well as by C13—H13B⋯F1, C16—H16A⋯N1 and all of the C—H⋯O hydrogen bonds listed in Table 1, except for the C24—H24C⋯O1 hydrogen bond (Figs. 2, 3 and 4) that serves to link the layers into a three-dimensional network.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.885 (19) 2.164 (19) 2.9888 (17) 154.8 (16)
C1—H1⋯O5ii 0.987 (17) 2.345 (18) 3.307 (5) 164.7 (13)
C7—H7⋯O4iii 0.97 (2) 2.41 (2) 3.285 (2) 148.7 (17)
C13—H13B⋯F1ii 0.98 (3) 2.49 (3) 3.386 (2) 153.0 (19)
C16—H16A⋯N1i 0.98 (2) 2.58 (2) 3.4019 (19) 142.4 (15)
C16—H16B⋯O5iv 0.98 (2) 2.37 (2) 3.282 (5) 154.6 (16)
C24—H24A⋯O1v 0.99 (2) 2.53 (2) 3.450 (3) 154.6 (18)
C24—H24C⋯O1vi 0.95 (2) 2.57 (2) 3.504 (2) 167.8 (17)
O5—H5A⋯F1 0.87 1.76 2.479 (5) 138
O5—H5B⋯O3vii 0.87 2.00 2.863 (5) 174

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic .

Figure 2.

Figure 2

View of the mol­ecular packing along [100]. O—H⋯O, O—H⋯F, C—H⋯ O, C—H⋯N and C—H⋯F hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

View of the mol­ecular packing along [010]. Hydrogen bonds are depicted as in Fig. 2.

Figure 4.

Figure 4

View of the mol­ecular packing along [001]. Hydrogen bonds are depicted as in Fig. 2.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed, and two-dimensional fingerprint plots were constructed using Crystal Explorer17.5 to qu­antify the inter­molecular inter­actions in the title mol­ecule (Turner et al., 2017). Fig. 5 depicts the Hirshfeld surface plotted over d norm in the range −0.7253 to +1.4745 arbitrary units, with red patches indicating putative hydrogen bonding in the crystal structure.

Figure 5.

Figure 5

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.7253 (red) to +1.4745 (blue) a.u.

The intensity of the red patches is more pronounced for N4—H4⋯N1, C1—H1⋯O5, C16—H16B⋯O5, C24—H24A⋯O1, C24—H24C⋯O1 and O5—H5B⋯O3, thus revealing the strongest inter­actions when compared to other red spots on the Hirshfeld surface. Table 2 gives numerical data for close inter­molecular contacts. The two-dimensional fingerprint plots (Fig. 6) shows that the largest contributions are from H⋯H (42.6%; Fig. 6 b), O⋯H/H⋯O (16.8%; Fig. 6 c) and C⋯H/H⋯C (15.5%; Fig. 6 d) inter­actions. Other inter­actions contributing less to the crystal packing are from F⋯H/H⋯F (6.7%), N⋯H/H⋯N (4.5%), S⋯H/H⋯S (3.4%), S⋯C/C⋯S (3.4%), C⋯C (2.8%), S⋯N/N⋯S (1.4%),N⋯C/C⋯N (1.4%), O⋯C/C⋯O (0.7%), N⋯N (0.5%), O⋯N/N⋯O (0.2%) and S⋯O/O⋯S (0.1%) inter­actions.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Asterisks relate to atoms of the underoccupied water mol­ecule.

Contact Distance Symmetry operation
N1⋯H4 2.165 1 − x, − Inline graphic  + y, Inline graphic  − z
F1⋯H13B 2.49 x, Inline graphic  − y, − Inline graphic  + z
F1⋯*H5A 1.76 x, y, z
F1⋯H14C 2.66 x, 1 + y, z
H14A⋯H24C 2.56 1 + x, −1 + y, z
H12C⋯O1 2.66 2 − x, 1 − y, 1 − z
H16B⋯O3 2.49 1 − x, 1 − y, 1 − z
O3⋯*H5B 2.00 x, Inline graphic  − y, Inline graphic  + z
H7⋯O4 2.41 1 − x, 2 − y, 1 − z
H16B⋯*H5B 2.05 1 − x, − Inline graphic  + y, Inline graphic  − z
H13A⋯H24B 2.41 1 + x, Inline graphic  − y, Inline graphic  + z
H14C⋯*O5 2.87 x, −1 + y, z

Figure 6.

Figure 6

Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for compounds most closely related to the 2,3-di­hydro-5H-[1,3]thia­zolo[3,2-a]pyrimidine unit of the title compound gave the following hits: refcodes ZOWXAM (I) (Krishnamurthy et al., 2014); PONVOF (II) (Krishnamurthy & Begum, 2014); AFIZUM (III) (Fathima et al., 2013); YAYHAJ (IV) (Nagarajaiah et al., 2012); KUSQUL (V) (Jotani et al., 2010a ); PUJRIW (VI) (Jotani et al., 2010b ); DIWSIM (VII) (Jotani & Baldaniya, 2008); TICHAP (VIII) (Jotani & Baldaniya, 2007); AWUPAK (IX) (Fun et al., 2011); XETKOX (X) (Sridhar et al., 2006) and XETKOX01 (XI) (Sridhar et al., 2006).

In the crystal of (I), pairs of weak C—H⋯O hydrogen bonds link mol­ecules related by twofold rotation axes, forming Inline graphic (10) rings, which in turn are linked by weak C—H⋯N inter­actions to form chains parallel to [010]. In addition, weak C—H⋯π(arene) inter­actions link the chains into layers parallel to (001), and π–π inter­actions connect these layers into a three-dimensional network.

In (II), weak C—H⋯F and C— H⋯O hydrogen bonds connect mol­ecules, forming zigzag chains parallel to [010]. In addition, π–π stacking inter­actions connect these chains into ladders via inversion-related 4-fluoro­phenyl groups.

In (III), pairs of weak C—H⋯O hydrogen bonds lead to the formation of inversion dimers. A weak C—H⋯π inter­action and π–π stacking inter­actions are observed.

In (IV), O—H⋯N and C— H⋯S inter­actions result in (001) layers. The supra­molecular assembly is stabilized by π–π stacking inter­actions between the 2-bromo­benzyl­idene and thia­zolo­pyrimidine rings. In addition, C—H⋯π inter­actions are also observed.

In (V), co-operative C—H⋯O and C—H⋯π inter­actions lead to supra­molecular chains parallel [100]. These chains are connected via π–π inter­actions.

The crystal packing of (VI) is influenced by weak inter­molecular C—H⋯π inter­actions and π–π stacking between the thia­zole and phenyl rings, which stack the mol­ecules parallel to [001].

In (VII), in addition to inter­molecular C— H⋯O hydrogen bonding, short intra­molecular C—H⋯S contacts and π–π stacking inter­actions contribute to the crystal packing.

In (VIII), short inter­molecular C—H⋯O, C—H⋯π and π–π stacking inter­actions contribute to the stability of the crystal packing.

In (IX), mol­ecules are linked into a three-dimensional network by inter­molecular C— H⋯O and C—H⋯F hydrogen bonds. The crystal structure is further stabilized by a C—H⋯π inter­action.

Compounds (X) and (XI) crystallize in two polymorphic forms having the same space-group type, viz. P1, with Z′ = 2 and Z′ = 1. In both polymorphs, the mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.

6. Synthesis and crystallization

A mixture of ethyl 4-(4-fluoro­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate (2 mmol), 2-(chlor­o­meth­yl)-5-(4-meth­oxy­phen­yl)-1,3,4-oxa­diazole (2 mmol), potassium iodide (2 mmol) and triethyl amine (2.5 mmol), was refluxed for 4 h in absolute ethanol (20 ml). The reaction mixture was poured onto crushed ice (40 g) and acidified with acetic acid (2 ml). The deposited precipitate was filtered off, washed with cold water, dried and recrystallized from a methanol/DMF mixture.

Yield: 95%; melting point: 493–495 K; IR (KBr) νmax/cm−1 3390, 3178, 1693, 1654. 1H NMR (400 MHz, DMSO-d 6) δ 10.60 (s, 1H, NH), 7.81 (d, J = 8.7 Hz, 2H, Ar—H), 7.44 (t, J = 7.7 Hz, 2H, Ar—H), 7.15 (t, J = 7.7 Hz, 2H, Ar—H), 7.03 (d, J = 8.7 Hz, 2H, Ar—H), 6.13 (s, 1H, C4—H), 4.45 (d, J = 17.4 Hz, 1H, S—CH2), 4.35 (d, J = 17.3 Hz, 1H, S—CH2), 4.03 (q, J = 7.1 Hz, 2H, CH2—CH3), 3.82 (s, 3H, OCH3), 2.34 (s, 3H, C6-CH3), 1.11 (t, J = 7.1 Hz, 3H, CH2—CH3). 13C NMR (125 MHz, DMSO-d 6) δ 165.59, 163.23, 163.20, 162.65, 153.92, 153.58, 130.57, 130.50, 130.03, 125.90, 115.64, 115.47, 114.05, 105.95, 60.28, 55.87, 54.89, 28.56, 23.06, 14.45. Analysis calculated for C24H23FN4O4S (482.53): C 59.74, H 4.80, N 11.61. Found: C 60.02, H 4.89, N 11.87.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were found in difference-Fourier maps; all C and N-bound H atoms were refined freely. The water mol­ecule was found to be occupationally disordered and was refined with a fixed site occupation factor of 1/4. The H atoms of the water mol­ecules were located in a difference-Fourier map, their bond lengths set to an ideal value of 0.87 Å, and were refined with U iso(H) = 1.5 U eq(O) using a riding model.

Table 3. Experimental details.

Crystal data
Chemical formula C24H23FN4O4S·0.25H2O
M r 487.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.4316 (3), 10.8518 (2), 15.5940 (3)
β (°) 109.941 (1)
V3) 2295.74 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.68
Crystal size (mm) 0.15 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.75, 0.84
No. of measured, independent and observed [I > 2σ(I)] reflections 17597, 4576, 4142
R int 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.088, 1.04
No. of reflections 4576
No. of parameters 409
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.56

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022006041/wm5648sup1.cif

e-78-00880-sup1.cif (546.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006041/wm5648Isup2.hkl

e-78-00880-Isup2.hkl (364.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006041/wm5648Isup3.cml

CCDC reference: 2177565

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows: synthesis and organic chemistry parts preparation, AMA, FAFR, SKM; conceptualization and study guide, AMA, SKM; financial support, MAA MAU?; crystal data production and validation, JTM; paper preparation and Hirshfeld study, MA, SKM.

supplementary crystallographic information

Crystal data

C24H23FN4O4S·0.25H2O F(000) = 1018
Mr = 487.03 Dx = 1.409 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 14.4316 (3) Å Cell parameters from 9970 reflections
b = 10.8518 (2) Å θ = 3.3–74.4°
c = 15.5940 (3) Å µ = 1.68 mm1
β = 109.941 (1)° T = 150 K
V = 2295.74 (8) Å3 Block, colourless
Z = 4 0.15 × 0.14 × 0.11 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 4576 independent reflections
Radiation source: INCOATEC IµS micro–focus source 4142 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.4167 pixels mm-1 θmax = 74.4°, θmin = 3.3°
ω scans h = −17→18
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −13→12
Tmin = 0.75, Tmax = 0.84 l = −19→18
17597 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.1637P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4576 reflections Δρmax = 0.34 e Å3
409 parameters Δρmin = −0.56 e Å3
0 restraints Extinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00229 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refinement of the site occupancy factor for the lattice water (O5) converged at ca. 0.25. This was fixed at this value for the remainder of the refinement, the attached hydrogen atoms were located in a difference map and included as riding contributions in idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.45709 (2) 0.29846 (3) 0.22568 (2) 0.02637 (11)
F1 0.81951 (11) 0.85095 (10) 0.24433 (11) 0.0709 (4)
O1 0.93592 (8) 0.24379 (11) 0.47803 (8) 0.0365 (3)
O2 0.88439 (7) 0.41670 (10) 0.52684 (7) 0.0294 (2)
O3 0.55706 (8) 0.71812 (10) 0.54550 (7) 0.0307 (2)
O4 0.17420 (9) 1.04606 (11) 0.46165 (8) 0.0390 (3)
N1 0.64445 (8) 0.22708 (11) 0.27415 (8) 0.0220 (2)
N2 0.60560 (8) 0.39869 (10) 0.34918 (8) 0.0200 (2)
N3 0.54560 (8) 0.55654 (10) 0.41266 (8) 0.0206 (2)
N4 0.46512 (8) 0.62737 (11) 0.41154 (8) 0.0209 (2)
H4 0.4182 (14) 0.6419 (17) 0.3587 (13) 0.032 (5)*
C1 0.70873 (9) 0.43284 (13) 0.40035 (10) 0.0213 (3)
H1 0.7122 (12) 0.4512 (15) 0.4634 (11) 0.022 (4)*
C2 0.77324 (10) 0.32264 (13) 0.39918 (10) 0.0224 (3)
C3 0.74171 (10) 0.23233 (13) 0.33574 (10) 0.0224 (3)
C4 0.58287 (10) 0.30597 (12) 0.28731 (9) 0.0207 (3)
C5 0.73684 (9) 0.54708 (13) 0.35807 (10) 0.0233 (3)
C6 0.76870 (10) 0.65331 (14) 0.40974 (11) 0.0291 (3)
H6 0.7696 (14) 0.6545 (17) 0.4744 (13) 0.035 (5)*
C7 0.79756 (12) 0.75620 (15) 0.37183 (14) 0.0365 (4)
H7 0.8223 (15) 0.829 (2) 0.4092 (14) 0.048 (6)*
C8 0.79149 (13) 0.75033 (15) 0.28209 (14) 0.0410 (4)
C9 0.75793 (15) 0.64862 (16) 0.22793 (14) 0.0420 (4)
H9 0.7526 (16) 0.651 (2) 0.1629 (15) 0.050 (6)*
C10 0.73134 (12) 0.54590 (14) 0.26730 (11) 0.0314 (3)
H10 0.7067 (14) 0.4745 (19) 0.2304 (13) 0.038 (5)*
C11 0.87186 (10) 0.32007 (13) 0.46924 (10) 0.0253 (3)
C12 0.97996 (11) 0.42561 (17) 0.59855 (11) 0.0331 (3)
H12A 0.9878 (15) 0.353 (2) 0.6404 (14) 0.045 (5)*
H12B 1.0316 (14) 0.4216 (17) 0.5703 (12) 0.034 (5)*
H12C 0.9642 (16) 0.618 (2) 0.6014 (15) 0.052 (6)*
C13 0.98133 (13) 0.5454 (2) 0.64668 (13) 0.0412 (4)
H13A 1.0491 (17) 0.557 (2) 0.6929 (15) 0.055 (6)*
H13B 0.9329 (18) 0.545 (2) 0.6776 (16) 0.060 (7)*
C14 0.80354 (11) 0.12659 (15) 0.32406 (12) 0.0287 (3)
H14A 0.8649 (17) 0.155 (2) 0.3186 (15) 0.052 (6)*
H14B 0.8240 (16) 0.074 (2) 0.3764 (16) 0.054 (6)*
H14C 0.7663 (16) 0.079 (2) 0.2696 (15) 0.046 (5)*
C15 0.52713 (9) 0.47098 (12) 0.35314 (9) 0.0202 (3)
C16 0.43099 (10) 0.43208 (14) 0.28344 (10) 0.0260 (3)
H16A 0.4032 (14) 0.4974 (19) 0.2389 (13) 0.040 (5)*
H16B 0.3839 (15) 0.4099 (18) 0.3141 (14) 0.043 (5)*
C17 0.48023 (10) 0.71162 (13) 0.48039 (9) 0.0223 (3)
C18 0.39469 (10) 0.79431 (13) 0.47152 (9) 0.0230 (3)
C19 0.41359 (12) 0.90278 (14) 0.52329 (10) 0.0289 (3)
H19 0.4793 (15) 0.9188 (17) 0.5629 (13) 0.036 (5)*
C20 0.33869 (12) 0.98472 (15) 0.51747 (11) 0.0331 (3)
H20 0.3508 (16) 1.062 (2) 0.5510 (15) 0.053 (6)*
C21 0.24267 (11) 0.95909 (15) 0.46124 (10) 0.0294 (3)
C22 0.22193 (11) 0.85134 (15) 0.40997 (10) 0.0287 (3)
H22 0.1533 (15) 0.8314 (18) 0.3709 (13) 0.037 (5)*
C23 0.29829 (11) 0.76979 (14) 0.41584 (10) 0.0260 (3)
H23 0.2829 (13) 0.6946 (17) 0.3814 (12) 0.031 (5)*
C24 0.07367 (14) 1.0253 (2) 0.40748 (14) 0.0456 (5)
H24A 0.0502 (16) 0.946 (2) 0.4247 (15) 0.054 (6)*
H24B 0.0650 (16) 1.025 (2) 0.3411 (16) 0.053 (6)*
H24C 0.0390 (16) 1.093 (2) 0.4203 (14) 0.048 (6)*
O5 0.7191 (3) 0.9508 (5) 0.0994 (3) 0.0378 (10) 0.25
H5A 0.766259 0.901704 0.130626 0.057* 0.25
H5B 0.667996 0.902764 0.079072 0.057* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01757 (17) 0.0260 (2) 0.0312 (2) 0.00125 (12) 0.00266 (13) −0.00720 (13)
F1 0.1061 (11) 0.0263 (6) 0.1191 (11) −0.0171 (6) 0.0888 (10) −0.0055 (6)
O1 0.0214 (5) 0.0345 (6) 0.0476 (7) 0.0093 (4) 0.0038 (5) −0.0055 (5)
O2 0.0177 (5) 0.0313 (6) 0.0326 (6) 0.0026 (4) 0.0002 (4) −0.0057 (4)
O3 0.0271 (5) 0.0336 (6) 0.0274 (5) 0.0038 (4) 0.0040 (4) −0.0039 (4)
O4 0.0370 (6) 0.0405 (7) 0.0400 (6) 0.0175 (5) 0.0137 (5) −0.0051 (5)
N1 0.0198 (5) 0.0194 (6) 0.0257 (6) 0.0010 (4) 0.0064 (5) −0.0013 (4)
N2 0.0151 (5) 0.0186 (6) 0.0246 (6) 0.0011 (4) 0.0046 (4) −0.0013 (4)
N3 0.0174 (5) 0.0202 (6) 0.0246 (6) 0.0028 (4) 0.0078 (4) 0.0011 (4)
N4 0.0179 (5) 0.0216 (6) 0.0231 (6) 0.0044 (4) 0.0069 (5) 0.0005 (4)
C1 0.0151 (6) 0.0211 (7) 0.0256 (7) 0.0001 (5) 0.0042 (5) −0.0028 (5)
C2 0.0169 (6) 0.0208 (7) 0.0284 (7) 0.0019 (5) 0.0062 (5) 0.0005 (5)
C3 0.0190 (6) 0.0205 (7) 0.0276 (7) 0.0016 (5) 0.0079 (5) 0.0023 (5)
C4 0.0206 (6) 0.0181 (7) 0.0230 (7) −0.0001 (5) 0.0067 (5) 0.0005 (5)
C5 0.0146 (6) 0.0199 (7) 0.0348 (8) 0.0012 (5) 0.0077 (5) −0.0021 (5)
C6 0.0207 (7) 0.0237 (8) 0.0399 (9) 0.0007 (5) 0.0066 (6) −0.0057 (6)
C7 0.0270 (8) 0.0204 (8) 0.0640 (11) −0.0040 (6) 0.0179 (8) −0.0093 (7)
C8 0.0439 (9) 0.0204 (8) 0.0744 (13) −0.0032 (7) 0.0406 (9) 0.0001 (8)
C9 0.0582 (11) 0.0270 (9) 0.0568 (11) −0.0018 (7) 0.0402 (10) −0.0014 (7)
C10 0.0373 (8) 0.0227 (8) 0.0403 (9) −0.0035 (6) 0.0212 (7) −0.0051 (6)
C11 0.0191 (6) 0.0238 (7) 0.0312 (7) 0.0015 (5) 0.0064 (6) −0.0005 (6)
C12 0.0177 (7) 0.0431 (10) 0.0315 (8) 0.0004 (6) −0.0005 (6) −0.0031 (7)
C13 0.0284 (8) 0.0560 (12) 0.0348 (9) −0.0025 (8) 0.0053 (7) −0.0140 (8)
C14 0.0239 (7) 0.0252 (8) 0.0356 (8) 0.0050 (6) 0.0083 (6) −0.0037 (6)
C15 0.0171 (6) 0.0186 (7) 0.0246 (7) 0.0011 (5) 0.0068 (5) 0.0028 (5)
C16 0.0187 (6) 0.0254 (8) 0.0303 (8) 0.0020 (5) 0.0038 (6) −0.0048 (6)
C17 0.0226 (7) 0.0217 (7) 0.0234 (7) 0.0007 (5) 0.0090 (5) 0.0015 (5)
C18 0.0246 (7) 0.0235 (7) 0.0234 (7) 0.0023 (5) 0.0113 (6) 0.0002 (5)
C19 0.0287 (8) 0.0288 (8) 0.0292 (8) 0.0003 (6) 0.0098 (6) −0.0039 (6)
C20 0.0378 (9) 0.0286 (8) 0.0336 (8) 0.0043 (6) 0.0134 (7) −0.0072 (6)
C21 0.0322 (8) 0.0313 (8) 0.0286 (8) 0.0110 (6) 0.0155 (6) 0.0018 (6)
C22 0.0254 (7) 0.0341 (8) 0.0283 (7) 0.0042 (6) 0.0114 (6) −0.0016 (6)
C23 0.0256 (7) 0.0274 (8) 0.0273 (7) 0.0014 (6) 0.0121 (6) −0.0035 (6)
C24 0.0357 (9) 0.0540 (12) 0.0455 (11) 0.0212 (9) 0.0119 (8) −0.0026 (9)
O5 0.027 (2) 0.042 (3) 0.039 (3) −0.0069 (19) 0.0036 (19) 0.006 (2)

Geometric parameters (Å, º)

S1—C4 1.7422 (14) C9—C10 1.388 (2)
S1—C16 1.8130 (15) C9—H9 0.99 (2)
F1—C8 1.3657 (19) C10—H10 0.96 (2)
O1—C11 1.2133 (18) C12—C13 1.498 (2)
O2—C11 1.3522 (18) C12—H12A 1.00 (2)
O2—C12 1.4526 (17) C12—H12B 0.988 (19)
O3—C17 1.2236 (17) C13—H12C 1.03 (2)
O4—C21 1.3680 (18) C13—H13A 1.00 (2)
O4—C24 1.426 (2) C13—H13B 0.98 (3)
N1—C4 1.2996 (18) C14—H14A 0.97 (2)
N1—C3 1.4058 (17) C14—H14B 0.96 (2)
N2—C4 1.3546 (17) C14—H14C 0.98 (2)
N2—C15 1.3963 (17) C15—C16 1.5020 (19)
N2—C1 1.4762 (16) C16—H16A 0.98 (2)
N3—C15 1.2750 (18) C16—H16B 0.98 (2)
N3—N4 1.3880 (15) C17—C18 1.4939 (19)
N4—C17 1.3698 (18) C18—C23 1.391 (2)
N4—H4 0.885 (19) C18—C19 1.401 (2)
C1—C2 1.5194 (18) C19—C20 1.379 (2)
C1—C5 1.5226 (19) C19—H19 0.96 (2)
C1—H1 0.987 (17) C20—C21 1.392 (2)
C2—C3 1.356 (2) C20—H20 0.97 (2)
C2—C11 1.4694 (19) C21—C22 1.390 (2)
C3—C14 1.5024 (19) C22—C23 1.392 (2)
C5—C10 1.391 (2) C22—H22 0.99 (2)
C5—C6 1.392 (2) C23—H23 0.960 (19)
C6—C7 1.392 (2) C24—H24A 0.99 (2)
C6—H6 1.004 (19) C24—H24B 1.00 (2)
C7—C8 1.373 (3) C24—H24C 0.95 (2)
C7—H7 0.97 (2) O5—H5A 0.8700
C8—C9 1.374 (3) O5—H5B 0.8701
C4—S1—C16 92.44 (6) C13—C12—H12B 112.3 (11)
C11—O2—C12 116.09 (11) H12A—C12—H12B 108.7 (16)
C21—O4—C24 118.60 (14) C12—C13—H12C 111.3 (12)
C4—N1—C3 116.27 (12) C12—C13—H13A 107.9 (13)
C4—N2—C15 116.48 (11) H12C—C13—H13A 110.2 (18)
C4—N2—C1 121.74 (11) C12—C13—H13B 110.9 (14)
C15—N2—C1 121.23 (11) H12C—C13—H13B 107.1 (18)
C15—N3—N4 115.33 (11) H13A—C13—H13B 109.4 (19)
C17—N4—N3 116.80 (11) C3—C14—H14A 111.4 (13)
C17—N4—H4 118.6 (12) C3—C14—H14B 112.1 (14)
N3—N4—H4 118.8 (12) H14A—C14—H14B 103.9 (18)
N2—C1—C2 107.75 (11) C3—C14—H14C 109.4 (12)
N2—C1—C5 109.80 (11) H14A—C14—H14C 109.8 (18)
C2—C1—C5 112.38 (11) H14B—C14—H14C 110.1 (18)
N2—C1—H1 106.8 (9) N3—C15—N2 118.03 (12)
C2—C1—H1 110.3 (9) N3—C15—C16 130.06 (12)
C5—C1—H1 109.6 (10) N2—C15—C16 111.90 (11)
C3—C2—C11 121.84 (12) C15—C16—S1 106.69 (9)
C3—C2—C1 121.53 (12) C15—C16—H16A 111.4 (12)
C11—C2—C1 116.62 (12) S1—C16—H16A 109.4 (11)
C2—C3—N1 122.42 (12) C15—C16—H16B 109.7 (12)
C2—C3—C14 125.10 (13) S1—C16—H16B 109.9 (12)
N1—C3—C14 112.47 (12) H16A—C16—H16B 109.8 (16)
N1—C4—N2 126.10 (12) O3—C17—N4 123.09 (13)
N1—C4—S1 121.47 (10) O3—C17—C18 121.90 (13)
N2—C4—S1 112.41 (10) N4—C17—C18 115.00 (12)
C10—C5—C6 119.33 (14) C23—C18—C19 118.49 (13)
C10—C5—C1 120.14 (13) C23—C18—C17 124.17 (13)
C6—C5—C1 120.53 (13) C19—C18—C17 117.34 (13)
C5—C6—C7 120.41 (16) C20—C19—C18 120.67 (15)
C5—C6—H6 118.7 (11) C20—C19—H19 120.6 (11)
C7—C6—H6 120.9 (11) C18—C19—H19 118.8 (11)
C8—C7—C6 118.11 (15) C19—C20—C21 120.16 (15)
C8—C7—H7 122.1 (12) C19—C20—H20 121.9 (13)
C6—C7—H7 119.8 (12) C21—C20—H20 117.9 (13)
F1—C8—C7 118.48 (16) O4—C21—C22 124.66 (14)
F1—C8—C9 118.13 (17) O4—C21—C20 115.13 (14)
C7—C8—C9 123.39 (16) C22—C21—C20 120.20 (14)
C8—C9—C10 117.76 (17) C21—C22—C23 119.12 (14)
C8—C9—H9 119.7 (13) C21—C22—H22 120.7 (11)
C10—C9—H9 122.5 (13) C23—C22—H22 120.2 (11)
C9—C10—C5 120.96 (15) C18—C23—C22 121.34 (14)
C9—C10—H10 119.1 (12) C18—C23—H23 120.2 (11)
C5—C10—H10 119.9 (12) C22—C23—H23 118.4 (11)
O1—C11—O2 122.00 (13) O4—C24—H24A 110.4 (13)
O1—C11—C2 127.18 (14) O4—C24—H24B 110.9 (13)
O2—C11—C2 110.81 (11) H24A—C24—H24B 110.1 (18)
O2—C12—C13 106.88 (13) O4—C24—H24C 104.9 (13)
O2—C12—H12A 108.3 (12) H24A—C24—H24C 111.1 (18)
C13—C12—H12A 112.1 (12) H24B—C24—H24C 109.4 (18)
O2—C12—H12B 108.5 (11) H5A—O5—H5B 104.0
C15—N3—N4—C17 173.45 (12) C1—C5—C10—C9 −179.13 (15)
C4—N2—C1—C2 −21.62 (17) C12—O2—C11—O1 1.5 (2)
C15—N2—C1—C2 167.22 (11) C12—O2—C11—C2 −179.00 (12)
C4—N2—C1—C5 101.08 (14) C3—C2—C11—O1 2.3 (2)
C15—N2—C1—C5 −70.08 (15) C1—C2—C11—O1 −176.78 (15)
N2—C1—C2—C3 20.41 (18) C3—C2—C11—O2 −177.21 (13)
C5—C1—C2—C3 −100.69 (15) C1—C2—C11—O2 3.75 (18)
N2—C1—C2—C11 −160.54 (12) C11—O2—C12—C13 173.66 (14)
C5—C1—C2—C11 78.36 (15) N4—N3—C15—N2 178.26 (11)
C11—C2—C3—N1 173.50 (13) N4—N3—C15—C16 −2.1 (2)
C1—C2—C3—N1 −7.5 (2) C4—N2—C15—N3 177.79 (12)
C11—C2—C3—C14 −5.0 (2) C1—N2—C15—N3 −10.60 (19)
C1—C2—C3—C14 174.03 (14) C4—N2—C15—C16 −1.93 (17)
C4—N1—C3—C2 −7.2 (2) C1—N2—C15—C16 169.67 (12)
C4—N1—C3—C14 171.48 (13) N3—C15—C16—S1 −176.70 (12)
C3—N1—C4—N2 6.2 (2) N2—C15—C16—S1 2.98 (14)
C3—N1—C4—S1 −171.99 (10) C4—S1—C16—C15 −2.61 (11)
C15—N2—C4—N1 −178.53 (13) N3—N4—C17—O3 −7.08 (19)
C1—N2—C4—N1 9.9 (2) N3—N4—C17—C18 174.20 (11)
C15—N2—C4—S1 −0.18 (15) O3—C17—C18—C23 −160.50 (14)
C1—N2—C4—S1 −171.74 (10) N4—C17—C18—C23 18.2 (2)
C16—S1—C4—N1 −179.84 (12) O3—C17—C18—C19 19.1 (2)
C16—S1—C4—N2 1.73 (11) N4—C17—C18—C19 −162.14 (13)
N2—C1—C5—C10 −58.95 (16) C23—C18—C19—C20 −1.5 (2)
C2—C1—C5—C10 60.97 (17) C17—C18—C19—C20 178.83 (14)
N2—C1—C5—C6 121.37 (13) C18—C19—C20—C21 1.3 (2)
C2—C1—C5—C6 −118.72 (14) C24—O4—C21—C22 1.3 (2)
C10—C5—C6—C7 −1.9 (2) C24—O4—C21—C20 −178.54 (16)
C1—C5—C6—C7 177.79 (13) C19—C20—C21—O4 179.23 (14)
C5—C6—C7—C8 1.4 (2) C19—C20—C21—C22 −0.6 (2)
C6—C7—C8—F1 179.90 (15) O4—C21—C22—C23 −179.73 (14)
C6—C7—C8—C9 0.4 (3) C20—C21—C22—C23 0.1 (2)
F1—C8—C9—C10 178.81 (16) C19—C18—C23—C22 1.0 (2)
C7—C8—C9—C10 −1.7 (3) C17—C18—C23—C22 −179.37 (13)
C8—C9—C10—C5 1.2 (3) C21—C22—C23—C18 −0.3 (2)
C6—C5—C10—C9 0.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···N1i 0.885 (19) 2.164 (19) 2.9888 (17) 154.8 (16)
C1—H1···O5ii 0.987 (17) 2.345 (18) 3.307 (5) 164.7 (13)
C7—H7···O4iii 0.97 (2) 2.41 (2) 3.285 (2) 148.7 (17)
C13—H13B···F1ii 0.98 (3) 2.49 (3) 3.386 (2) 153.0 (19)
C16—H16A···N1i 0.98 (2) 2.58 (2) 3.4019 (19) 142.4 (15)
C16—H16B···O5iv 0.98 (2) 2.37 (2) 3.282 (5) 154.6 (16)
C24—H24A···O1v 0.99 (2) 2.53 (2) 3.450 (3) 154.6 (18)
C24—H24C···O1vi 0.95 (2) 2.57 (2) 3.504 (2) 167.8 (17)
O5—H5A···F1 0.87 1.76 2.479 (5) 138
O5—H5B···O3vii 0.87 2.00 2.863 (5) 174

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, −y+2, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x−1, y+1, z; (vii) x, −y+3/2, z−1/2.

Funding Statement

The support of NSF-MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. El-Din, M. M. G., El-Gamal, M. I., Abdel-Maksoud, M. S., Yoo, K. H. & Oh, C.-H. (2015). Eur. J. Med. Chem. 90, 45–52. [DOI] [PubMed]
  5. Fathima, N., Nagarajaiah, H. & Begum, N. S. (2013). Acta Cryst. E69, o1262. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Loh, W.-S., Sarojini, B. K., Umesha, K. & Narayana, B. (2011). Acta Cryst. E67, o1913–o1914. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.
  9. Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739. [DOI] [PMC free article] [PubMed]
  10. Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010b). Acta Cryst. E66, o599–o600. [DOI] [PMC free article] [PubMed]
  11. Jotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o762–o763. [DOI] [PMC free article] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Krishnamurthy, M. S. & Begum, N. S. (2014). Acta Cryst. E70, o1270–o1271. [DOI] [PMC free article] [PubMed]
  14. Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187–o1188. [DOI] [PMC free article] [PubMed]
  15. Leizerman, I., Avunie-Masala, R., Elkabets, M., Fich, A. & Gheber, L. (2004). Cell. Mol. Life Sci. 61, 2060–2070. [DOI] [PMC free article] [PubMed]
  16. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974. [DOI] [PubMed]
  17. Nagarajaiah, H., Fathima, N. & Begum, N. S. (2012). Acta Cryst. E68, o1257–o1258. [DOI] [PMC free article] [PubMed]
  18. Ragab, F. A., Abou-Seri, S. M., Abdel-Aziz, S. A., Alfayomy, A. M. & Aboelmagd, M. (2017). Eur. J. Med. Chem. 138, 140–151. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690. [DOI] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  23. Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L. & Mai, A. (2014). J. Med. Chem. 57, 6259–6265. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Yadagiri, B., Gurrala, S., Bantu, R., Nagarapu, L., Polepalli, S., Srujana, G. & Jain, N. (2015). Bioorg. Med. Chem. Lett. 25, 2220–2224. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022006041/wm5648sup1.cif

e-78-00880-sup1.cif (546.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022006041/wm5648Isup2.hkl

e-78-00880-Isup2.hkl (364.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022006041/wm5648Isup3.cml

CCDC reference: 2177565

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES