Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Aug 23;78(Pt 9):932–935. doi: 10.1107/S2056989022007812

Crystal structure and Hirshfeld surface analysis of 4-(3-meth­oxy­phen­yl)-2,6-di­phenyl­pyridine

Dong Cheng a, Xiang-Zhen Meng a, Fuyu Tian a, Dong Yan a, Xiaofei Wang a, Xueli Qian a, Junnan Wang a,*
Editor: S Parkinb
PMCID: PMC9443808  PMID: 36072513

The title compound was obtained via the reaction of (1E,2E)-3-(3-meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one with ethyl 2-oxo­propano­ate, using NH4I as a catalyst. In the mol­ecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into a three-dimensional network.

Keywords: crystal structure, C—H⋯π inter­actions, van der Waals inter­actions, Hirshfeld surface

Abstract

The title compound, C24H19NO, was obtained via the reaction of (1E,2E)-3-(3-meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one with ethyl 2-oxo­propano­ate, using NH4I as a catalyst. The compound crystallizes in the monoclinic space group I2/a. In the mol­ecule, the four rings are not in the same plane, the pyridine ring being inclined to the benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed. Hirshfeld surface analysis indicates that the most abundant contributions to the crystal packing are from H⋯H (50.4%), C⋯H/H⋯C (37.9%) and O⋯H/H⋯O (5.1%) inter­actions.

1. Chemical context

Substituted pyridines are privileged scaffolds in medicinal chemistry and are versatile building blocks for the construction of natural products (Haghighijoo et al., 2020; Gujjarappa et al., 2020; Nirogi et al., 2015; De Rycke et al., 2011; Chan et al., 2010; Bora et al., 2010), Accordingly, great effort has been devoted to developing efficient approaches to these scaffolds (Guin et al., 2020; Wu et al., 2019; Pandolfi et al., 2017; Shen et al., 2015). Ketoxime acetates have been demonstrated to be exceptionally advantaged and versatile building blocks for the synthesis and derivatization of nitro­gen-containing heterocycles through N—O bond cleavage (Zhang et al., 2020; Mao et al., 2019; Xie et al., 2018). Thus far, many synthetic approaches have been developed to access nitro­gen-containing heterocycles through ketoxime acetates under metal-free conditions. For example, Duan et al. (2020) have successfully developed the NH4I-triggered formal [4 + 2] annulation of α,β-unsaturated ketoxime acetates with N-acetyl enamides, providing efficient access to valuable highly substituted pyridines in moderate to good yields. Gao et al. (2018) have developed a facile and efficient I2-triggered [3 + 2 + 1] annulation of aryl ketoxime acetates and 3-formyl­indoles to produce diverse 3-(4-pyrid­yl)indoles that are challenging to prepare by traditional methods. Given this background, we report herein the synthesis and crystal structure of the title compound, which was synthesized by NH4I-triggered annulation of α,β-unsaturated ketoxime acetates.

2. Structural commentary

The title compound crystallizes in the monoclinic crystal system in space group I2/a. Its mol­ecular structure is shown in Fig. 1. The meth­oxy group lies close to the mean plane of the C12–C17 phenyl ring, as indicated by the C17—C16—O1—C24 torsion angle of −170.59 (10)°, and atom C24 deviating by 0.250 (2) Å from the mean plane through the C12–C17 ring. In the mol­ecule, the four rings are not in the same plane, the pyridine ring being inclined to the C6–C11, C12–C17 and C18–C23 benzene rings by 17.26 (6), 56.16 (3) and 24.50 (6)°, respectively. There is a strong intra­molecular hydrogen bond (C7—H7⋯N1; Table 1), forming an S(5) ring motif. 2.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1 0.93 2.49 2.8025 (13) 100
C14—H14⋯Cg2i 0.93 2.74 3.5482 (12) 146
C24—H24ACg3ii 0.93 2.81 3.6787 (13) 150

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

3. Supra­molecular features

In the crystal (Fig. 2), the mol­ecules are linked by weak C—H⋯π inter­actions (C14—H14⋯Cg2i and C24—H24⋯Cg3ii, Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively, symmetry codes as in Table 1). The C24—H24⋯Cg3 inter­actions generate stacks along the b-axis direction. These stacks are linked by the C14—H14⋯Cg2 inter­actions. The packing is strengthened by van der Waals inter­actions between parallel mol­ecular layers.

Figure 2.

Figure 2

A packing diagram of the title compound. The C—H⋯π inter­actions are shown as dashed lines. Yellow spheres denoted Cg represent the centroids of the 3-meth­oxy­phenyl rings.

In order to investigate the inter­molecular inter­actions in a visual manner, a Hirshfeld surface analysis was performed using Crystal Explorer (Spackman & Jayatilaka, 2009; Turner et al., 2017). Fig. 3 shows the d norm surface together with two adjacent mol­ecules. The bright-red spots on the Hirshfeld surface mapped over d norm correspond to H24B⋯H20 (x −  Inline graphic , 2 − y, z) close contacts. Fig. 4 a is the fingerprint plot showing all inter­molecular inter­actions while Fig. 4 bd show these resolved into C⋯H/H⋯C (37.9%), H⋯H (50.4%) and O⋯H/H⋯O (5.1%) contributions, respectively. As a result, van der Waals inter­actions are dominant in the crystal packing.

Figure 3.

Figure 3

The Hirshfeld surface mapped over d norm together with two adjacent mol­ecules.

Figure 4.

Figure 4

Fingerprint plots for the title mol­ecule: (a) all inter­molecular inter­actions, (b) C⋯H/H⋯C inter­actions, (c) H⋯H inter­actions and (d) O⋯H/H⋯O inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 2021.1; Groom et al., 2016) for the 2,4,6-tri­phenyl­pyridine moiety revealed seven structures closely related to the title compound, viz. 4-(4-fluoro­phen­yl)-2,6-di­phenyl­pyridine [(I) SURGER01; Zhang et al., 2021], 4-[4-(azido­meth­yl)phen­yl]-2,6-di­phenyl­pyridine [(II) DOCLIT; Cheng et al., 2019], 4-(4-chloro­phen­yl)-2,6-di­phenyl­pyridine [(III) GISGEV; Lv & Huang, 2008], 2,4,6-tri­phenyl­pyridine [(IV) HEVVAF, Ondráček et al., 1994; HEVVAF01, Ren et al., 2011; HEVVAF02, Mao et al., 2017], 2-(4-methyl­phen­yl)-4,6-di­phenyl­pyridine [(V) REMHOJ; Stivanin et al., 2017], 4-(4-bromo­phen­yl)-2,6-di­phenyl­pyridine [(VI) AJEZOF; Cao et al., 2009], 4-(2,6-di­phenyl­pyridin-4-yl) phenol [(VII) KIDBIL; Kannan et al., 2018].

As in the title compound, in (I), (II), (III), (IV) and (V), C—H⋯π (ring) inter­actions connect the mol­ecules, forming tri-periodic networks. In (VI), mol­ecules are linked by weak inter­molecular C—H⋯Br hydrogen bonds, and weak inter­molecular C—H⋯π (ring) inter­actions are also observed. In (VII), mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, and there are also weak inter­molecular C—H⋯π (ring) inter­actions.

5. Synthesis and crystallization

(1E,2E)-3-(3-Meth­oxy­phen­yl)-1-phenyl­prop-2-en-1-one (3.0 mmol), ethyl 2-oxo­propano­ate (0.3 mmol), NH4I (0.22 g, 0.15 mmol) and NaHSO3 (0.31 g, 3.0 mmol) were loaded into a 20 mL tube under an N2 atmosphere. The solvent toluene (15 mL) was added into the tube by syringe. The reaction mixture was stirred at 373 K for 12 h. Upon completion of the reaction, the mixture was then allowed to cool down to room temperature and flushed through a short column of silica gel with EtOAc (15 mL). After rotary evaporation, the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the product as a white solid. Part of the purified product was redissolved in petroleum ether/ethyl acetate and colourless crystals suitable for X-ray diffraction were formed after slow evaporation for several days. Spectroscopic data: 1H NMR (600 MHz, CDCl3) δ 8.20 (d, J = 7.8 Hz, 4H), 7.87 (s, 2H), 7.53–7.50 (m, 4H), 7.46–7.42 (m, 3H), 7.33–7.32 (m, 1H), 7.26–7.24 (m, 1H), 7.02–7.00 (m, 1H), 3.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 160.2, 157.5, 150.2, 140.6, 139.5, 130.2, 129.1, 128.8, 127.2, 119.7, 117.3, 114.3, 113.1, 55.5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined as riding atoms. The constraint U iso(H) = 1.2U eq (C) or 1.5U eq(CMe) was applied in all cases.

Table 2. Experimental details.

Crystal data
Chemical formula C24H19NO
M r 337.40
Crystal system, space group Monoclinic, I2/a
Temperature (K) 200
a, b, c (Å) 18.6588 (2), 5.4739 (1), 35.5689 (5)
β (°) 100.729 (1)
V3) 3569.37 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.15 × 0.11 × 0.1
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017)
T min, T max 0.747, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8525, 3417, 3189
R int 0.016
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.099, 1.00
No. of reflections 3417
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.15

Computer programs: CrysAlis PRO (Rigaku OD, 2017), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2017/1 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666sup1.cif

e-78-00932-sup1.cif (284.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666Isup2.hkl

e-78-00932-Isup2.hkl (273.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007812/pk2666Isup3.cml

CCDC reference: 2194417

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C24H19NO F(000) = 1424
Mr = 337.40 Dx = 1.256 Mg m3
Monoclinic, I2/a Cu Kα radiation, λ = 1.54184 Å
a = 18.6588 (2) Å Cell parameters from 6287 reflections
b = 5.4739 (1) Å θ = 2.6–71.4°
c = 35.5689 (5) Å µ = 0.59 mm1
β = 100.729 (1)° T = 200 K
V = 3569.37 (9) Å3 Block, clear light colourless
Z = 8 0.15 × 0.11 × 0.1 mm

Data collection

XtaLAB AFC12 (RINC): Kappa single diffractometer 3417 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source 3189 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.016
ω scans θmax = 71.5°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2017) h = −20→22
Tmin = 0.747, Tmax = 1.000 k = −4→6
8525 measured reflections l = −42→43

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.7292P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099 (Δ/σ)max = 0.001
S = 1.00 Δρmax = 0.19 e Å3
3417 reflections Δρmin = −0.15 e Å3
237 parameters Extinction correction: SHELXL-2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00128 (9)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.31876 (5) 0.10179 (16) 0.43410 (2) 0.0435 (2)
N1 0.56039 (4) 0.98962 (16) 0.36511 (2) 0.0280 (2)
C1 0.52794 (5) 1.00634 (19) 0.39576 (3) 0.0275 (2)
C2 0.46613 (5) 0.87064 (19) 0.39895 (3) 0.0295 (2)
H2 0.445343 0.884525 0.420676 0.035*
C3 0.43587 (5) 0.71485 (19) 0.36952 (3) 0.0282 (2)
C4 0.46901 (5) 0.7006 (2) 0.33766 (3) 0.0296 (2)
H4 0.449647 0.600015 0.317211 0.036*
C5 0.53147 (5) 0.83820 (19) 0.33658 (3) 0.0276 (2)
C6 0.57027 (5) 0.8247 (2) 0.30363 (3) 0.0283 (2)
C7 0.62006 (6) 1.0059 (2) 0.29844 (3) 0.0349 (3)
H7 0.628023 1.137188 0.315289 0.042*
C8 0.65777 (7) 0.9923 (2) 0.26844 (3) 0.0416 (3)
H8 0.690790 1.114477 0.265319 0.050*
C9 0.64673 (6) 0.7985 (2) 0.24310 (3) 0.0409 (3)
H9 0.672523 0.789083 0.223154 0.049*
C10 0.59708 (6) 0.6193 (2) 0.24767 (3) 0.0398 (3)
H10 0.589029 0.489378 0.230547 0.048*
C11 0.55906 (6) 0.6315 (2) 0.27768 (3) 0.0349 (3)
H11 0.525773 0.509472 0.280488 0.042*
C12 0.37016 (5) 0.5655 (2) 0.37171 (3) 0.0288 (2)
C13 0.30860 (6) 0.5772 (2) 0.34262 (3) 0.0355 (3)
H13 0.307468 0.684207 0.322203 0.043*
C14 0.24943 (6) 0.4289 (2) 0.34437 (3) 0.0393 (3)
H14 0.208289 0.439001 0.325132 0.047*
C15 0.25003 (6) 0.2652 (2) 0.37419 (3) 0.0361 (3)
H15 0.210233 0.163835 0.374717 0.043*
C16 0.31115 (6) 0.2552 (2) 0.40329 (3) 0.0320 (2)
C17 0.37049 (5) 0.4078 (2) 0.40215 (3) 0.0301 (2)
H17 0.410674 0.403553 0.422021 0.036*
C18 0.56109 (5) 1.17960 (19) 0.42620 (3) 0.0289 (2)
C19 0.60256 (6) 1.3753 (2) 0.41768 (3) 0.0358 (3)
H19 0.609761 1.397731 0.392735 0.043*
C20 0.63323 (7) 1.5371 (2) 0.44594 (4) 0.0458 (3)
H20 0.661015 1.666984 0.439753 0.055*
C21 0.62333 (7) 1.5093 (2) 0.48313 (4) 0.0467 (3)
H21 0.643968 1.619274 0.501995 0.056*
C22 0.58241 (8) 1.3160 (3) 0.49179 (4) 0.0542 (4)
H22 0.574972 1.295836 0.516738 0.065*
C23 0.55208 (7) 1.1507 (3) 0.46386 (3) 0.0456 (3)
H23 0.525391 1.018874 0.470363 0.055*
C24 0.26481 (7) −0.0842 (2) 0.43386 (4) 0.0459 (3)
H24A 0.261990 −0.182605 0.411288 0.069*
H24B 0.218282 −0.009630 0.433972 0.069*
H24C 0.277951 −0.185138 0.456145 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0405 (5) 0.0415 (5) 0.0487 (5) −0.0114 (4) 0.0090 (4) 0.0073 (4)
N1 0.0251 (4) 0.0288 (4) 0.0301 (4) −0.0006 (3) 0.0050 (3) 0.0004 (3)
C1 0.0244 (5) 0.0279 (5) 0.0301 (5) 0.0010 (4) 0.0045 (4) 0.0005 (4)
C2 0.0263 (5) 0.0325 (5) 0.0305 (5) −0.0010 (4) 0.0076 (4) −0.0012 (4)
C3 0.0227 (5) 0.0294 (5) 0.0320 (5) 0.0006 (4) 0.0041 (4) 0.0009 (4)
C4 0.0261 (5) 0.0328 (5) 0.0292 (5) −0.0019 (4) 0.0032 (4) −0.0022 (4)
C5 0.0246 (5) 0.0286 (5) 0.0287 (5) 0.0019 (4) 0.0029 (4) 0.0024 (4)
C6 0.0239 (5) 0.0326 (5) 0.0274 (5) 0.0028 (4) 0.0025 (4) 0.0038 (4)
C7 0.0360 (6) 0.0339 (6) 0.0355 (6) −0.0019 (5) 0.0087 (4) 0.0019 (5)
C8 0.0399 (6) 0.0449 (7) 0.0431 (6) −0.0037 (5) 0.0156 (5) 0.0089 (5)
C9 0.0386 (6) 0.0546 (7) 0.0320 (6) 0.0077 (5) 0.0134 (5) 0.0072 (5)
C10 0.0369 (6) 0.0495 (7) 0.0333 (6) 0.0034 (5) 0.0072 (5) −0.0070 (5)
C11 0.0301 (5) 0.0401 (6) 0.0347 (6) −0.0027 (5) 0.0062 (4) −0.0032 (5)
C12 0.0235 (5) 0.0309 (5) 0.0330 (5) −0.0011 (4) 0.0080 (4) −0.0063 (4)
C13 0.0294 (5) 0.0439 (6) 0.0328 (5) −0.0032 (5) 0.0049 (4) −0.0008 (5)
C14 0.0260 (5) 0.0517 (7) 0.0383 (6) −0.0049 (5) 0.0009 (4) −0.0056 (5)
C15 0.0254 (5) 0.0401 (6) 0.0442 (6) −0.0085 (4) 0.0101 (4) −0.0097 (5)
C16 0.0300 (5) 0.0310 (5) 0.0369 (5) −0.0016 (4) 0.0114 (4) −0.0045 (4)
C17 0.0235 (5) 0.0324 (5) 0.0340 (5) −0.0012 (4) 0.0042 (4) −0.0045 (4)
C18 0.0244 (5) 0.0291 (5) 0.0330 (5) 0.0011 (4) 0.0051 (4) −0.0020 (4)
C19 0.0394 (6) 0.0317 (6) 0.0374 (6) −0.0038 (5) 0.0097 (5) −0.0009 (5)
C20 0.0525 (7) 0.0334 (6) 0.0522 (7) −0.0136 (5) 0.0111 (6) −0.0051 (5)
C21 0.0507 (7) 0.0425 (7) 0.0453 (7) −0.0100 (6) 0.0047 (5) −0.0145 (6)
C22 0.0642 (9) 0.0656 (9) 0.0341 (6) −0.0236 (7) 0.0127 (6) −0.0114 (6)
C23 0.0508 (7) 0.0512 (7) 0.0363 (6) −0.0227 (6) 0.0118 (5) −0.0058 (5)
C24 0.0394 (6) 0.0326 (6) 0.0703 (9) −0.0040 (5) 0.0224 (6) 0.0034 (6)

Geometric parameters (Å, º)

O1—C16 1.3668 (14) C12—C13 1.3970 (14)
O1—C24 1.4306 (14) C12—C17 1.3839 (15)
N1—C1 1.3452 (13) C13—H13 0.9300
N1—C5 1.3432 (13) C13—C14 1.3811 (16)
C1—C2 1.3940 (14) C14—H14 0.9300
C1—C18 1.4849 (14) C14—C15 1.3868 (17)
C2—H2 0.9300 C15—H15 0.9300
C2—C3 1.3864 (14) C15—C16 1.3913 (16)
C3—C4 1.3905 (14) C16—C17 1.3936 (15)
C3—C12 1.4879 (14) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.3876 (15)
C4—C5 1.3941 (14) C18—C23 1.3897 (15)
C5—C6 1.4897 (14) C19—H19 0.9300
C6—C7 1.3946 (15) C19—C20 1.3812 (17)
C6—C11 1.3934 (15) C20—H20 0.9300
C7—H7 0.9300 C20—C21 1.3778 (19)
C7—C8 1.3852 (16) C21—H21 0.9300
C8—H8 0.9300 C21—C22 1.3730 (19)
C8—C9 1.3820 (18) C22—H22 0.9300
C9—H9 0.9300 C22—C23 1.3845 (18)
C9—C10 1.3796 (18) C23—H23 0.9300
C10—H10 0.9300 C24—H24A 0.9600
C10—C11 1.3890 (15) C24—H24B 0.9600
C11—H11 0.9300 C24—H24C 0.9600
C16—O1—C24 117.66 (9) C14—C13—C12 119.56 (11)
C5—N1—C1 118.45 (9) C14—C13—H13 120.2
N1—C1—C2 122.25 (9) C13—C14—H14 119.3
N1—C1—C18 116.44 (9) C13—C14—C15 121.44 (10)
C2—C1—C18 121.31 (9) C15—C14—H14 119.3
C1—C2—H2 120.2 C14—C15—H15 120.5
C3—C2—C1 119.54 (9) C14—C15—C16 118.90 (10)
C3—C2—H2 120.2 C16—C15—H15 120.5
C2—C3—C4 118.00 (9) O1—C16—C15 124.70 (10)
C2—C3—C12 121.48 (9) O1—C16—C17 115.27 (9)
C4—C3—C12 120.51 (9) C15—C16—C17 120.02 (10)
C3—C4—H4 120.2 C12—C17—C16 120.58 (10)
C3—C4—C5 119.54 (9) C12—C17—H17 119.7
C5—C4—H4 120.2 C16—C17—H17 119.7
N1—C5—C4 122.19 (9) C19—C18—C1 120.49 (10)
N1—C5—C6 116.07 (9) C19—C18—C23 118.09 (10)
C4—C5—C6 121.73 (9) C23—C18—C1 121.41 (10)
C7—C6—C5 120.13 (10) C18—C19—H19 119.7
C11—C6—C5 121.59 (10) C20—C19—C18 120.57 (11)
C11—C6—C7 118.28 (10) C20—C19—H19 119.7
C6—C7—H7 119.7 C19—C20—H20 119.5
C8—C7—C6 120.67 (11) C21—C20—C19 121.08 (12)
C8—C7—H7 119.7 C21—C20—H20 119.5
C7—C8—H8 119.7 C20—C21—H21 120.7
C9—C8—C7 120.54 (11) C22—C21—C20 118.70 (11)
C9—C8—H8 119.7 C22—C21—H21 120.7
C8—C9—H9 120.3 C21—C22—H22 119.6
C10—C9—C8 119.40 (10) C21—C22—C23 120.85 (12)
C10—C9—H9 120.3 C23—C22—H22 119.6
C9—C10—H10 119.8 C18—C23—H23 119.7
C9—C10—C11 120.43 (11) C22—C23—C18 120.69 (12)
C11—C10—H10 119.8 C22—C23—H23 119.7
C6—C11—H11 119.7 O1—C24—H24A 109.5
C10—C11—C6 120.69 (11) O1—C24—H24B 109.5
C10—C11—H11 119.7 O1—C24—H24C 109.5
C13—C12—C3 120.52 (10) H24A—C24—H24B 109.5
C17—C12—C3 120.01 (9) H24A—C24—H24C 109.5
C17—C12—C13 119.44 (10) H24B—C24—H24C 109.5
C12—C13—H13 120.2
O1—C16—C17—C12 177.88 (9) C5—N1—C1—C18 −178.87 (9)
N1—C1—C2—C3 −0.90 (15) C5—C6—C7—C8 178.44 (10)
N1—C1—C18—C19 24.21 (14) C5—C6—C11—C10 −178.45 (10)
N1—C1—C18—C23 −155.42 (11) C6—C7—C8—C9 −0.03 (18)
N1—C5—C6—C7 −16.90 (14) C7—C6—C11—C10 0.57 (16)
N1—C5—C6—C11 162.10 (10) C7—C8—C9—C10 0.69 (18)
C1—N1—C5—C4 0.54 (15) C8—C9—C10—C11 −0.70 (18)
C1—N1—C5—C6 −179.20 (9) C9—C10—C11—C6 0.07 (17)
C1—C2—C3—C4 0.02 (15) C11—C6—C7—C8 −0.59 (16)
C1—C2—C3—C12 179.70 (9) C12—C3—C4—C5 −178.60 (9)
C1—C18—C19—C20 179.78 (11) C12—C13—C14—C15 −0.93 (18)
C1—C18—C23—C22 −179.00 (12) C13—C12—C17—C16 2.26 (16)
C2—C1—C18—C19 −155.29 (10) C13—C14—C15—C16 1.44 (18)
C2—C1—C18—C23 25.08 (16) C14—C15—C16—O1 −179.69 (10)
C2—C3—C4—C5 1.09 (15) C14—C15—C16—C17 −0.10 (16)
C2—C3—C12—C13 125.72 (11) C15—C16—C17—C12 −1.75 (16)
C2—C3—C12—C17 −56.26 (14) C17—C12—C13—C14 −0.93 (16)
C3—C4—C5—N1 −1.42 (15) C18—C1—C2—C3 178.57 (9)
C3—C4—C5—C6 178.32 (9) C18—C19—C20—C21 −0.2 (2)
C3—C12—C13—C14 177.10 (10) C19—C18—C23—C22 1.37 (19)
C3—C12—C17—C16 −175.78 (9) C19—C20—C21—C22 0.3 (2)
C4—C3—C12—C13 −54.60 (14) C20—C21—C22—C23 0.5 (2)
C4—C3—C12—C17 123.41 (11) C21—C22—C23—C18 −1.4 (2)
C4—C5—C6—C7 163.35 (10) C23—C18—C19—C20 −0.59 (17)
C4—C5—C6—C11 −17.65 (15) C24—O1—C16—C15 9.02 (16)
C5—N1—C1—C2 0.62 (15) C24—O1—C16—C17 −170.59 (10)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C6–C11 and C12–C17 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C7—H7···N1 0.93 2.49 2.8025 (13) 100
C14—H14···Cg2i 0.93 2.74 3.5482 (12) 146
C24—H24A···Cg3ii 0.93 2.81 3.6787 (13) 150

Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y−1, z.

Funding Statement

We acknowledge the Excellent Young Talents Support Program of Anhui Higher Education Institutions (gxgnfx2018035), and the Innovation and Entrepreneurship Project of College Students in Anhui Province (DCJX-S17227577).

References

  1. Bora, D., Deb, B., Fuller, A. L., Slawin, A. M. Z., Derek Woollins, J. & Dutta, D. K. (2010). Inorg. Chim. Acta, 363, 1539–1546.
  2. Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182. [DOI] [PMC free article] [PubMed]
  3. Chan, Y. T., Moorefield, C. N., Soler, M. & Newkome, G. R. (2010). Chem. Eur. J. 16, 1768–1771. [DOI] [PubMed]
  4. Cheng, X., Du, Y., Guo, H., Chen, Z. & Tian, Y. (2019). IUCrData, 4, x190295.
  5. De Rycke, N., Couty, F. & David, O. R. (2011). Chem. Eur. J. 17, 12852–12871. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Duan, J. D., Zhang, L., Xu, G. C., Chen, H. M., Ding, X. J., Mao, Y. Y., Rong, B. S., Zhu, N. & Guo, K. (2020). J. Org. Chem. 85, 8157–8165. [DOI] [PubMed]
  8. Gao, Q., Wang, Y., Wang, Q., Zhu, Y., Liu, Z. & Zhang, J. (2018). Org. Biomol. Chem. 16, 9030–9037. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Guin, S., Gudimella, S. K. & Samanta, S. (2020). Org. Biomol. Chem. 18, 1337–1342. [DOI] [PubMed]
  11. Gujjarappa, R., Vodnala, N. & Malakar, C. C. (2020). ChemistrySelect, 5, 8745–8758.
  12. Haghighijoo, Z., Akrami, S., Saeedi, M., Zonouzi, A., Iraji, A., Larijani, B., Fakherzadeh, H., Sharifi, F., Arzaghi, S. M., Mahdavi, M. & Edraki, N. (2020). Bioorg. Chem. 103, 104146. [DOI] [PubMed]
  13. Kannan, V., Sreekumar, K. & Ulahannan, R. T. (2018). J. Mol. Struct. 1166, 315–320.
  14. Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186. [DOI] [PMC free article] [PubMed]
  15. Mao, P. F., Zhou, L. J., Zheng, A. Q., Miao, C. B. & Yang, H. T. (2019). Org. Lett. 21, 3153–3157. [DOI] [PubMed]
  16. Mao, Z. Y., Liao, X. Y., Wang, H. S., Wang, C. G., Huang, K. B. & Pan, Y. M. (2017). RSC Adv. 7, 13123–13129.
  17. Nirogi, R., Mohammed, A. R., Shinde, A. K., Bogaraju, N., Gagginapalli, S. R., Ravella, S. R., Kota, L., Bhyrapuneni, G., Muddana, N. R., Benade, V., Palacharla, R. C., Jayarajan, P., Subramanian, R. & Goyal, V. K. (2015). Eur. J. Med. Chem. 103, 289–301. [DOI] [PubMed]
  18. Ondráček, J., Novotný, J., Petrů, M., Lhoták, P. & Kuthan, J. (1994). Acta Cryst. C50, 1809–1811.
  19. Pandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M. & Scipione, L. (2017). Eur. J. Med. Chem. 141, 197–210. [DOI] [PubMed]
  20. Ren, Z. H., Zhang, Z. Y., Yang, B. Q., Wang, Y. Y. & Guan, Z. H. (2011). Org. Lett. 13, 5394–5397. [DOI] [PubMed]
  21. Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Shen, J., Cai, D., Kuai, C., Liu, Y., Wei, M., Cheng, G. & Cui, X. (2015). J. Org. Chem. 80, 6584–6589. [DOI] [PubMed]
  25. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  26. Stivanin, M. L., Duarte, M., Sartori, C., Capreti, N. M. R., Angolini, C. F. F. & Jurberg, I. D. (2017). J. Org. Chem. 82, 10319–10330. [DOI] [PubMed]
  27. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilak, D. & Spackman, M. A. (2017). CrystalExplorer 17. The University of Western Australia.
  28. Wu, P., Zhang, X. & Chen, B. (2019). Tetrahedron Lett. 60, 1103–1107.
  29. Xie, Y., Li, Y., Chen, X., Liu, Y. & Zhang, W. (2018). Org. Chem. Front. 5, 1698–1701.
  30. Zhang, Q., Wang, S., Zhu, Y., Zhang, C., Cao, H., Ma, W., Tian, X., Wu, J., Zhou, H. & Tian, Y. (2021). Inorg. Chem. 60, 2362–2371. [DOI] [PubMed]
  31. Zhang, Y., Ai, H.-J. & Wu, X.-F. (2020). Org. Chem. Front. 7, 2986–2990.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666sup1.cif

e-78-00932-sup1.cif (284.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022007812/pk2666Isup2.hkl

e-78-00932-Isup2.hkl (273.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022007812/pk2666Isup3.cml

CCDC reference: 2194417

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES