The title compound was obtained via the reaction of (1E,2E)-3-(3-methoxyphenyl)-1-phenylprop-2-en-1-one with ethyl 2-oxopropanoate, using NH4I as a catalyst. In the molecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, molecules are linked by C—H⋯π interactions into a three-dimensional network.
Keywords: crystal structure, C—H⋯π interactions, van der Waals interactions, Hirshfeld surface
Abstract
The title compound, C24H19NO, was obtained via the reaction of (1E,2E)-3-(3-methoxyphenyl)-1-phenylprop-2-en-1-one with ethyl 2-oxopropanoate, using NH4I as a catalyst. The compound crystallizes in the monoclinic space group I2/a. In the molecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, molecules are linked by C—H⋯π interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed. Hirshfeld surface analysis indicates that the most abundant contributions to the crystal packing are from H⋯H (50.4%), C⋯H/H⋯C (37.9%) and O⋯H/H⋯O (5.1%) interactions.
1. Chemical context
Substituted pyridines are privileged scaffolds in medicinal chemistry and are versatile building blocks for the construction of natural products (Haghighijoo et al., 2020 ▸; Gujjarappa et al., 2020 ▸; Nirogi et al., 2015 ▸; De Rycke et al., 2011 ▸; Chan et al., 2010 ▸; Bora et al., 2010 ▸), Accordingly, great effort has been devoted to developing efficient approaches to these scaffolds (Guin et al., 2020 ▸; Wu et al., 2019 ▸; Pandolfi et al., 2017 ▸; Shen et al., 2015 ▸). Ketoxime acetates have been demonstrated to be exceptionally advantaged and versatile building blocks for the synthesis and derivatization of nitrogen-containing heterocycles through N—O bond cleavage (Zhang et al., 2020 ▸; Mao et al., 2019 ▸; Xie et al., 2018 ▸). Thus far, many synthetic approaches have been developed to access nitrogen-containing heterocycles through ketoxime acetates under metal-free conditions. For example, Duan et al. (2020 ▸) have successfully developed the NH4I-triggered formal [4 + 2] annulation of α,β-unsaturated ketoxime acetates with N-acetyl enamides, providing efficient access to valuable highly substituted pyridines in moderate to good yields. Gao et al. (2018 ▸) have developed a facile and efficient I2-triggered [3 + 2 + 1] annulation of aryl ketoxime acetates and 3-formylindoles to produce diverse 3-(4-pyridyl)indoles that are challenging to prepare by traditional methods. Given this background, we report herein the synthesis and crystal structure of the title compound, which was synthesized by NH4I-triggered annulation of α,β-unsaturated ketoxime acetates.
2. Structural commentary
The title compound crystallizes in the monoclinic crystal system in space group I2/a. Its molecular structure is shown in Fig. 1 ▸. The methoxy group lies close to the mean plane of the C12–C17 phenyl ring, as indicated by the C17—C16—O1—C24 torsion angle of −170.59 (10)°, and atom C24 deviating by 0.250 (2) Å from the mean plane through the C12–C17 ring. In the molecule, the four rings are not in the same plane, the pyridine ring being inclined to the C6–C11, C12–C17 and C18–C23 benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°, respectively. There is a strong intramolecular hydrogen bond (C7—H7⋯N1; Table 1 ▸), forming an S(5) ring motif.
Figure 1.
The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C7—H7⋯N1 | 0.93 | 2.49 | 2.8025 (13) | 100 |
C14—H14⋯Cg2i | 0.93 | 2.74 | 3.5482 (12) | 146 |
C24—H24A⋯Cg3ii | 0.93 | 2.81 | 3.6787 (13) | 150 |
Symmetry codes: (i)
; (ii)
.
3. Supramolecular features
In the crystal (Fig. 2 ▸), the molecules are linked by weak C—H⋯π interactions (C14—H14⋯Cg2i and C24—H24⋯Cg3ii, Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively, symmetry codes as in Table 1 ▸). The C24—H24⋯Cg3 interactions generate stacks along the b-axis direction. These stacks are linked by the C14—H14⋯Cg2 interactions. The packing is strengthened by van der Waals interactions between parallel molecular layers.
Figure 2.
A packing diagram of the title compound. The C—H⋯π interactions are shown as dashed lines. Yellow spheres denoted Cg represent the centroids of the 3-methoxyphenyl rings.
In order to investigate the intermolecular interactions in a visual manner, a Hirshfeld surface analysis was performed using Crystal Explorer (Spackman & Jayatilaka, 2009 ▸; Turner et al., 2017 ▸). Fig. 3 ▸ shows the d
norm surface together with two adjacent molecules. The bright-red spots on the Hirshfeld surface mapped over d
norm correspond to H24B⋯H20 (x −
, 2 − y, z) close contacts. Fig. 4 ▸
a is the fingerprint plot showing all intermolecular interactions while Fig. 4 ▸
b–d show these resolved into C⋯H/H⋯C (37.9%), H⋯H (50.4%) and O⋯H/H⋯O (5.1%) contributions, respectively. As a result, van der Waals interactions are dominant in the crystal packing.
Figure 3.
The Hirshfeld surface mapped over d norm together with two adjacent molecules.
Figure 4.
Fingerprint plots for the title molecule: (a) all intermolecular interactions, (b) C⋯H/H⋯C interactions, (c) H⋯H interactions and (d) O⋯H/H⋯O interactions.
4. Database survey
A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016 ▸) for the 2,4,6-triphenylpyridine moiety revealed seven structures closely related to the title compound, viz. 4-(4-fluorophenyl)-2,6-diphenylpyridine [(I) SURGER01; Zhang et al., 2021 ▸], 4-[4-(azidomethyl)phenyl]-2,6-diphenylpyridine [(II) DOCLIT; Cheng et al., 2019 ▸], 4-(4-chlorophenyl)-2,6-diphenylpyridine [(III) GISGEV; Lv & Huang, 2008 ▸], 2,4,6-triphenylpyridine [(IV) HEVVAF, Ondráček et al., 1994 ▸; HEVVAF01, Ren et al., 2011 ▸; HEVVAF02, Mao et al., 2017 ▸], 2-(4-methylphenyl)-4,6-diphenylpyridine [(V) REMHOJ; Stivanin et al., 2017 ▸], 4-(4-bromophenyl)-2,6-diphenylpyridine [(VI) AJEZOF; Cao et al., 2009 ▸], 4-(2,6-diphenylpyridin-4-yl) phenol [(VII) KIDBIL; Kannan et al., 2018 ▸].
As in the title compound, in (I), (II), (III), (IV) and (V), C—H⋯π (ring) interactions connect the molecules, forming tri-periodic networks. In (VI), molecules are linked by weak intermolecular C—H⋯Br hydrogen bonds, and weak intermolecular C—H⋯π (ring) interactions are also observed. In (VII), molecules are linked by weak intermolecular C—H⋯O hydrogen bonds, and there are also weak intermolecular C—H⋯π (ring) interactions.
5. Synthesis and crystallization
(1E,2E)-3-(3-Methoxyphenyl)-1-phenylprop-2-en-1-one (3.0 mmol), ethyl 2-oxopropanoate (0.3 mmol), NH4I (0.22 g, 0.15 mmol) and NaHSO3 (0.31 g, 3.0 mmol) were loaded into a 20 mL tube under an N2 atmosphere. The solvent toluene (15 mL) was added into the tube by syringe. The reaction mixture was stirred at 373 K for 12 h. Upon completion of the reaction, the mixture was then allowed to cool down to room temperature and flushed through a short column of silica gel with EtOAc (15 mL). After rotary evaporation, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the product as a white solid. Part of the purified product was redissolved in petroleum ether/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days. Spectroscopic data: 1H NMR (600 MHz, CDCl3) δ 8.20 (d, J = 7.8 Hz, 4H), 7.87 (s, 2H), 7.53–7.50 (m, 4H), 7.46–7.42 (m, 3H), 7.33–7.32 (m, 1H), 7.26–7.24 (m, 1H), 7.02–7.00 (m, 1H), 3.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 160.2, 157.5, 150.2, 140.6, 139.5, 130.2, 129.1, 128.8, 127.2, 119.7, 117.3, 114.3, 113.1, 55.5.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint U iso(H) = 1.2U eq (C) or 1.5U eq(CMe) was applied in all cases.
Table 2. Experimental details.
Crystal data | |
Chemical formula | C24H19NO |
M r | 337.40 |
Crystal system, space group | Monoclinic, I2/a |
Temperature (K) | 200 |
a, b, c (Å) | 18.6588 (2), 5.4739 (1), 35.5689 (5) |
β (°) | 100.729 (1) |
V (Å3) | 3569.37 (9) |
Z | 8 |
Radiation type | Cu Kα |
μ (mm−1) | 0.59 |
Crystal size (mm) | 0.15 × 0.11 × 0.1 |
Data collection | |
Diffractometer | XtaLAB AFC12 (RINC): Kappa single |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2017 ▸) |
T min, T max | 0.747, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8525, 3417, 3189 |
R int | 0.016 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.099, 1.00 |
No. of reflections | 3417 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.15 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022007812/pk2666Isup3.cml
CCDC reference: 2194417
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
C24H19NO | F(000) = 1424 |
Mr = 337.40 | Dx = 1.256 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 18.6588 (2) Å | Cell parameters from 6287 reflections |
b = 5.4739 (1) Å | θ = 2.6–71.4° |
c = 35.5689 (5) Å | µ = 0.59 mm−1 |
β = 100.729 (1)° | T = 200 K |
V = 3569.37 (9) Å3 | Block, clear light colourless |
Z = 8 | 0.15 × 0.11 × 0.1 mm |
Data collection
XtaLAB AFC12 (RINC): Kappa single diffractometer | 3417 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 3189 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
ω scans | θmax = 71.5°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) | h = −20→22 |
Tmin = 0.747, Tmax = 1.000 | k = −4→6 |
8525 measured reflections | l = −42→43 |
Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.7292P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max = 0.001 |
S = 1.00 | Δρmax = 0.19 e Å−3 |
3417 reflections | Δρmin = −0.15 e Å−3 |
237 parameters | Extinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00128 (9) |
Primary atom site location: dual |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.31876 (5) | 0.10179 (16) | 0.43410 (2) | 0.0435 (2) | |
N1 | 0.56039 (4) | 0.98962 (16) | 0.36511 (2) | 0.0280 (2) | |
C1 | 0.52794 (5) | 1.00634 (19) | 0.39576 (3) | 0.0275 (2) | |
C2 | 0.46613 (5) | 0.87064 (19) | 0.39895 (3) | 0.0295 (2) | |
H2 | 0.445343 | 0.884525 | 0.420676 | 0.035* | |
C3 | 0.43587 (5) | 0.71485 (19) | 0.36952 (3) | 0.0282 (2) | |
C4 | 0.46901 (5) | 0.7006 (2) | 0.33766 (3) | 0.0296 (2) | |
H4 | 0.449647 | 0.600015 | 0.317211 | 0.036* | |
C5 | 0.53147 (5) | 0.83820 (19) | 0.33658 (3) | 0.0276 (2) | |
C6 | 0.57027 (5) | 0.8247 (2) | 0.30363 (3) | 0.0283 (2) | |
C7 | 0.62006 (6) | 1.0059 (2) | 0.29844 (3) | 0.0349 (3) | |
H7 | 0.628023 | 1.137188 | 0.315289 | 0.042* | |
C8 | 0.65777 (7) | 0.9923 (2) | 0.26844 (3) | 0.0416 (3) | |
H8 | 0.690790 | 1.114477 | 0.265319 | 0.050* | |
C9 | 0.64673 (6) | 0.7985 (2) | 0.24310 (3) | 0.0409 (3) | |
H9 | 0.672523 | 0.789083 | 0.223154 | 0.049* | |
C10 | 0.59708 (6) | 0.6193 (2) | 0.24767 (3) | 0.0398 (3) | |
H10 | 0.589029 | 0.489378 | 0.230547 | 0.048* | |
C11 | 0.55906 (6) | 0.6315 (2) | 0.27768 (3) | 0.0349 (3) | |
H11 | 0.525773 | 0.509472 | 0.280488 | 0.042* | |
C12 | 0.37016 (5) | 0.5655 (2) | 0.37171 (3) | 0.0288 (2) | |
C13 | 0.30860 (6) | 0.5772 (2) | 0.34262 (3) | 0.0355 (3) | |
H13 | 0.307468 | 0.684207 | 0.322203 | 0.043* | |
C14 | 0.24943 (6) | 0.4289 (2) | 0.34437 (3) | 0.0393 (3) | |
H14 | 0.208289 | 0.439001 | 0.325132 | 0.047* | |
C15 | 0.25003 (6) | 0.2652 (2) | 0.37419 (3) | 0.0361 (3) | |
H15 | 0.210233 | 0.163835 | 0.374717 | 0.043* | |
C16 | 0.31115 (6) | 0.2552 (2) | 0.40329 (3) | 0.0320 (2) | |
C17 | 0.37049 (5) | 0.4078 (2) | 0.40215 (3) | 0.0301 (2) | |
H17 | 0.410674 | 0.403553 | 0.422021 | 0.036* | |
C18 | 0.56109 (5) | 1.17960 (19) | 0.42620 (3) | 0.0289 (2) | |
C19 | 0.60256 (6) | 1.3753 (2) | 0.41768 (3) | 0.0358 (3) | |
H19 | 0.609761 | 1.397731 | 0.392735 | 0.043* | |
C20 | 0.63323 (7) | 1.5371 (2) | 0.44594 (4) | 0.0458 (3) | |
H20 | 0.661015 | 1.666984 | 0.439753 | 0.055* | |
C21 | 0.62333 (7) | 1.5093 (2) | 0.48313 (4) | 0.0467 (3) | |
H21 | 0.643968 | 1.619274 | 0.501995 | 0.056* | |
C22 | 0.58241 (8) | 1.3160 (3) | 0.49179 (4) | 0.0542 (4) | |
H22 | 0.574972 | 1.295836 | 0.516738 | 0.065* | |
C23 | 0.55208 (7) | 1.1507 (3) | 0.46386 (3) | 0.0456 (3) | |
H23 | 0.525391 | 1.018874 | 0.470363 | 0.055* | |
C24 | 0.26481 (7) | −0.0842 (2) | 0.43386 (4) | 0.0459 (3) | |
H24A | 0.261990 | −0.182605 | 0.411288 | 0.069* | |
H24B | 0.218282 | −0.009630 | 0.433972 | 0.069* | |
H24C | 0.277951 | −0.185138 | 0.456145 | 0.069* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0405 (5) | 0.0415 (5) | 0.0487 (5) | −0.0114 (4) | 0.0090 (4) | 0.0073 (4) |
N1 | 0.0251 (4) | 0.0288 (4) | 0.0301 (4) | −0.0006 (3) | 0.0050 (3) | 0.0004 (3) |
C1 | 0.0244 (5) | 0.0279 (5) | 0.0301 (5) | 0.0010 (4) | 0.0045 (4) | 0.0005 (4) |
C2 | 0.0263 (5) | 0.0325 (5) | 0.0305 (5) | −0.0010 (4) | 0.0076 (4) | −0.0012 (4) |
C3 | 0.0227 (5) | 0.0294 (5) | 0.0320 (5) | 0.0006 (4) | 0.0041 (4) | 0.0009 (4) |
C4 | 0.0261 (5) | 0.0328 (5) | 0.0292 (5) | −0.0019 (4) | 0.0032 (4) | −0.0022 (4) |
C5 | 0.0246 (5) | 0.0286 (5) | 0.0287 (5) | 0.0019 (4) | 0.0029 (4) | 0.0024 (4) |
C6 | 0.0239 (5) | 0.0326 (5) | 0.0274 (5) | 0.0028 (4) | 0.0025 (4) | 0.0038 (4) |
C7 | 0.0360 (6) | 0.0339 (6) | 0.0355 (6) | −0.0019 (5) | 0.0087 (4) | 0.0019 (5) |
C8 | 0.0399 (6) | 0.0449 (7) | 0.0431 (6) | −0.0037 (5) | 0.0156 (5) | 0.0089 (5) |
C9 | 0.0386 (6) | 0.0546 (7) | 0.0320 (6) | 0.0077 (5) | 0.0134 (5) | 0.0072 (5) |
C10 | 0.0369 (6) | 0.0495 (7) | 0.0333 (6) | 0.0034 (5) | 0.0072 (5) | −0.0070 (5) |
C11 | 0.0301 (5) | 0.0401 (6) | 0.0347 (6) | −0.0027 (5) | 0.0062 (4) | −0.0032 (5) |
C12 | 0.0235 (5) | 0.0309 (5) | 0.0330 (5) | −0.0011 (4) | 0.0080 (4) | −0.0063 (4) |
C13 | 0.0294 (5) | 0.0439 (6) | 0.0328 (5) | −0.0032 (5) | 0.0049 (4) | −0.0008 (5) |
C14 | 0.0260 (5) | 0.0517 (7) | 0.0383 (6) | −0.0049 (5) | 0.0009 (4) | −0.0056 (5) |
C15 | 0.0254 (5) | 0.0401 (6) | 0.0442 (6) | −0.0085 (4) | 0.0101 (4) | −0.0097 (5) |
C16 | 0.0300 (5) | 0.0310 (5) | 0.0369 (5) | −0.0016 (4) | 0.0114 (4) | −0.0045 (4) |
C17 | 0.0235 (5) | 0.0324 (5) | 0.0340 (5) | −0.0012 (4) | 0.0042 (4) | −0.0045 (4) |
C18 | 0.0244 (5) | 0.0291 (5) | 0.0330 (5) | 0.0011 (4) | 0.0051 (4) | −0.0020 (4) |
C19 | 0.0394 (6) | 0.0317 (6) | 0.0374 (6) | −0.0038 (5) | 0.0097 (5) | −0.0009 (5) |
C20 | 0.0525 (7) | 0.0334 (6) | 0.0522 (7) | −0.0136 (5) | 0.0111 (6) | −0.0051 (5) |
C21 | 0.0507 (7) | 0.0425 (7) | 0.0453 (7) | −0.0100 (6) | 0.0047 (5) | −0.0145 (6) |
C22 | 0.0642 (9) | 0.0656 (9) | 0.0341 (6) | −0.0236 (7) | 0.0127 (6) | −0.0114 (6) |
C23 | 0.0508 (7) | 0.0512 (7) | 0.0363 (6) | −0.0227 (6) | 0.0118 (5) | −0.0058 (5) |
C24 | 0.0394 (6) | 0.0326 (6) | 0.0703 (9) | −0.0040 (5) | 0.0224 (6) | 0.0034 (6) |
Geometric parameters (Å, º)
O1—C16 | 1.3668 (14) | C12—C13 | 1.3970 (14) |
O1—C24 | 1.4306 (14) | C12—C17 | 1.3839 (15) |
N1—C1 | 1.3452 (13) | C13—H13 | 0.9300 |
N1—C5 | 1.3432 (13) | C13—C14 | 1.3811 (16) |
C1—C2 | 1.3940 (14) | C14—H14 | 0.9300 |
C1—C18 | 1.4849 (14) | C14—C15 | 1.3868 (17) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C2—C3 | 1.3864 (14) | C15—C16 | 1.3913 (16) |
C3—C4 | 1.3905 (14) | C16—C17 | 1.3936 (15) |
C3—C12 | 1.4879 (14) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—C19 | 1.3876 (15) |
C4—C5 | 1.3941 (14) | C18—C23 | 1.3897 (15) |
C5—C6 | 1.4897 (14) | C19—H19 | 0.9300 |
C6—C7 | 1.3946 (15) | C19—C20 | 1.3812 (17) |
C6—C11 | 1.3934 (15) | C20—H20 | 0.9300 |
C7—H7 | 0.9300 | C20—C21 | 1.3778 (19) |
C7—C8 | 1.3852 (16) | C21—H21 | 0.9300 |
C8—H8 | 0.9300 | C21—C22 | 1.3730 (19) |
C8—C9 | 1.3820 (18) | C22—H22 | 0.9300 |
C9—H9 | 0.9300 | C22—C23 | 1.3845 (18) |
C9—C10 | 1.3796 (18) | C23—H23 | 0.9300 |
C10—H10 | 0.9300 | C24—H24A | 0.9600 |
C10—C11 | 1.3890 (15) | C24—H24B | 0.9600 |
C11—H11 | 0.9300 | C24—H24C | 0.9600 |
C16—O1—C24 | 117.66 (9) | C14—C13—C12 | 119.56 (11) |
C5—N1—C1 | 118.45 (9) | C14—C13—H13 | 120.2 |
N1—C1—C2 | 122.25 (9) | C13—C14—H14 | 119.3 |
N1—C1—C18 | 116.44 (9) | C13—C14—C15 | 121.44 (10) |
C2—C1—C18 | 121.31 (9) | C15—C14—H14 | 119.3 |
C1—C2—H2 | 120.2 | C14—C15—H15 | 120.5 |
C3—C2—C1 | 119.54 (9) | C14—C15—C16 | 118.90 (10) |
C3—C2—H2 | 120.2 | C16—C15—H15 | 120.5 |
C2—C3—C4 | 118.00 (9) | O1—C16—C15 | 124.70 (10) |
C2—C3—C12 | 121.48 (9) | O1—C16—C17 | 115.27 (9) |
C4—C3—C12 | 120.51 (9) | C15—C16—C17 | 120.02 (10) |
C3—C4—H4 | 120.2 | C12—C17—C16 | 120.58 (10) |
C3—C4—C5 | 119.54 (9) | C12—C17—H17 | 119.7 |
C5—C4—H4 | 120.2 | C16—C17—H17 | 119.7 |
N1—C5—C4 | 122.19 (9) | C19—C18—C1 | 120.49 (10) |
N1—C5—C6 | 116.07 (9) | C19—C18—C23 | 118.09 (10) |
C4—C5—C6 | 121.73 (9) | C23—C18—C1 | 121.41 (10) |
C7—C6—C5 | 120.13 (10) | C18—C19—H19 | 119.7 |
C11—C6—C5 | 121.59 (10) | C20—C19—C18 | 120.57 (11) |
C11—C6—C7 | 118.28 (10) | C20—C19—H19 | 119.7 |
C6—C7—H7 | 119.7 | C19—C20—H20 | 119.5 |
C8—C7—C6 | 120.67 (11) | C21—C20—C19 | 121.08 (12) |
C8—C7—H7 | 119.7 | C21—C20—H20 | 119.5 |
C7—C8—H8 | 119.7 | C20—C21—H21 | 120.7 |
C9—C8—C7 | 120.54 (11) | C22—C21—C20 | 118.70 (11) |
C9—C8—H8 | 119.7 | C22—C21—H21 | 120.7 |
C8—C9—H9 | 120.3 | C21—C22—H22 | 119.6 |
C10—C9—C8 | 119.40 (10) | C21—C22—C23 | 120.85 (12) |
C10—C9—H9 | 120.3 | C23—C22—H22 | 119.6 |
C9—C10—H10 | 119.8 | C18—C23—H23 | 119.7 |
C9—C10—C11 | 120.43 (11) | C22—C23—C18 | 120.69 (12) |
C11—C10—H10 | 119.8 | C22—C23—H23 | 119.7 |
C6—C11—H11 | 119.7 | O1—C24—H24A | 109.5 |
C10—C11—C6 | 120.69 (11) | O1—C24—H24B | 109.5 |
C10—C11—H11 | 119.7 | O1—C24—H24C | 109.5 |
C13—C12—C3 | 120.52 (10) | H24A—C24—H24B | 109.5 |
C17—C12—C3 | 120.01 (9) | H24A—C24—H24C | 109.5 |
C17—C12—C13 | 119.44 (10) | H24B—C24—H24C | 109.5 |
C12—C13—H13 | 120.2 | ||
O1—C16—C17—C12 | 177.88 (9) | C5—N1—C1—C18 | −178.87 (9) |
N1—C1—C2—C3 | −0.90 (15) | C5—C6—C7—C8 | 178.44 (10) |
N1—C1—C18—C19 | 24.21 (14) | C5—C6—C11—C10 | −178.45 (10) |
N1—C1—C18—C23 | −155.42 (11) | C6—C7—C8—C9 | −0.03 (18) |
N1—C5—C6—C7 | −16.90 (14) | C7—C6—C11—C10 | 0.57 (16) |
N1—C5—C6—C11 | 162.10 (10) | C7—C8—C9—C10 | 0.69 (18) |
C1—N1—C5—C4 | 0.54 (15) | C8—C9—C10—C11 | −0.70 (18) |
C1—N1—C5—C6 | −179.20 (9) | C9—C10—C11—C6 | 0.07 (17) |
C1—C2—C3—C4 | 0.02 (15) | C11—C6—C7—C8 | −0.59 (16) |
C1—C2—C3—C12 | 179.70 (9) | C12—C3—C4—C5 | −178.60 (9) |
C1—C18—C19—C20 | 179.78 (11) | C12—C13—C14—C15 | −0.93 (18) |
C1—C18—C23—C22 | −179.00 (12) | C13—C12—C17—C16 | 2.26 (16) |
C2—C1—C18—C19 | −155.29 (10) | C13—C14—C15—C16 | 1.44 (18) |
C2—C1—C18—C23 | 25.08 (16) | C14—C15—C16—O1 | −179.69 (10) |
C2—C3—C4—C5 | 1.09 (15) | C14—C15—C16—C17 | −0.10 (16) |
C2—C3—C12—C13 | 125.72 (11) | C15—C16—C17—C12 | −1.75 (16) |
C2—C3—C12—C17 | −56.26 (14) | C17—C12—C13—C14 | −0.93 (16) |
C3—C4—C5—N1 | −1.42 (15) | C18—C1—C2—C3 | 178.57 (9) |
C3—C4—C5—C6 | 178.32 (9) | C18—C19—C20—C21 | −0.2 (2) |
C3—C12—C13—C14 | 177.10 (10) | C19—C18—C23—C22 | 1.37 (19) |
C3—C12—C17—C16 | −175.78 (9) | C19—C20—C21—C22 | 0.3 (2) |
C4—C3—C12—C13 | −54.60 (14) | C20—C21—C22—C23 | 0.5 (2) |
C4—C3—C12—C17 | 123.41 (11) | C21—C22—C23—C18 | −1.4 (2) |
C4—C5—C6—C7 | 163.35 (10) | C23—C18—C19—C20 | −0.59 (17) |
C4—C5—C6—C11 | −17.65 (15) | C24—O1—C16—C15 | 9.02 (16) |
C5—N1—C1—C2 | 0.62 (15) | C24—O1—C16—C17 | −170.59 (10) |
Hydrogen-bond geometry (Å, º)
Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1 | 0.93 | 2.49 | 2.8025 (13) | 100 |
C14—H14···Cg2i | 0.93 | 2.74 | 3.5482 (12) | 146 |
C24—H24A···Cg3ii | 0.93 | 2.81 | 3.6787 (13) | 150 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y−1, z.
Funding Statement
We acknowledge the Excellent Young Talents Support Program of Anhui Higher Education Institutions (gxgnfx2018035), and the Innovation and Entrepreneurship Project of College Students in Anhui Province (DCJX-S17227577).
References
- Bora, D., Deb, B., Fuller, A. L., Slawin, A. M. Z., Derek Woollins, J. & Dutta, D. K. (2010). Inorg. Chim. Acta, 363, 1539–1546.
- Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182. [DOI] [PMC free article] [PubMed]
- Chan, Y. T., Moorefield, C. N., Soler, M. & Newkome, G. R. (2010). Chem. Eur. J. 16, 1768–1771. [DOI] [PubMed]
- Cheng, X., Du, Y., Guo, H., Chen, Z. & Tian, Y. (2019). IUCrData, 4, x190295.
- De Rycke, N., Couty, F. & David, O. R. (2011). Chem. Eur. J. 17, 12852–12871. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Duan, J. D., Zhang, L., Xu, G. C., Chen, H. M., Ding, X. J., Mao, Y. Y., Rong, B. S., Zhu, N. & Guo, K. (2020). J. Org. Chem. 85, 8157–8165. [DOI] [PubMed]
- Gao, Q., Wang, Y., Wang, Q., Zhu, Y., Liu, Z. & Zhang, J. (2018). Org. Biomol. Chem. 16, 9030–9037. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Guin, S., Gudimella, S. K. & Samanta, S. (2020). Org. Biomol. Chem. 18, 1337–1342. [DOI] [PubMed]
- Gujjarappa, R., Vodnala, N. & Malakar, C. C. (2020). ChemistrySelect, 5, 8745–8758.
- Haghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M. & Edraki, N. (2020). Bioorg. Chem. 103, 104146. [DOI] [PubMed]
- Kannan, V., Sreekumar, K. & Ulahannan, R. T. (2018). J. Mol. Struct. 1166, 315–320.
- Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186. [DOI] [PMC free article] [PubMed]
- Mao, P. F., Zhou, L. J., Zheng, A. Q., Miao, C. B. & Yang, H. T. (2019). Org. Lett. 21, 3153–3157. [DOI] [PubMed]
- Mao, Z. Y., Liao, X. Y., Wang, H. S., Wang, C. G., Huang, K. B. & Pan, Y. M. (2017). RSC Adv. 7, 13123–13129.
- Nirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289–301. [DOI] [PubMed]
- Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.
- Pandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M. & Scipione, L. (2017). Eur. J. Med. Chem. 141, 197–210. [DOI] [PubMed]
- Ren, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. (2011). Org. Lett. 13, 5394–5397. [DOI] [PubMed]
- Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shen, J., Cai, D., Kuai, C., Liu, Y., Wei, M., Cheng, G. & Cui, X. (2015). J. Org. Chem. 80, 6584–6589. [DOI] [PubMed]
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Stivanin, M. L., Duarte, M., Sartori, C., Capreti, N. M. R., Angolini, C. F. F. & Jurberg, I. D. (2017). J. Org. Chem. 82, 10319–10330. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.
- Wu, P., Zhang, X. & Chen, B. (2019). Tetrahedron Lett. 60, 1103–1107.
- Xie, Y., Li, Y., Chen, X., Liu, Y. & Zhang, W. (2018). Org. Chem. Front. 5, 1698–1701.
- Zhang, Q., Wang, S., Zhu, Y., Zhang, C., Cao, H., Ma, W., Tian, X., Wu, J., Zhou, H. & Tian, Y. (2021). Inorg. Chem. 60, 2362–2371. [DOI] [PubMed]
- Zhang, Y., Ai, H.-J. & Wu, X.-F. (2020). Org. Chem. Front. 7, 2986–2990.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989022007812/pk2666Isup3.cml
CCDC reference: 2194417
Additional supporting information: crystallographic information; 3D view; checkCIF report