Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Sep 7;27(4):543–555. doi: 10.1007/s12257-022-0055-3

Nanoemulsion as an Effective Inhibitor of Biofilm-forming Bacterial Associated Drug Resistance: An Insight into COVID Based Nosocomial Infections

Deena Santhana Raj 1, Duraisami Dhamodharan 2, S Thanigaivel 1, A S Vickram 1, Hun-Soo Byun 2,
PMCID: PMC9449957  PMID: 36092682

Abstract

Antibiotic overuse has resulted in the microevolution of drug-tolerant bacteria. Understandably it has become one of the most significant obstacles of the current century for scientists and researchers to overcome. Bacteria have a tendency to form biofilm as a survival mechanism. Biofilm producing microorganism become far more resistant to antimicrobial agents and their tolerance to drugs also increases. Prevention of biofilm development and curbing the virulency factors of these multi drug resistant or tolerant bacterial pathogens is a newly recognised tactic for overcoming the challenges associated with such bacterial infections and has become a niche to be addressed. In order to inhibit virulence and biofilm from planktonic bacteria such as, Pseudomonas aeruginosa, Acinetobacter baumannii, and others, stable nanoemulsions (NEs) of essential oils (EOs) and their bioactive compounds prove to be an interesting solution. These NEs demonstrated significantly greater anti-biofilm and anti-virulence activity than commercial antibiotics. The EO reduces disease-causing gene expression, which is required for pathogenicity, biofilm formation and attachment to the surfaces. Essential NE and NE-loaded hydrogel surface coatings demonstrates superior antibiofilm activity which can be employed in healthcare-related equipments like glass, plastic, and metal chairs, hospital beds, ventilators, catheters, and tools used in intensive care units. Thus, anti-virulence and anti-biofilm forming strategies based on NEs-loaded hydrogel may be used as coatings to combat biofilm-mediated infection on solid surfaces.

Keywords: drug-resistant bacteria, microevolution, COVID-19, nanoemulsions, anti-biofilm, essential oils

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2006888).

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Footnotes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Cadel-Six S, Cherchame E, Douarre P E, Tang Y, Felten A, Barbet P, Litrup E, Banerji S, Simon S, Pasquali F, Gourmelon M, Mensah N, Borowiak M, Mistou M Y, Petrovska L. The spatiotemporal dynamics and microevolution events that favored the success of the highly clonal multidrug-resistant monophasic Salmonella Typhimurium circulating in Europe. Front. Microbiol. 2021;12:651124. doi: 10.3389/fmicb.2021.651124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Du X H, Zhang X Y, Lin X R, Liu Q L, Tao G, Lin P. Clinical characteristics and risk factors of nosocomial infection in 472 patients with non-Hodgkin lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29:751–756. doi: 10.19746/j.cnki.issn.1009-2137.2021.03.016. [DOI] [PubMed] [Google Scholar]
  • 3.Karakonstantis S, Kritsotakis E I, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother. 2020;75:271–282. doi: 10.1093/jac/dkz401. [DOI] [PubMed] [Google Scholar]
  • 4.Matar G M. Editorial: Pseudomonas and Acinetobacter: from drug resistance to pathogenesis. Front. Cell. Infect. Microbiol. 2018;8:68. doi: 10.3389/fcimb.2018.00068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol. Health. 2020;42:e2020013. doi: 10.4178/epih.e2020013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Dayanand M, Rao S K M. Prevention of hospital acquired infections: a practical guide. Med. J. Armed Forces India. 2004;60:312. doi: 10.1016/S0377-1237(04)80079-0. [DOI] [Google Scholar]
  • 7.Pichler K, Giordano V, Tropf G, Fuiko R, Berger A, Rittenschober-Boehm J. Impact of different types of nosocomial infection on the neurodevelopmental outcome of very low birth weight infants. Children (Basel) 2021;8:207. doi: 10.3390/children8030207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sydnor E R, Perl T M. Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 2011;24:141–173. doi: 10.1128/CMR.00027-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Türe Yüce Z, Alp E. Infection control bundles for the prevention of hospital infections. Mediterr. J. Infect. Microbes Antimicrob. 2016;5:8. [Google Scholar]
  • 10.Contou D, Cally R, Sarfati F, Desaint P, Fraissé M, Plantefève G. Causes and timing of death in critically ill COVID-19 patients. Crit. Care. 2021;25:79. doi: 10.1186/s13054-021-03492-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kolpen M, Kühl M, Bjarnsholt T, Moser C, Hansen C R, Liengaard L, Kharazmi A, Pressler T, Høiby N, Jensen P Ø. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS One. 2014;9:e84353. doi: 10.1371/journal.pone.0084353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Das R, Sebastian S, Kapil A, Dhawan B. Decline of nosocomial methicillin-resistant Staphylococcus aureus skin and soft tissue infections in an Indian tertiary hospital: hope for the future. J. Clin. Diagn. Res. 2017;11:DL01–DL02. doi: 10.7860/JCDR/2017/27677.10344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Prasad R, Jha A K, Prasad K. Exploring the Realms of Nature for Nanosynthesis. Cham, Switzerland: Springer International Publishing; 2018. [Google Scholar]
  • 14.Lázaro-Díez M, Remuzgo-Martínez S, Rodríguez-Mirones C, Acosta F, Icardo J M, Martínez-Martínez L, Ramos-Vivas J. Effects of subinhibitory concentrations of ceftaroline on methicillin-resistant Staphylococcus aureus (MRSA) biofilms. PLoS One. 2016;11:e0147569. doi: 10.1371/journal.pone.0147569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Dong G, Li J, Chen L, Bi W, Zhang X, Liu H, Zhi X, Zhou T, Cao J. Effects of sub-minimum inhibitory concentrations of ciprofloxacin on biofilm formation and virulence factors of Escherichia coli. Braz. J. Infect. Dis. 2019;23:15–21. doi: 10.1016/j.bjid.2019.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Landini G, Riccobono E, Giani T, Arena F, Rossolini G M, Pallecchi L. Bactericidal activity of ceftaroline against mature Staphylococcus aureus biofilms. Int. J. Antimicrob. Agents. 2015;45:551–553. doi: 10.1016/j.ijantimicag.2015.01.001. [DOI] [PubMed] [Google Scholar]
  • 17.Post V, Wahl P, Richards R G, Moriarty T F. Vancomycin displays time-dependent eradication of mature Staphylococcus aureus biofilms. J. Orthop. Res. 2017;35:381–388. doi: 10.1002/jor.23291. [DOI] [PubMed] [Google Scholar]
  • 18.Pasquaroli S, Citterio B, Cesare A D, Amiri M, Manti A, Vuotto C, Biavasco F. Role of daptomycin in the induction and persistence of the viable but non-culturable state of Staphylococcus aureus biofilms. Pathogens. 2014;3:759–768. doi: 10.3390/pathogens3030759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.González M J, Da Cunda P, Notejane M, Zunino P, Scavone P, Robino L. Fosfomycin tromethamine activity on biofilm and intracellular bacterial communities produced by uropathogenic Escherichia coli isolated from patients with urinary tract infection. Pathog. Dis. 2019;77:ftz022. doi: 10.1093/femspd/ftz022. [DOI] [PubMed] [Google Scholar]
  • 20.De Silva B C J, Hossain S, Wimalasena S H M P, Pathirana H N K S, Dahanayake P S, Heo G J. Comparative in vitro efficacy of eight essential oils as antibacterial agents against pathogenic bacteria isolated from pet-turtles. Vet. Med. (Praha) 2018;63:335–343. doi: 10.17221/142/2017-VETMED. [DOI] [Google Scholar]
  • 21.Cáceres M, Hidalgo W, Stashenko E, Torres R, Ortiz C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics (Basel) 2020;9:147. doi: 10.3390/antibiotics9040147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Raj D S, Sushmetha A M, Jayashree S, Seshadri S, Balasubramani S, Pemaiah B, Parthasarathy M. Hierarchical nanofeatures promote microbial adhesion in tropical grasses: nanotechnology behind traditional disinfection. Bionanoscience. 2015;5:75–83. doi: 10.1007/s12668-015-0164-y. [DOI] [Google Scholar]
  • 23.Linde G A, Gazim Z C, Cardoso B K, Jorge L F, Tešević V, Glamoćlija J, Soković M, Colauto N B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016;15:g–r.15038538. doi: 10.4238/gmr.15038538. [DOI] [PubMed] [Google Scholar]
  • 24.Krol A, Kokotkiewicz A, Luczkiewicz M. White sage (Salvia apiana)-a ritual and medicinal plant of the chaparral: plant characteristics in comparison with other Salvia species. Planta Med. 2022;88:604–627. doi: 10.1055/a-1453-0964. [DOI] [PubMed] [Google Scholar]
  • 25.Klūga A, Terentjeva M, Vukovic N L, Kačániová M. Antimicrobial activity and chemical composition of essential oils against pathogenic microorganisms of freshwater fish. Plants (Basel) 2021;10:1265. doi: 10.3390/plants10071265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ebani V V, Bertelloni F, Najar B, Nardoni S, Pistelli L, Mancianti F. Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms. 2020;8:252. doi: 10.3390/microorganisms8020252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Arumugam G, Swamy M K, Sinniah U R. Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules. 2016;21:369. doi: 10.3390/molecules21040369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Zhang H, Wei H, Cui Y, Zhao G, Feng F. Antibacterial interactions of monolaurin with commonly used antimicrobials and food components. J. Food Sci. 2009;74:M418–M421. doi: 10.1111/j.1750-3841.2009.01300.x. [DOI] [PubMed] [Google Scholar]
  • 29.Skocibusić M, Bezić N, Dunkić V, Radonić A. Antibacterial activity of Achillea clavennae essential oil against respiratory tract pathogens. Fitoterapia. 2004;75:733–736. doi: 10.1016/j.fitote.2004.05.009. [DOI] [PubMed] [Google Scholar]
  • 30.Zeedan G S G, Abdalhamed A M, Ottai M E, Abdelshafy S, Abdeen E. Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing In Sinai Peninsula, Egypt. J. Microb. Biochem. Technol. 2014;S8:006. doi: 10.4172/1948-5948.S8-006. [DOI] [Google Scholar]
  • 31.Pandey A K, Singh P. The genus Artemisia: a 2012–2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines (Basel) 2017;4:68. doi: 10.3390/medicines4030068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Teixeira B, Marques A, Ramos C, Neng N R, Nogueira J M, Saraiva J A, Nunes M L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013;43:587–595. doi: 10.1016/j.indcrop.2012.07.069. [DOI] [Google Scholar]
  • 33.Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric. Food Chem. 2005;53:1408–1416. doi: 10.1021/jf048429n. [DOI] [PubMed] [Google Scholar]
  • 34.Lopes-Lutz D, Alviano D S, Alviano C S, Kolodziejczyk P P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008;69:1732–1738. doi: 10.1016/j.phytochem.2008.02.014. [DOI] [PubMed] [Google Scholar]
  • 35.Hood J R, Wilkinson J M, Cavanagh H M. Evaluation of common antibacterial screening methods utilized in essential oil research. J. Essent. Oil Res. 2003;15:428–433. doi: 10.1080/10412905.2003.9698631. [DOI] [Google Scholar]
  • 36.Unlu M, Ergene E, Unlu G V, Zeytinoglu H S, Vural N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae) Food Chem. Toxicol. 2010;48:3274–3280. doi: 10.1016/j.fct.2010.09.001. [DOI] [PubMed] [Google Scholar]
  • 37.Murbach Teles Andrade B F, Nunes Barbosa L, da Silva Probst I, Fernandes A., Jr Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014;26:34–40. doi: 10.1080/10412905.2013.860409. [DOI] [Google Scholar]
  • 38.Matasyoh J C, Maiyo Z C, Ngure R M, Chepkorir R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem. 2009;113:526–529. doi: 10.1016/j.foodchem.2008.07.097. [DOI] [Google Scholar]
  • 39.Ahmed E H, Abadi R S, Mohammed A M. Phytochemical screening, chemical composition and antioxidant activity of seeds essential oil of Coriandrum sativum L. from the Sudan. Int. J. Herb. Med. 2018;6:1–4. [Google Scholar]
  • 40.Behbahani B A, Noshad M, Falah F. Cumin essential oil: phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microb. Pathog. 2019;136:103716. doi: 10.1016/j.micpath.2019.103716. [DOI] [PubMed] [Google Scholar]
  • 41.Fang L, Wang X, Guo L, Liu Q. Antioxidant, antimicrobial properties and chemical composition of cumin essential oils extracted by three methods. Open Chem. 2018;16:291–297. doi: 10.1515/chem-2018-0034. [DOI] [Google Scholar]
  • 42.Yousefbeyk F, Gohari A R, Sourmaghi M H S, Amini M, Jamalifar H, Amin M, Golfakhrabadi F, Ramezani N, Amin G. Chemical composition and antimicrobial activity of essential oils from different parts of Daucus littoralis Smith subsp. hyrcanicus Rech. f. J. Essent. Oil-Bear. Plants. 2014;17:570–576. doi: 10.1080/0972060X.2014.901610. [DOI] [Google Scholar]
  • 43.Benmansour N, Benmansour A, El Hanbali F, González-Mas M C, Blázquez M A, El Hakmaoui A, Akssira M. Antimicrobial activity of essential oil of Artemisia judaica L. from Algeria against multi-drug resistant bacteria from clinical origin. Flavour Fragr. J. 2016;31:137–142. doi: 10.1002/ffj.3291. [DOI] [Google Scholar]
  • 44.Lee S B, Cha K H, Kim S N, Altantsetseg S, Shatar S, Sarangerel O, Nho C W. The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. J. Microbiol. 2007;45:53–57. [PubMed] [Google Scholar]
  • 45.Sonboli A, Gholipour A, Yousefzadi M. Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran. Nat. Prod. Res. 2012;26:2121–2125. doi: 10.1080/14786419.2011.625501. [DOI] [PubMed] [Google Scholar]
  • 46.Almeida L M S, Farani P G S, Tosta L A, Silvério M S, Sousa O V, Mattos A C A, Coelho P M, Vasconcelos E G, Faria-Pinto P. In vitro evaluation of the schistosomicidal potential of Eremanthus erythropappus (DC) McLeisch (Asteraceae) extracts. Nat. Prod. Res. 2012;26:2137–2143. doi: 10.1080/14786419.2011.631135. [DOI] [PubMed] [Google Scholar]
  • 47.Fazly Bazzaz B S, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett. Appl. Microbiol. 2018;66:506–513. doi: 10.1111/lam.12886. [DOI] [PubMed] [Google Scholar]
  • 48.Novy P, Davidova H, Serrano-Rojero C S, Rondevaldova J, Pulkrabek J, Kokoska L. Composition and antimicrobial activity of Euphrasia rostkoviana Hayne essential oil. Evid. Based Complement. Alternat. Med. 2015;2015:734101. doi: 10.1155/2015/734101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ghasemian A, Al-Marzoqi A H, Mostafavi S K S, Alghanimi Y K, Teimouri M. Chemical composition and antimicrobial and cytotoxic activities of Foeniculum vulgare Mill essential oils. J. Gastrointest. Cancer. 2020;51:260–266. doi: 10.1007/s12029-019-00241-w. [DOI] [PubMed] [Google Scholar]
  • 50.Mitropoulou G, Bardouki H, Vamvakias M, Panas P, Paraskeuas P, Rangou A, Kourkoutas Y. Antimicrobial activity of Pistacia lentiscus and Fortunella margarita essential oils against Saccharomyces cerevisiae and Aspergillus niger in fruit juicess. J. Biotechnol. 2018;280:S62–S63. doi: 10.1016/j.jbiotec.2018.06.204. [DOI] [Google Scholar]
  • 51.Fidan H, Stefanova G, Kostova I, Stankov S, Damyanova S, Stoyanova A, Zheljazkov V D. Chemical composition and antimicrobial activity of Laurus nobilis L. essential oils from Bulgaria. Molecules. 2019;24:804. doi: 10.3390/molecules24040804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Řebícková K, Bajer T, Šilha D, Ventura K, Bajerová P. Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020;75:495–504. doi: 10.1007/s11130-020-00834-y. [DOI] [PubMed] [Google Scholar]
  • 53.Leong W-H, Lai K-S, Lim S-H E. Combination therapy involving Lavandula angustifolia and its derivatives in exhibiting antimicrobial properties and combatting antimicrobial resistance: current challenges and future prospects. Processes (Basel) 2021;9:609. doi: 10.3390/pr9040609. [DOI] [Google Scholar]
  • 54.Kakar H, Sajjad A, Rizwan S, Mahmood K, Mehmood Z, Azam M, Hafeez I, Sarangzai A M, Nadhman A, Yasinzai M. Chemical composition, antimicrobial and antileishmanial activity of essential oil of Juniperus excelsa M.Bieb. from Ziarat, Balochistan. Pure Appl. Biol. 2017;6:786–796. [Google Scholar]
  • 55.Muftah H, Ozçelik B, Oyardi O, Kutluk I, Orhan N. A comparative evaluation of Juniperus species with antimicrobial magistrals. Pak. J. Pharm. Sci. 2020;33:1443–1449. [PubMed] [Google Scholar]
  • 56.Linden L, Farias I, Dos Santos A E, Da Silveira K, Sampaio F. Antimicrobial evaluation of sutures containing Lippia sidoides Cham essential oil; 2018. [Google Scholar]
  • 57.Santana Neto M C, Costa M L V D A, Fialho P H D S, Lopes G L N, Figueiredo K A, Pinheiro I M, de Lima S G, Nunes R S, Quelemes P V, Carvalho A L M. Development of chlorhexidine digluconate and Lippia sidoides essential oil loaded in microemulsion for disinfection of dental root canals: substantivity profile and antimicrobial activity. AAPS PharmSciTech. 2020;21:302. doi: 10.1208/s12249-020-01842-6. [DOI] [PubMed] [Google Scholar]
  • 58.Zerkani H, Tagnaoute I, Zerkani S, Radi F, Amine S, Cherrat A, Drioiche A, Zine N-E, Benhlima N, Zair T. Study of the chemical composition, antimicrobial and antioxidant activities of the essential oil of Mentha suaveolens Ehrh from Morocco. J. Essent. Oil-Bear. Plants. 2021;24:243–253. doi: 10.1080/0972060X.2021.1891143. [DOI] [Google Scholar]
  • 59.Benali T, Chtibi H, Bouyahya A, Khabbach A, Hammani K. Detection of antioxidant and antimicrobial activities in phenol components and essential oils of Cistus ladaniferus and Mentha suaveolens extracts. Biomed. Pharmacol. J. 2020;13:603–612. doi: 10.13005/bpj/1924. [DOI] [Google Scholar]
  • 60.Mohammed T G M, Abd El-Rahman A F. Eco-friendly cinnamaldehyde based emulsion for phytopathogenic bacterial growth inhibitor. J. Adv. Microbiol. 2020;20:1–12. doi: 10.9734/jamb/2020/v20i1030285. [DOI] [Google Scholar]
  • 61.Wiatrak K, Morawiec T, Rój R, Kownacki P, Nitecka-Buchta A, Niedzielski D, Wychowański P, Machorowska-Pieniążek A, Cholewka A, Baldi D, Mertas A. Evaluation of effectiveness of a toothpaste containing tea tree oil and ethanolic extract of propolis on the improvement of oral health in patients using removable partial dentures. Molecules. 2021;26:4071. doi: 10.3390/molecules26134071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Wei S, Zhao X, Yu J, Yin S, Liu M, Bo R, Li J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul. Toxicol. Pharmacol. 2021;124:104999. doi: 10.1016/j.yrtph.2021.104999. [DOI] [PubMed] [Google Scholar]
  • 63.Youn B H, Kim Y S, Yoo S, Hur M H. Antimicrobial and hand hygiene effects of Tea Tree Essential Oil disinfectant: a randomised control trial. Int. J. Clin. Pract. 2021;75:e14206. doi: 10.1111/ijcp.14206. [DOI] [PubMed] [Google Scholar]
  • 64.Muta T, Parikh A, Kathawala K, Haidari H, Song Y, Thomas J, Garg S. Quality-by-design approach for the development of nano-sized tea tree oil formulation-impregnated biocompatible gel with antimicrobial properties. Pharmaceutics. 2020;12:1091. doi: 10.3390/pharmaceutics12111091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Ahmed Z, Noor A A. Antibacterial activity of Momordica charantia L. and Citrus limon L. on gram positive and gram negative bacteria. Pure Appl. Biol. 2020;9:207–218. doi: 10.19045/bspab.2020.90025. [DOI] [Google Scholar]
  • 66.Anwar S, Crouch R A, Awadh Ali N A, Al-Fatimi M A, Setzer W N, Wessjohann L. Hierarchical cluster analysis and chemical characterisation of Myrtus communis L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties. Nat. Prod. Res. 2017;31:2158–2163. doi: 10.1080/14786419.2016.1277346. [DOI] [PubMed] [Google Scholar]
  • 67.Aleksic V, Mimica-Dukic N, Simin N, Nedeljkovic N S, Knezevic P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine. 2014;21:1666–1674. doi: 10.1016/j.phymed.2014.08.013. [DOI] [PubMed] [Google Scholar]
  • 68.Oluwafemi F, Ojo P, Kolapo A L, Oluwalana S O. Effects of Nigella sativa Linn. oil on gut bacteria and liver function status of albino Wistar rats. Asian Food Sci. J. 2019;13:1–7. doi: 10.9734/afsj/2019/v13i130093. [DOI] [Google Scholar]
  • 69.Emeka L B, Emeka P M, Khan T M. Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. Pak. J. Pharm. Sci. 2015;28:1985–1990. [PubMed] [Google Scholar]
  • 70.Rusmarilin H, Lubis Z, Lubis L M, Barutu Y A P. Potential of natural antioxidants of black cumin seed (Nigella sativa) and sesame seed (Sesamum indicum) extract by microencapsulation methods. IOP Conf. Ser. Earth Environ. Sci. 2019;260:12097. doi: 10.1088/1755-1315/260/1/012097. [DOI] [Google Scholar]
  • 71.Immanuel O M, Abu G O, Stanley H O. Inhibition of biogenic sulphide production and biocorrosion of carbon steel by sulphate-reducing bacteria using Ocimum gratissimum essential oil. J. Adv. Biol. Biotechnol. 2016;10:1–12. doi: 10.9734/JABB/2016/28786. [DOI] [Google Scholar]
  • 72.Silva Leandro M K D N, Rocha J E, Bezerra C F, Freitas P R, Feitosa J H F, Bezerra V B, Barros R O, Leandro L, Aguiar J, Pereira P S, Christofoli M, Ribeiro-Filho J, Iriti M, Coutinho H, Matias E F F. Modulation of antibiotic resistance by the essential oil of Ocimum gratissimum L. in association with light-emitting diodes (LED) lights. Z. Naturforsch. C J. Biosci. 2020;75:377–387. doi: 10.1515/znc-2020-0034. [DOI] [PubMed] [Google Scholar]
  • 73.Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel) 2017;4:58. doi: 10.3390/medicines4030058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Mukhtar H M, Mangla M, Sanduja M. Meticulous approach towards pharmacognosy and socio-economic impact of ethnomedicinal plant: Ocimum kilimandscharicum. Res. J. Pharm. Technol. 2020;13:4751–4764. doi: 10.5958/0974-360X.2020.00837.9. [DOI] [Google Scholar]
  • 75.Sidde L, Sushma M, Jayanthi B. Phytochemical and in-vitro pharmacological screening of Ocimum kilimandscharicum extract. World J. Curr. Med. Pharm. Res. 2020;2:251–257. doi: 10.37022/wjcmpr.vi.143. [DOI] [Google Scholar]
  • 76.Nikolić M M, Jovanović K K, Marković T L, Marković D L, Gligorijević N N, Radulović S S, Kostić M, Glamočlija J M, Soković M D. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 2017;69:1606–1614. doi: 10.1111/jphp.12792. [DOI] [PubMed] [Google Scholar]
  • 77.Purkait S, Bhattacharya A, Bag A, Chattopadhyay R R. Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch. Microbiol. 2020;202:1439–1448. doi: 10.1007/s00203-020-01858-3. [DOI] [PubMed] [Google Scholar]
  • 78.Fathi Achachlouei B, Babolani Mogadam N, Zahedi Y. Identification of Anise (Pimpinella anisum L.) essential oil compounds and investigation of its effect on some foodborne pathogens: Bacillus cereus, Staphylococcus aureus, Escherichia coli O157: H7 and Salmonella typhimurium. Iranian J. Nutr. Sci. Food Technol. 2020;15:113–120. [Google Scholar]
  • 79.Abdel-Reheem M A, Oraby M M. Anti-microbial, cytotoxicity, and necrotic ripostes of Pimpinella anisum essential oil. Ann. Agric. Sci. 2015;60:335–340. doi: 10.1016/j.aoas.2015.10.001. [DOI] [Google Scholar]
  • 80.Ksouda G, Sellimi S, Merlier F, Falcimaigne-Cordin A, Thomasset B, Nasri M, Hajji M. Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chem. 2019;288:47–56. doi: 10.1016/j.foodchem.2019.02.103. [DOI] [PubMed] [Google Scholar]
  • 81.Crevelin E J, Caixeta S C, Dias H J, Groppo M, Cunha W R, Martins C H G, Crotti A E M. Antimicrobial activity of the essential oil of Plectranthus neochilus against cariogenic bacteria. Evid. Based Complement. Alternat. Med. 2015;2015:102317. doi: 10.1155/2015/102317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Thoppil J E, Tajo A, Minija J, Deena M J, Sreeranjini K, Leeja L, Sivadasan M, Alfarhan A H. Antimicrobial activity of the essential oils of three species of Pogostemon. J. Environ. Biol. 2014;35:795–798. [PubMed] [Google Scholar]
  • 83.de Sousa E C, da Silva A B, de Melo K S, Maldonade I R, Machado E R. Antimicrobial effect of Rosmarinus officinalis Linn essential oil on pathogenic bacteria in vitro. In: de Souza Salgado Y C, editor. Patologia: Doenças Bacterianas e Fúngicas. Ponta Grossa, Brazil: Atena Editora; 2019. pp. 281–295. [Google Scholar]
  • 84.Badia V, de Oliveira M S R, Polmann G, Milkievicz T, Galvão A C, da Silva Robazza W. Effect of the addition of antimicrobial oregano (Origanum vulgare) and rosemary (Rosmarinus officinalis) essential oils on lactic acid bacteria growth in refrigerated vacuum-packed Tuscan sausage. Braz. J. Microbiol. 2020;51:289–301. doi: 10.1007/s42770-019-00146-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Kuźma, Kalemba D, Rózalski M, Rózalska B, Wieckowska-Szakiel M, Krajewska U, Wysokińska H. Chemical composition and biological activities of essential oil from Salvia sclarea plants regenerated in vitro. Molecules. 2009;14:1438–1447. doi: 10.3390/molecules14041438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Cui H, Zhang X, Zhou H, Zhao C, Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015;56:16. doi: 10.1186/s40529-015-0096-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Farahpour M R, Pirkhezr E, Ashrafian A, Sonboli A. Accelerated healing by topical administration of Salvia officinalis essential oil on Pseudomonas aeruginosa and Staphylococcus aureus infected wound model. Biomed. Pharmacother. 2020;128:110120. doi: 10.1016/j.biopha.2020.110120. [DOI] [PubMed] [Google Scholar]
  • 88.Stojanović-Radić Z, Pejcić M, Stojanović N, Sharifi-Rad J, Stanković N. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates. Cell. Mol. Biol. (Noisy-le-grand) 2016;62:27–33. [PubMed] [Google Scholar]
  • 89.Cutillas A B, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Composition and antioxidant, antienzymatic and antimicrobial activities of volatile molecules from Spanish Salvia lavandulifolia (Vahl) essential oils. Molecules. 2017;22:1382. doi: 10.3390/molecules22081382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Ahanjan M, Ghaffari J, Mohammadpour G, Nasrolahie M, Haghshenas M R, Mirabi A M. Antibacterial activity of Satureja bakhtiarica bung essential oil against some human pathogenic bacteria. Afr. J. Microbiol. Res. 2011;5:4764–4768. [Google Scholar]
  • 91.Hagh L G, Arefian A, Farajzade A, Dibazar S, Samiea N. The antibacterial activity of “Satureja hortensis” extract and essential oil against oral bacteria. Dent. Res. J. (Isfahan) 2019;16:153–159. doi: 10.4103/1735-3327.255741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Swamy M K, Akhtar M S, Sinniah U R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid. Based Complement. Alternat. Med. 2016;2016:3012462. doi: 10.1155/2016/3012462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Folorunso O S, Adeola S, Giwa Ajeniya A O. Syzygium samarangense volatile oil inhibited bacteria growth and extracellular protease of Salmonella typhimurium. Pak. J. Biol. Sci. 2020;23:628–637. doi: 10.3923/pjbs.2020.628.637. [DOI] [PubMed] [Google Scholar]
  • 94.Ardjoum N, Chibani N, Shankar S, Fadhel Y B, Djidjelli H, Lacroix M. Development of antimicrobial films based on poly(lactic acid) incorporated with Thymus vulgaris essential oil and ethanolic extract of Mediterranean propolis. Int. J. Biol. Macromol. 2021;185:535–542. doi: 10.1016/j.ijbiomac.2021.06.194. [DOI] [PubMed] [Google Scholar]
  • 95.Zhiani R, Dolatabadi S, Imani H, Moradi M, Emrani S. A comparison of the chemical composition of flowering shoot Thymus kotschyanus and Thymus vulgaris by using GC-Mass and antimicrobial effects of the bacteria Staphylococcus aureus and Pseudomonas aeruginosa. J. Essent. Oil-Bear. Plants. 2016;19:1639–1647. doi: 10.1080/0972060X.2015.1030456. [DOI] [Google Scholar]
  • 96.Hamelian M, Zangeneh M M, Amisama A, Varmira K, Veis H. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem. 2018;32:e4458. doi: 10.1002/aoc.4458. [DOI] [Google Scholar]
  • 97.Kubica P, Szopa A, Dominiak J, Luczkiewicz M, Ekiert H. Verbena officinalis (Common Vervain) - a review on the investigations of this medicinally important plant species. Planta Med. 2020;86:1241–1257. doi: 10.1055/a-1232-5758. [DOI] [PubMed] [Google Scholar]
  • 98.Sellam K, Ramchoun M, Khalouki F, Alem C, El-Rhaffari L. Biological investigations of antioxidant, antimicrobial properties and chemical composition of essential oil from Warionia saharae. Oxid. Antioxid. Med. Sci. 2014;3:73–78. doi: 10.5455/oams.121113.or.056. [DOI] [Google Scholar]
  • 99.Maurya A, Singh V K, Das S, Prasad J, Kedia A, Upadhyay N, Dubey N K, Dwivedy A K. Essential oil nanoemulsion as eco-friendly and safe preservative: bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Front. Microbiol. 2021;12:751062. doi: 10.3389/fmicb.2021.751062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Manna S, Jana S. Carrageenan-based nanomaterials in drug delivery applications. In: Bera H, Hossain C M, Saha S, editors. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. San Diego, CA, USA: Academic Press; 2021. pp. 365–382. [Google Scholar]
  • 101.Mandal S, Chatterjee B, Layek B. Cellulose-based nanomaterials in drug delivery applications. In: Bera H, Hossain C M, Saha S, editors. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. San Diego, CA, USA: Academic Press; 2021. pp. 57–86. [Google Scholar]
  • 102.Anand S, Rajinikanth P S. Alginate-based nanomaterials in drug delivery applications. In: Bera H, Hossain C M, Saha S, editors. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. San Diego, CA, USA: Academic Press; 2021. pp. 339–364. [Google Scholar]
  • 103.Shariatinia Z. Cell penetration peptide-based nanomaterials in drug delivery and biomedical applications. In: Bera H, Hossain C M, Saha S, editors. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. San Diego, CA, USA: Academic Press; 2021. pp. 535–588. [Google Scholar]
  • 104.Qais F A, Khan M S, Ahmad I. Nanoparticles as quorum sensing inhibitor: prospects and limitations. In: Kalia V C, editor. Biotechnological Applications of Quorum Sensing Inhibitors. Singapore: Springer; 2018. pp. 227–244. [Google Scholar]
  • 105.Wolska K I, Grudniak A M, Markowska K. Inhibition of bacterial quorum sensing systems by metal nanoparticles. In: Rai M, Shegokar R, editors. Metal Nanoparticles in Pharma. Cham, Switzerland: Springer; 2017. pp. 123–138. [Google Scholar]
  • 106.Qais F A, Ahmad I, Altaf M, Alotaibi S H. Biofabrication of gold nanoparticles using Capsicum annuum extract and its antiquorum sensing and antibiofilm activity against bacterial pathogens. ACS Omega. 2021;6:16670–16682. doi: 10.1021/acsomega.1c02297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Shen H, Liu Y, Liu Y, Duan Z, Wu P, Lin Z, Sun H. Hormetic dose-responses for silver antibacterial compounds, quorum sensing inhibitors, and their binary mixtures on bacterial resistance of Escherichia coli. Sci. Total Environ. 2021;786:147464. doi: 10.1016/j.scitotenv.2021.147464. [DOI] [PubMed] [Google Scholar]
  • 108.Pattnaik S, Barik S, Muralitharan G, Busi S. Ferulic acid encapsulated chitosan-tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol. 2018;12:1056–1061. doi: 10.1049/iet-nbt.2018.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Shen Y Z, Ni J, Thakur K, Zhang J G, Hu F, Wei Z J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int. J. Biol. Macromol. 2021;181:528–539. doi: 10.1016/j.ijbiomac.2021.03.133. [DOI] [PubMed] [Google Scholar]
  • 110.Das S, Vishakha K, Banerjee S, Mondal S, Ganguli A. Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. Int. J. Biol. Macromol. 2020;162:1770–1779. doi: 10.1016/j.ijbiomac.2020.08.086. [DOI] [PubMed] [Google Scholar]
  • 111.Nirmala M J, Gopakumar V, Mahajan P, Bollapalli S, Nagarajan R. Nano-scale emulsion system of Tulsi essential oil and its applications. J. Bionanosci. 2018;12:842–848. doi: 10.1166/jbns.2018.1605. [DOI] [Google Scholar]
  • 112.Jaiswal M, Dudhe R, Sharma P K. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123–127. doi: 10.1007/s13205-014-0214-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Jafari S M, McClements D J. Nanoemulsions: Formulation, Applications, and Characterization. San Diego, CA, USA: Academic Press; 2018. [Google Scholar]
  • 114.Karakus S. Science and Technology Behind Nanoemulsions. London, UK: IntechOpen; 2018. [Google Scholar]
  • 115.Vauthier C, Ponchel G. Polymer Nanoparticles for Nanomedicines: A Guide for their Design, Preparation and Development. Cham, Switzerland: Springer International Publishing; 2016. [Google Scholar]
  • 116.Li G, Zhang Z, Liu H, Hu L. Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct. 2021;12:1933–1953. doi: 10.1039/D0FO02686G. [DOI] [PubMed] [Google Scholar]
  • 117.McClements D J, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 2011;51:285–330. doi: 10.1080/10408398.2011.559558. [DOI] [PubMed] [Google Scholar]
  • 118.Barradas T N, de Holanda e Silva K G. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ. Chem. Lett. 2021;19:1153–1171. doi: 10.1007/s10311-020-01142-2. [DOI] [Google Scholar]
  • 119.Mustafa I F, Hussein M Z. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials (Basel) 2020;10:1608. doi: 10.3390/nano10081608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Feng L, Cui B, Yang D, Wang C, Zeng Z, Wang Y, Sun C, Zhao X, Cui H. Preparation and evaluation of emamectin benzoate solid microemulsion. J. Nanomater. 2016;2016:2386938. [Google Scholar]
  • 121.Qian C, McClements D J. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll. 2011;25:1000–1008. doi: 10.1016/j.foodhyd.2010.09.017. [DOI] [Google Scholar]
  • 122.Komaiko J, McClements D J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: factors influencing particle size. J. Food Eng. 2015;146:122–128. doi: 10.1016/j.jfoodeng.2014.09.003. [DOI] [Google Scholar]
  • 123.Liang R, Xu S, Shoemaker C F, Li Y, Zhong F, Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J. Agric. Food Chem. 2012;60:7548–7555. doi: 10.1021/jf301129k. [DOI] [PubMed] [Google Scholar]
  • 124.Majeed H, Liu F, Hategekimana J, Sharif H R, Qi J, Ali B, Bian Y Y, Ma J, Yokoyama W, Zhong F. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem. 2016;197:75–83. doi: 10.1016/j.foodchem.2015.10.015. [DOI] [PubMed] [Google Scholar]
  • 125.Teixeira V H, Casal S, Oliveira M B P. PAHs content in sunflower, soybean and virgin olive oils: evaluation in commercial samples and during refining process. Food Chem. 2007;104:106–112. doi: 10.1016/j.foodchem.2006.11.007. [DOI] [Google Scholar]
  • 126.Ma Q, Davidson P M, Zhong Q. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80. Int. J. Food Microbiol. 2016;226:20–25. doi: 10.1016/j.ijfoodmicro.2016.03.011. [DOI] [PubMed] [Google Scholar]
  • 127.Hickey S, Hagan S A, Kudryashov E, Buckin V. Analysis of phase diagram and microstructural transitions in an ethyl oleate/water/Tween 80/Span 20 microemulsion system using high-resolution ultrasonic spectroscopy. Int. J. Pharm. 2010;388:213–222. doi: 10.1016/j.ijpharm.2009.12.003. [DOI] [PubMed] [Google Scholar]
  • 128.Gaysinsky S, Taylor T M, Davidson P M, Bruce B D, Weiss J. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. J. Food Prot. 2007;70:2631–2637. doi: 10.4315/0362-028X-70.11.2631. [DOI] [PubMed] [Google Scholar]
  • 129.Yoo J H, Baek K H, Heo Y S, Yong H I, Jo C. Synergistic bactericidal effect of clove oil and encapsulated atmospheric pressure plasma against Escherichia coli O157:H7 and Staphylococcus aureus and its mechanism of action. Food Microbiol. 2021;93:103611. doi: 10.1016/j.fm.2020.103611. [DOI] [PubMed] [Google Scholar]
  • 130.Sari R, Muhani M, Fajriaty I. Antibacterial activity of ethanolic leaves extract of agarwood (Aquilaria microcarpa Baill.) against Staphylococcus aureus and Proteus mirabilis. Pharm. Sci. Res. 2017;4:143–154. [Google Scholar]
  • 131.Ghosh V, Mukherjee A, Chandrasekaran N. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason. Sonochem. 2013;20:338–344. doi: 10.1016/j.ultsonch.2012.08.010. [DOI] [PubMed] [Google Scholar]
  • 132.Najafi-Taher R, Ghaemi B, Amani A. Delivery of adapalene using a novel topical gel based on tea tree oil nanoemulsion: permeation, antibacterial and safety assessments. Eur. J. Pharm. Sci. 2018;120:142–151. doi: 10.1016/j.ejps.2018.04.029. [DOI] [PubMed] [Google Scholar]
  • 133.Vo T V, Chou Y Y, Chen B H. Preparation of microemulsion from an alkyl polyglycoside surfactant and tea tree oil. Molecules. 2021;26:1971. doi: 10.3390/molecules26071971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Biju S S, Ahuja A, Khar R K, Chaudhry R. Formulation and evaluation of an effective pH balanced topical antimicrobial product containing tea tree oil. Pharmazie. 2005;60:208–211. [PubMed] [Google Scholar]
  • 135.Joe M M, Bradeeba K, Parthasarathi R, Sivakumaar P K, Chauhan P S, Tipayno S, Benson A, Sa T. Development of surfactin based nanoemulsion formulation from selected cooking oils: evaluation for antimicrobial activity against selected food associated microorganisms. J. Taiwan Inst. Chem. Eng. 2012;43:172–180. doi: 10.1016/j.jtice.2011.08.008. [DOI] [Google Scholar]
  • 136.Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. Nanotechnol. 2013;13:114–122. doi: 10.1166/jnn.2013.6701. [DOI] [PubMed] [Google Scholar]
  • 137.Shaaban H A, Sadek Z, Edris A E, Saad-Hussein A. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system. J. Oleo Sci. 2015;64:223–232. doi: 10.5650/jos.ess14177. [DOI] [PubMed] [Google Scholar]
  • 138.Hwang Y Y, Ramalingam K, Bienek D R, Lee V, You T, Alvarez R. Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013;57:3568–3575. doi: 10.1128/AAC.02109-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Machado G T P, Veleirinho M B, Honorato L A, Kuhnen S. Formulation and evaluation of anti-MRSA nanoemulsion loaded with Achyrocline satureioides: a new sustainable strategy for the bovine mastitis. Nano Express. 2020;1:030004. doi: 10.1088/2632-959X/abbcac. [DOI] [Google Scholar]
  • 140.Nirmala M J, Durai L, Gopakumar V, Nagarajan R. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity. Int. J. Nanomedicine. 2020;15:7651–7666. doi: 10.2147/IJN.S252640. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES