Skip to main content
Molecules logoLink to Molecules
. 2022 Aug 29;27(17):5562. doi: 10.3390/molecules27175562

Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi

Jia-Jun Liang 1,2,, Pan-Pan Zhang 1,2,, Wei Zhang 1,2,, Da Song 1,3, Xin Wei 1,2,*, Xin Yin 2, Yong-Qiang Zhou 2, Xiang Pu 1,*, Ying Zhou 2,*
Editor: Gui-Guang Cheng
PMCID: PMC9457587  PMID: 36080327

Abstract

The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.

Keywords: S. tonkinensis, phytochemistry, pharmacology, review

1. Introduction

Sophora tonkinensis Gagnep. belongs to the Sophora genus of the Leguminosae family, which is widely distributed in the southwest provinces of China [1,2]. As a famous folk medicine of the Miao people, the roots of S. tonkinensis were known as Shan Dou Gen or Guang Dou Gen in the Miao ethnopharmacy [3,4]. The early medicinal records of Shan Dou Gen were contained in the classics “Kai Bao Ben Cao”, in which S. tonkinensis showed the effect of anti-sore throat diseases [5,6]. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection, including lung and throat diseases. Meanwhile, S. tonkinensis is also highly effective in the treatment of liver and skin diseases [7,8]. Moreover, the roots of S. tonkinensis can also be combined with other medicines to form dozens of clinical and marketing Chinese patent medicines, such as Kai Hou Jian throat spray, Shuyanqing Spray, and Watermelon Frost Spray, which is usually used for treatment of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. Existing phytochemical works reported more than 300 compounds with various structural skeleton types from different parts and endophytic fungi of S. tonkinensis. Some of the isolated monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on [12,13,14,15,16,17]. Herein, the research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.

2. Phytochemistry

Previous studies have shown that alkaloids, flavonoids, triterpenoids, and triterpenoid saponins were the main chemical components isolated from S. tonkinensis. To date, 78 (178) alkaloids, 115 (79193) flavonoids, 46 (194239) triterpenes and triterpenoid saponins, and 37 (240276) other compounds have been isolated from S. tonkinensis, and it is worth mentioning that 40 (277316) compounds were also isolated from the endophytic fungi produced by S. Tonkinensis (Table 1, Figure 1).

Table 1.

The comprehensive list of the compounds from S. tonkinensis and its Endophytic fungus.

NO Compounds Molecular Formula Parts of Plant References
Matrine-Type alkaloids
1 Matrine C15H24N2O Roots [12]
2 5α,14β-Dihydroxymatrine C15H24N2O3 Roots [12]
3 (+)-5α-Hydroxyoxymatrine C15H24N2O3 Roots [12]
4 (+)-Oxymatrine C15H24N2O2 Roots [18]
5 (+)-5α-Hydroxymatrine ((+)-Sophoranol) C15H24N2O2 Roots [12]
6 (−)- 14β-Hydroxyoxymatrine C15H24N2O3 Roots [18]
7 Sophtonseedline E C17H26N2O4 Seeds [19]
8 Sophtonseedline F C17H28N2O3S Seeds [19]
9 Sophtonseedline G C15H24N2O3 Seeds [19]
10 Sophtonseedline H C16H26N2O2 Seeds [19]
11 (+)-9α-Hydroxymatrine C15H24N2O2 Seeds [19]
12 (+)-5α-9α-Dihydroxymatrine C15H24N2O3 Seeds [19]
13 (+)-Allomatrine (Sophoridine) C15H24N2O Roots [20]
14 (+)-Lehmannine C15H24N2O Roots [20]
15 (+)-12α-Hydroxysophocarpine C15H24N2O2 Roots [20]
16 (−)-13,14-Dehydrosophoridine (12,13-Dehydrosophoridine) C15H24N2O Roots [20]
17 (+)-5α-Hydroxyoxysophocarpine C15H22N2O3 Roots [14]
18 (−)-12β-Hydroxyoxysophocarpine C15H22N2O3 Roots [14]
19 (−)-12β-Hydroxysophocarpine C15H22N2O2 Roots [14]
20 (+)-Oxysophocarpine C15H22N2O2 Roots [14]
21 Sophtonseedline B C15H22N2O3 Seeds [19]
22 Sophtonseedline C C17H24N2O4 Seeds [19]
23 Sophtonseedline D C17H26N2O3S Seeds [19]
24 (−)-5α-Hydroxysophocarpine (13,14-Dehydrosophoranol) C15H22N2O2 Seeds [19]
25 (−)-9α-Hydroxysophocarpine C15H22N2O2 Seeds [19]
26 (−)-14β-Acetoxymatrine C17H26N2O3 Leaves [21]
27 (+)-14α-Acetoxymatrine C17H26N2O3 Leaves [21]
28 (−)-14β-Hydroxymatrine C15H24N2O2 Leaves [21]
29 (+)-14α-Hydroxymatrine C15H24N2O2 Leaves [21]
30 Sophtonseedline I C17H24N2O4 Seeds [19]
31 6,7-Dehydro-matrine C15H22N2O Seeds [19]
32 5-Hydroxy-6,7-dehydro-matrine C15H22N2O2 Seeds [19]
33 (+)-13,14-Dehydrosophoranol C15H22N2O2 Roots [22]
34 (−)-Sophocarpine C15H22N2O Roots [12]
35 (+)-5α-Hydroxylemannine C15H22N2O2 Roots [14]
36 13α-Hydroxymatrine C15H24N2O2 Roots [23]
37 13β-Hydroxymatrine C15H24N2O2 Roots [23]
38 11,12-Dehydroallmatrine C15H22N2O Roots [1]
39 11,12-Dehydromatrine C15H22N2O Roots [1]
40 (+)-Matrine N-oxide C15H24N2O Leaves [21]
41 (+)-Sophoranol N-oxide C15H24N2O2 Leaves [21]
42 (+)-7,11-Dehydromatrine C15H22N2O Roots [22]
43 Alopecurin A C15H22N2O4 Seeds [19]
44 Sophtonseedline J C15H20N2O3 Seeds [19]
45 Sophtonseedline K C15H20N2O3 Seeds [19]
46 Sophtonseedline A C15H22N2O2 Seeds [19]
47 5,6-Dehydro-matrine C15H22N2O Seeds [19]
48 Isosophocarpine C15H22N2O Roots [23]
49 (+)-Sophoramine (7β-Sophoramine) C15H20N2O Roots [14]
Cytisine-type alkaloids
50 (−)-Cytisine C11H14N2O Seeds [19]
51 N-Methylcytisine C12H16N2O Seeds [19]
52 (−)-N-Formylcytisine C12H14N2O2 Seeds [19]
53 N-Acylcytisine C13H16N2O2 Seeds [19]
54 (−)-N-Methylcytisine C12H16N2O Roots [18]
55 (−)-N-Hexanoylcytisine C17H24N2O2 Roots [24]
56 (−)-N-Ethylcytisine C13H18N2O Roots [24]
57 (−)-N-Propionylcytisine C14H18N2O2 Roots [24]
58 Tonkinensine A C28H26N2O6 Roots [25]
59 Tonkinensine B C28H26N2O6 Roots [25]
Anagyrine-type alkaloids
60 17-Oxo-α-isosparteine C15H24N2O Leaves [21]
61 (−)-Anagyrine C15H20N2O Roots [12]
62 (−)-Thermopsine C15H20N2O Roots [12]
63 (−)-Baptifoline C15H20N2O2 Leaves [21]
64 (−)-Clathrotropine C17H22N2O4 Roots [26]
65 Lanatine A C22H29N3O3 Roots [26]
Lupine-types and other alkaloids
66 Lamprolobine C15H24N2O2 Leaves [21]
67 Jussiaeiine B C16H24N2O2 Roots [26]
68 Jussiaeiine A C13H20N2O2 Roots [26]
69 Senepodine H C14H26NO+ Roots [26]
70 Cermizine C C11H21N Roots [26]
71 Senepodine G C11H20N+ Roots [26]
72 Harmine C13H12N2O Roots [1]
73 Tonkinensine C C16H16N2O2 Roots [1]
74 Perlolyrine C16H12N2O2 Roots [1]
75 3-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dehydroquinolizidine C22H25NO3 Roots [26]
76 1-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl)ethanone C8H10N2O Roots [27]
77 Cyclo (Pro-Pro) C10H14N2O2 Roots [27]
78 Nicotinic acid C6H5NO2 Roots [27]
Flavonoids
79 4′,7-Dihydroxyflavone C15H10O4 Roots [28]
80 Wogonin C16H12O5 Roots [29]
81 Luteolin C15H10O4 Roots [29]
82 Luteolin-7-glucoside C21H20O11 Roots [30]
83 Baicalein 7-O-β--glucuronide C21H18O11 Roots [31]
84 Bayin C21H20O9 Roots [15]
85 Swertisin C22H22O10 Roots [31]
86 Sophoraflavone B C21H20O9 Roots [32]
87 Sophoraflavone A C27H30O13 Roots [32]
Flavonols
88 Quercetin C15H10O7 Roots [33]
89 Morin C15H10O7 Roots [31]
90 6,8-Diprenylkaempferol C25H26O6 Roots [34]
91 8-C-prenylkeamferol C20H18O6 Roots [35]
92 Dehydrolupinifolinol C25H24O6 Roots [33]
93 Tonkinensisol C25H24O6 Roots [15]
94 Isoquercitrin C21H20O12 Roots [36]
95 Quercitrin C21H20O11 Roots [37]
96 Rutin (Quercetin-3-O-β-D-rutinoside) C27H30O16 Roots [31]
97 Isorhamnetin-3-O-β-D-rutinoside C28H32O16 Roots [31]
Isoflavones and Dihydroisoflavones
98 8,4′-Dihydroxy-7-methoxyisoflavone C16H12O5 Roots [38]
99 5,7,2′,4′-Tetrahydroxyisoflavone C15H10O6 Roots [38]
100 Calycosin C16H12O5 Roots [38]
101 7,3′-Dihydroxy-5’-methoxyisoflavone C16H12O5 Roots [38]
102 7,4′-Dihydroxy-3′-methoxyisoflavone C16H12O5 Roots [38]
103 Daidzein (7,4’-Dihydroxyisoflavone) C15H10O4 Roots [38]
104 7,3′-Dihydroxy-8,4′-dimethoxyisoflavone C17H14O6 Roots [38]
105 7,8-Dihydroxy-4′-methoxyisoflavone C16H12O5 Roots [38]
106 7,3′,4′-Trihydroxyisoflavone C15H10O5 Roots [38]
107 Formononetin C16H12O4 Roots [39]
108 Genistein C15H10O5 Roots [39]
109 Wighteone C20H18O5 Roots [40]
110 8-Methylretusin C17H14O5 Roots [41]
111 7-Methoxyebenosin C22H22O4 Roots [42]
112 Tectorigenin C16H12O6 Roots [43]
113 Butesuperin A C26H22O8 Roots [44]
114 Butesuperin B -7′-O-β-glucopyranoside C33H34O14 Roots [44]
115 Genistin C21H20O10 Roots [33]
116 Ononin (Formononetin-7-O-β-D-glucoside) C22H22O9 Roots [33]
117 Daidzein-4′-glucoside-rhamnoside C27H30O13 Roots [37]
118 Sophorabioside C27H30O14 Roots [37]
Dihydroflavones
119 6,8-Diprenyl-7,4′-Dihydroxyflavanone C25H28O4 Roots [45]
120 Sophoranone C30H36O4 Roots [45]
121 Glabrol C25H28O4 Roots [45]
122 6,8-Diprenyl-7,2′,4′-trihydroxyflavanone C25H28O5 Roots [45]
123 Lespeflorin B4 C30H36O6 Roots [33]
124 (2S)-7,4′-Dihydroxy-5′-aldehyde-8,3′-(3′′-methylbut-2′′-enyl) flavanone C26H28O5 Roots [34]
125 (2S)-7,2′,4′-Trihydroxy-8,3′,5′-(3′′-methyl- but-2′′-enyl) flavanone C30H36O5 Roots [34]
126 Tonkinochromane J C25H28O5 Roots [46]
127 Shandougenine C C30H36O5 Roots [40]
128 Shandougenine D C25H28O5 Roots [40]
129 Sophoratonin F C35H44O4 Roots [42]
130 Lonchocarpol A C25H28O5 Roots [42]
131 2′-Hydroxyglabrol C25H28O5 Roots [47]
132 8,5′-Diprenyl-7,2′,4′-trihydroxyflavanone C25H28O5 Roots [45]
133 Sophoratonin A C27H28O4 Roots [42]
134 Sophoratonin B C30H32O4 Roots [42]
135 Tonkinochromane I C30H36O5 Roots [35]
136 Tonkinochromane G C30H36O5 Roots [34]
137 Sophoratonin C C30H30O4 Roots [42]
138 Sophoratonin D C30H36O4 Roots [42]
139 Flemichin D C25H26O5 Roots [45]
140 5-Dehydroxylupinifolin C25H26O4 Roots [34]
141 Lupinifolin C25H26O5 Roots [40]
142 2-(2′,4′-Dihydroxyphenyl)-8,8-dimethyl-1′-(3-methyl-2-butenyl)-8H-pyrano[2,3-d] chroman-4-one C25H26O5 Roots [48]
143 Tonkinochromane A C30H36O4 Roots [45]
144 Sophoranochromene C30H34O4 Roots [33]
145 2-[{2-(1-Hydroxy-1-methylethyl)-7-(3-methyl-2-butenyl)-2′,3-dihydrobenzofuran}-5-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-one C30H36O5 Roots [49]
146 Sophoratonin E C30H32O4 Roots [42]
147 Tonkinochromane D C30H38O5 Roots [50]
148 Tonkinochromane E C32H42O5 Roots [50]
149 2-[{2′-(1-Hydroxy-1-methylethyl)-7′-(3-methyl-2-butenyl)-2′,3′-dihydrobenzofuran}-5′-yl]-7-hy-droxy-8-(3-methyl-2-butenyl) chroman-4-one C30H36O5 Whole [51]
150 Euchrenone A2 C25H26O5 Roots [33]
151 Sophoratonin G C27H28O4 Roots [42]
152 Tonkinochromane K C30H36O6 Roots [46]
153 2-[{3′-Hydroxy-2′,2′-dimethyl-8′-(3-methyl-2-butenyl)} chroman-6′-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-one C30H36O5 whole [51]
154 2-[{3-Hydroxy-2′,2-dimethyl-8-(3-methyl-2-butenyl)} chroman-6-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chro-man-4-one C31H38O4 Roots [49]
155 Tonkinochromane H C30H34O5 Roots [52]
156 Tonkinochromane B C30H36O4 Roots [53]
157 Kushenol E C25H28O6 Roots [46]
158 Naringenin 7-O-neo-hesperidoside C27H32O14 Roots [31]
Chalcones and Dihydrochalcones
159 Isoliquiritigenin C15H12O4 Roots [47]
160 Sophoradin C30H36O4 Roots [34]
161 Xanthohumol C21H22O5 Roots [54]
162 7,9,2,4-Tetrahydroxy-8-isopentenyl-5-methoxychalcone C21H22O6 Roots [54]
163 Tonkinochromane C C28H30O4 Roots [53]
164 Tonkinochromane F C32H42O5 Roots [50]
165 Kuraridine C26H30O6 Roots [54]
166 Sophoradochromene C30H34O4 Roots [42]
167 Tonkinochromane L C21H24O4 Roots [46]
Pterostanes
168 (−)-Maackiain C16H12O5 Roots [33]
169 Pisatin C17H14O6 Roots [39]
170 Maackiain-3-O-glucoside 6′’-acetate C24H24O11 Roots [47]
171 (−)-Maackiain 3-sulfate C16H11O8S Roots [55]
172 6aR,11aR-1-hydroxy-4-isoprenyl-maackiain C21H20O6 Roots [48]
173 (6aR,11aR) - 2-hydroxy-3-methoxy-1-isopentenyl- maackiain C22H22O6 Roots [47]
174 Sophotokin C21H20O6 Roots [34]
175 (−)-Pterocarpin C17H14O5 Seeds [56]
176 Medicarpin C16H14O4 Roots [39]
177 (6aR, 11aR)-3-O-β-D-Glucopyranosylmedicarpin C22H24O9 Roots [24]
178 Medicarpin-3-O-glucoside 6″-acetate C24H26O10 Roots [47]
179 Demethylmedicarpin C15H12O4 Roots [40]
180 Homopterocarpin C17H16O4 Roots [42]
181 Dehydromaackiain C16H10O5 Roots [42]
182 Flemichapparin B C17H12O5 Roots [42]
183 Maackiapterocarpan B C21H18O6 Roots [57]
184 3-Methylmaackiapterocarpan B C22H20O6 Roots [47]
185 Erybraedin D C25H26O4 Roots [42]
186 Maackiapterocarpan A C21H20O6 Roots [42]
187 Medicagol C16H8O6 Seeds [56]
188 Sophtonseedlin B C28H28O13 Seeds [56]
189 Sophoratonkin C26H26O11 Roots [28]
190 (−)-Trifolirhizin C22H22O10 Seeds [56]
191 (−)-Trifolirhizin-6′′-monoacetate C24H24O11 Seeds [56]
Flavanols
192 7,2’-Dihydroxy-4’-methoxy-isofiavanol C16H16O5 Roots [58]
193 (3S,4R)-4-hydroxy-7,4′-dimethoxyisoflavan 3′-O-β-D-glucopyranoside C23H28O10 Roots [24]
Triterpenoids and Triterpenoid saponins
194 Subprogenin A C30H48O4 Roots [59]
195 Subprogenin B C30H48O5 Roots [59]
196 Subprogenin C C30H46O4 Roots [59]
197 Subprogenin C methylester C31H48O4 Roots [59]
198 Subprogenin D C30H46O4 Roots [59]
199 Subprogenin D methylester C31H48O4 Roots [59]
200 Abrisapogenol H C30H48O3 Roots [59]
201 Wistariasapogenol A C30H48O4 Roots [59]
202 Melilotigenin C30H46O5 Roots [59]
203 Abrisapogenol I C30H46O5 Roots [59]
204 Sophoradiol C30H50O2 Roots [59]
205 Cantoniensistiol C30H50O3 Roots [59]
206 Soyasapogenol B C30H50O3 Roots [59]
207 Soyasapogenol A C30H50O4 Roots [59]
208 Abrisapogenol C C30H50O4 Roots [59]
209 Abrisapogenol D C30H50O3 Roots [59]
210 Abrisapogenol E C30H50O4 Roots [59]
211 Kudzusapogenol A C30H50O5 Roots [59]
212 Abrisapogenol A C30H50O3 Roots [59]
213 Lupeol C30H50O Roots [60]
214 Stigmasterol C29H48O Roots [60]
215 β-Sitosterol C29H50O Roots [60]
216 Daucosterol C35H60O6 Roots [60]
217 Subproside Ⅰ C48H78O19 Roots [61]
218 Subproside Ⅰ methylester C49H80O19 Roots [61]
219 Subproside Ⅱ C47H76O19 Roots [61]
220 Subproside Ⅱ methylester C48H78O19 Roots [61]
221 Soyasaponin A3 methylester C49H80O19 Roots [62]
222 Kuzusapogenol A methylester C49H80O20 Roots [62]
223 Soyasaponin I methylester C49H80O18 Roots [62]
224 Kaikasaponin Ⅲ methylester C49H80O17 Roots [62]
225 Soyasaponin Ⅱ methylester C48H78O17 Roots [62]
226 Kaikasapomn I methylester C49H80O17 Roots [62]
227 Kudzusaponin A3 C47H76O19 Roots [61]
228 Soyasaponin II C47H76O17 Roots [61]
229 Dehydrosoyasaponin I C48H76O18 Roots [61]
230 Subproside Ⅶ C59H96O27 Roots [63]
231 Subproside Ⅶ methylester C60H98O27 Roots [63]
232 Subproside Ⅳ C54H88O23 Roots [63]
233 Subproside Ⅳ methylester C55H90O23 Roots [63]
234 Subproside Ⅴ C54H88O24 Roots [63]
235 Subproside Ⅴ methylester C55H90O24 Roots [63]
236 Subproside Ⅲ C54H86O24 Roots [61]
237 Subproside Ⅲ methylester C55H88O24 Roots [61]
238 Subproside Ⅵ C54H88O24 Roots [63]
239 Subproside Ⅵ methylester C55H90O24 Roots [63]
Other compounds
240 Tyrosol C8H10O2 Roots [64]
241 4-(3-Hydroxypropyl) phenol C9H12O2 Roots [64]
242 Vanillin alcohol C8H10O3 Roots [64]
243 (±)-4-(2-Hydroxypropyl) phenol C9H12O2 Roots [64]
244 3,4,5-Trihydroxybenzoic acid C7H6O5 Roots [31]
245 3,4-Dihydroxybenzoic acid C7H6O4 Roots [31]
246 4-Hydroxy-3-methoxybenzoic acid C8H8O4 Roots [31]
247 p-Hydroxybenzonic acid C7H6O3 Roots [31]
248 Venillic acid C8H8O4 Roots [41]
249 p-Methoxybenzonic acid C8H8O3 Roots [27]
250 Salicylic acid C7H6O3 Roots [43]
251 Benzamide C7H7NO Roots [64]
252 4-Methoxybenzamide C8H9NO2 Roots [64]
253 Docosyl caffeate C31H52O4 Roots [4]
254 Maltol C6H6O3 Roots [41]
255 (±)-3-( p-Methoxyphenyl) -1,2-propanediol C9H12O4 Roots [64]
256 3,4-Dimethoxybenzeneacrylic acid methyl ester C12H14O4 Roots [39]
257 Sophoratonin H C22H26O5 Roots [42]
258 Piscidic acid monoethyl ester C13H16O7 Roots [41]
259 2′,4′, 7-trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone C25H28O5 Roots [40]
260 2-(2′, 4′-dihydroxylphenyl)-5,6-methylenedioxybenzoftiran C15H10O5 Roots [56]
261 bolusanthin IV C15H12O4 Roots [40]
262 7,2′-Dihydroxy-4′,5′-methylenedioxyisoflavan C16H14O5 Roots [40]
263 Shandougenine A C30H18O10 Roots [40]
264 Shandougenine B C30H18O10 Roots [40]
265 (−)-Syringaresinol-4,4’-di-O-β-D-glucopyranoside C34H46O18 Roots [27]
266 (−)-Syringaresinol-4-O-β-D-glucopyranoside C28H36O13 Roots [27]
267 (−)-Pinoresinol-4,4’-di-O-β-D-glucopyranoside C32H42O16 Roots [27]
268 Pinoresinol C20H22O6 Roots [28]
269 Syringaresinol C22H26O8 Roots [28]
270 Medioresinol C21H24O7 Roots [28]
271 Coniferin C16H22O8 Roots [27]
272 4-Hydroxymethyl-2,6-dimethoxyphenol-1-O-β-D-glucopyranoside C15H22O9 Roots [27]
273 Syringin C17H24O9 Roots [29]
274 Sophtonseedlin A C23H14O9 Roots [56]
275 (6S,9R) -Roseoside C19H30O8 Roots [27]
276 (−)-Secoisolariciresinol-4-O-β-D-glucopyranoside C25H33NO9 Roots [27]
Compounds produced by endophytic fungi
277 2-Methoxy-6-methyl-1,4-benzoquinone C8H8O3 Endophytic Fungus Xylaria sp. GDG-102 [65]
278 1-Methyl emodin C16H12O5 Endophytic Fungus Penicillium macrosclerotiorum [66]
279 Isorhodoptilometrin C17H14O6 Endophytic Fungus Penicillium macrosclerotiorum [66]
280 (−)-5-Carboxylmellein C11H10O5 Endophytic Fungus Xylaria sp. GDG-102 [65]
281 (−)-5-Methylmellein C11H12O3 Endophytic Fungus Xylaria sp. GDG-102 [67]
282 Xylariphilone C11H16O4 Endophytic Fungus Xylaria sp. GDG-102 [65]
283 Xylarphthalide A C11H10O6 Endophytic Fungus Xylaria sp. GDG-102 [65]
284 2-Anhydromevalonic acid C6H10O3 Endophytic Fungus Xylaria sp. GDG-102 [65]
285 (2S,5R)-2-Ethyl-5-methylhexanedioic acid C9H16O4 Endophytic Fungus Xylaria sp. GDG-102 [65]
286 6-Heptanoyl-4-methoxy-2H-pyran-2-one C13H18O4 Endophytic Fungus Xylaria sp. GDG-102 [65]
287 Xylareremophil C15H18O3 Endophytic Fungus Xylaria sp. GDG-102 [68]
288 1α,10α-Epoxy-13-hydroxyeremophil-7(11)-en-12,8-β-olide C15H20O4 Endophytic Fungus Xylaria sp. GDG-102 [68]
289 1α,10α-Epoxy-3α-hydroxyeremophil-7(11)-en-12,8-olide C15H20O5 Endophytic Fungus Xylaria sp. GDG-102 [68]
290 Mairetolide B C15H20O4 Endophytic Fungus Xylaria sp. GDG-102 [68]
291 Mairetolide G C15H22O5 Endophytic Fungus Xylaria sp. GDG-102 [68]
292 1β,10α,13-Trihydroxyeremophil-7(11)-en-12,8-olide C16H24O4 Endophytic Fungus Xylaria sp. GDG-102 [65]
293 (−)-3-Carboxypropyl-7-hydroxyphthalide C12H12O5 Endophytic fungus Penicillium vulpinum [69]
294 (−)-3-Carboxypropyl-7-hydroxyphthalide methyl ester C13H14O5 Endophytic fungus Penicillium vulpinum [69]
295 Sulochrin C17H16O7 Endophytic fungus Penicillium macrosclerotiorum [66]
296 Monoacetylasterric acid C18H16O9 Endophytic fungus Penicillium macrosclerotiorum [66]
297 Methyl dichloroasterrate C18H16Cl2O8 Endophytic Fungus Penicillium macrosclerotiorum [66]
298 Penicillither C18H17 ClO8 Endophytic fungus Penicillium macrosclerotiorum [66]
299 Methyl asterrate C18H18O8 Endophytic fungus Penicillium macrosclerotiorum [66]
300 Asterric acid C17H16O8 Endophytic fungus Penicillium macrosclerotiorum [66]
301 Xylapeptide A C30H45N5O5 Endophytic Fungus Xylaria sp. GDG-102 [70]
302 Xylapeptide B C29H43N5O5 Endophytic Fungus Xylaria sp. GDG-102 [70]
303 21-Acetoxycytochalasin J2 C30H37NO4 Endophytic fungus Diaporthe sp.GDG-118 [71]
304 21-Acetoxycytochalasin J3 C30H39NO3 Endophytic fungus Diaporthe sp.GDG-118 [71]
305 Cytochalasin J3 C32H41NO4 Endophytic fungus Diaporthe sp.GDG-118 [71]
306 Cytochalasin H C30H39NO5 Endophytic fungus Diaporthe sp.GDG-118 [71]
307 7-Acetoxycytochalasin H C32H41NO6 Endophytic fungus Diaporthe sp.GDG-118 [71]
308 Cytochalasin J C28H37NO4 Endophytic fungus Diaporthe sp.GDG-118 [71]
309 Geomycin A C35H32O15 Endophytic fungus Penicillium macrosclerotiorum [66]
310 Cytochalasin E C28H33NO7 Endophytic fungus Diaporthe sp.GDG-118 [71]
311 Cytochalasin K C28H33NO7 Endophytic fungus Xylaria sp. GDG-102 [65]
312 Diaporthein B C20H28O6 Endophytic fungus Xylaria sp. GDGJ-368 [72]
313 Piliformic C11H18O4 Endophytic fungus Xylaria sp. GDGJ-368 [72]
314 Cytochalasin C C30H37NO6 Endophytic fungus Xylaria sp. GDGJ-368 [72]
315 Cytochalasin D C30H37NO6 Endophytic fungus Xylaria sp. GDGJ-368 [72]
316 (22E)-ergosta-6,22-diene-3β,,8α-triol C28H46O3 Endophytic fungus Xylaria sp. GDGJ-368 [72]

Figure 1.

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Figure 1

Structures of compounds 1–316 from S. tonkinensis.

2.1. Alkaloids

The alkaloids isolated in S. tonkinensis were mainly quinolizidine-type alkaloids [73]. To date, 78 alkaloids have been identified and isolated, of which 49 (149) are matrine type alkaloids. Sophtonseedline A (46) was isolated from the seeds of S. tonkinensis, which featured an unprecedented 5/6/6/6 tetracyclic skeleton [19]. Meanwhile, tonkinensines A (58) and B (59) with the rare multi group bridging structures were isolated from S. tonkinensis also [25].

2.2. Flavonoids

Flavonoids generically referred to the compounds with C6-C3-C6 structure skeleton. The flavonoids were rich in S. tonkinensis, and more than 115 flavonoids have been reported as far as we know. Their structural types can be classified as flavonoids (79-87), flavonols (8897), isoflavones and dihydroisoflavones (98118), dihydroflavones (119158), chalcones and dihydrochalcones (159167), pterostanes (168191), and flavanols (192193). Interestingly, tonkinochromanes A (143) and B (156) may ring-fused in the isoprenyl substituents [53]. Meanwhile, sophoraflavones A (87) and B (86) were the rare 5-deoxyflavonoids from the roots of S. tonkinensis [32]. Among the eighteen flavonoids identified using UPLC-ESI-LTQ/MS methods, formononetin (107), quercetin (88), rutin (96), isoquercitrin (94), and quercitrin (95) were suggested as the major quality markers of S. tonkinensis roots [37].

2.3. Triterpenoids and Triterpenoid Saponins

As far as we know, more than 46 (194239) triterpenoids and triterpenoid saponins have been isolated from S. tonkinensis. Isolated triterpenoids are mainly of the oleanane type with carbonyl substitution at position C-22 [30,74]. Compared with flavonoids and alkaloids, the triterpenoids and triterpenoid saponins of S. tonkinensis were rarely reported [59,61,62].

2.4. Other Compounds

In addition to alkaloids, flavonoids, and triterpenoids, a total of 37 (240276) phenolic acids, sterols, and other compounds were reported from S. tonkinensis. Two new 2-arylbenzofuran dimers, shandougenines A (263) and B (264), were isolated from the roots of S. tonkinensis. It is noteworthy that shandougenine A (263) has the unique dimeric 2-Arylbenzofuran with a C-3\C-5 bond, and shandougenine B (264) was the natural dimeric 2-arylbenzofuran with a novel C-3/C-3 bond [40]. Meanwhile, a new propenyl phenylacetone was also isolated from S. tonkinensis and named sophoratonin H (257) [42].

2.5. Compounds Produced by Endophytic Fungi

The endophytic fungus Xylaria sp.GDG-102, Penicillium macrosclerotiorum, Penicillium vulpinum, Diaporthe sp.GDG-118, and Xylaria sp. GDGJ-368 [65,66,69,71] were isolated from S. tonkinensis, and some compounds produced by these endophytic fungi were interesting. More than 40 (277316) compounds have been isolated from its endophytic fungi. Xylapeptide A (301) identified from the associated fungus Xylaria sp. GDG-102 was the first example of cyclopentapeptide with an L-Pip of terrestrial origin [70].

3. Pharmacological Activities

3.1. Anti-Inflammatory Effect

Reported studies have shown the anti-inflammatory activities of S. tonkinensis (Table 2) [45,75]. Some novel compounds, including 12,13-dehydrosophoridine (16) from S. tonkinensis, showed significant activity against inflammatory cytokines TNF-α and IL-6 on LPS-induced RAW264.7 macrophages [23]. Moreover, 6,8-diprenyl-7,4’-dihydroxyflavanone (DDF) (119) inhibited the production of NO and the expression of TNF-α, IL-1β, and IL-6 [45]. Meanwhile, the compounds 2′-hydroxyglabrol (131), glabrol (121), maackiain (168), and bolusanthin IV (261) showed strong inhibitory effects on IL-6 [47]. Sophotokin (174) dose-dependently inhibited the lipopolysaccharide (LPS)-stimulated production of NO, TNF-α, PGE2, and IL-1β in microglial cells [34]. Moreover, the orally administered roots extract of S. tonkinensis attenuated the total leukocytes, eosinophil infiltration, and IL-5 level in BAL fluids [76]. Another study also showed S. tonkinensis were able to reduce TNF-α, NO, and IL-6 contents in rat paw edema induced by carrageenan [77].

Table 2.

The comprehensive list of the pharmacological activities from S. tonkinensis.

Detail Extracts/Compounds In Vivo/In Vitro Active Concentration/Dose References
Anti-inflammatory activity
Reduce TNF-α (−)-Anagyrine (61) In vitro 50 µM [12]
Sophocarpine (34) In vitro 50 µM [12]
14β-Hydroxymatrine (28) In vitro 50 µM [12]
7β-Sophoramine (49) In vitro 50 µM [12]
Matrine (1) In vivo 50 µM [12]
(+)-5α-Hydroxymatrine (5) In vivo 50 µM [12]
12,13-Dehydrosophoridine (16) In vitro 50 µM [23]
13α-Hydroxymatrine (36) In vitro 50 µM [23]
13β-Hydroxymatrine (37) In vitro 50 µM [23]
Isosophocarpine (48) In vitro 50 µM [23]
Sophoridine (13) In vitro 50 µM [23]
Water extract of roots In vivo 0.3 g/kg [75]
Inhibit the production of NO sophoratonkin (189) In vitro IC50 = 33.0 µM [28]
Maackiain (168) In vitro IC50 = 27.0 µM [28]
Sophoranone (120) In vitro IC50 = 28.1 µM [28]
Sophoranochromene (144) In vitro IC50 = 13.6 µM [28]
Tonkinochromane A (143) In vitro 20 µM [45]
Flemichin D (139) In vitro 20 µM [45]
6,8-Diprenyl-7,4′-dihydroxyflavanone (119) In vitro IC50 = 12.21 µM [45]
Water extract of roots In vivo 100 mg/kg [13]
Non-alkaloid extracts of roots In vivo 400 mg/kg [13]
Reduce IL- 6 2′-Hydroxyglabrol (131) In vitro IC50 = 1.62 µM [47]
Glabrol (121) In vitro IC50 = 0.73 µM [47]
Maackiain (168) In vitro IC50 = 3.01 µM [47]
Bolusanthin IV (261) In vitro IC50 = 4.02 µM [47]
Ethanol extract of roots In vivo 100 mg/kg [7]
(−)-Anagyrine (61) In vitro 50 µM [12]
Sophocarpine (34) In vitro 50 µM [12]
14β-Hydroxymatrine (28) In vitro 50 µM [12]
7β-Sophoramine (49) In vitro 50 µM [12]
Matrine (1) In vitro 50 µM [12]
(+)-5α-Hydroxyoxymatrine (3) In vivo 50 µM [12]
(+)-5α-Hydroxymatrine (5) In vivo 50 µM [12]
12,13-Dehydrosophoridine (16) In vitro 50 µM [23]
13α-Hydroxymatrine (36) In vitro 50 µM [23]
13β-Hydroxymatrine (37) In vitro 50 µM [23]
Isosophocarpine (48) In vitro 50 µM [23]
Sophoridine (13) In vitro 50 µM [23]
Water extract of roots In vivo 0.3 g/kg [75]
Reduce IL-5 50% (v/v) ethanol-water mixture In vivo 100 mg/kg [76]
Reduce IL-10 Ethanol extract of roots In vivo 100 mg/kg [7]
Reduce IL-1β Water extract of roots In vivo 0.3 g/kg [75]
Reduced the hyperplasia of goblet cell 50% (v/v) ethanol-water mixture In vivo 10 mg/kg [76]
Inhibit xylene induced auricle swelling in mice Oxymatrine (4) In vivo 40 mg/kg [78]
(−)-Cytisine (50) In vivo 40 mg/kg [78]
S. tonkinensis particles In vivo 1.75 g/kg [79]
Inhibit pain induced by acetic acid stimulation of the celiac mucosa Matrine (1) In vivo 40 mg/kg [78]
Sophoridine (13) In vivo 30 mg/kg [78]
Sophocarpine (34) In vivo 40 mg/kg [78]
S. tonkinensis particles In vivo 3.5 g/kg [79]
Inhibit croton oil induced ear swelling in mice Water extract of roots In vivo 0.35–1.12 g/kg [80]
Ethanol extract of roots In vivo 0.35–1.12 g/kg [80]
Water extract of roots In vivo 0.39 g/kg [81]
Anti-tumor activity
Inhibit A549 (−)-N-hexanoylcytisine (55) In vitro IC50 = 31.64 µM [24]
(−)-N-Formylcytisine (52) In vitro IC50 = 22.05 µM [24]
(6aR, 11aR)-Maackiain (168) In vitro IC50 = 24.58 µM [24]
Water extracts of roots In vitro 6.5 µg/µL [82]
1-(6,7-Dihydro-5H-pyrrolo [1,2-a] imidazol-3-yl) ethenone (76) In vitro IC50 = 23.05 ± 0.46 µM [27]
Inhibit HL-60 Tonkinensisol (93) In vitro IC50 = 36.48 μg/mL [15]
Sophoranol (5) In vitro 10.00 µg/mL [83]
13,14-Dehydrosophoranol (24) In vitro 1.00 µg/m L [83]
Inhibit HepG2 Tonkinensine C (73) In vitro IC50 = 87.4 ± 7.1 µM [1]
Perlolyrine (74) In vitro IC50 = 91.8 ± 3.5 µM [1]
Harmine (72) In vitro IC50 = 48.9 ± 5.2 µM [1]
Alkaloids In vitro IC50 = 9.04 g/L [84]
Non-alkaloids extract of roots In vitro IC50 = 0.98 g/L [84]
Water extracts of roots In vitro 6.5 µg/µL [82]
Inhibit SH-SY5Y Sophoranone (120) In vitro IC50 = 18.49 µM [85]
Matrine (1) In vitro IC50 = 60.81 µM [85]
Oxymatrine (4) In vitro IC50 = 42.56 µM [85]
(−)-Trifolirhizin (190) In vitro IC50 = 72.11 µM [85]
(−)-Maackiain (168) In vitro IC50 = 65.62 µM [85]
Inhibit B16-BL6 Extract of roots In vitro 400 µg/mL [86]
Inhibit CNE-1, CNE-2 Chloroform extract of roots In vitro 25 µg/mL [87]
Inhibit U937 Sophoranone (120) In vitro IC50 = 3.8 ± 0.9 µM [88]
Inhibit HeLa Tonkinensine B (59) In vitro IC50 = 24.3± 0.3 µM [25]
Inhibit MDA-MB-231 Tonkinensine B (59) In vitro IC50 = 48.9± 0.5 µM [25]
Water extract of roots In vitro 6.5 µg/µL [82]
Inhibit ESC solid tumor cell Total alkaloids of roots In vivo 100 mg/kg [89]
Inhibit H22 ascites tumor cells Total alkaloids of roots In vivo 100 mg/kg [89]
Inhibit S180 solid tumor cell Total alkaloids of roots In vivo 75 mg/kg [89]
Inhibit BV2 glioma cell lines Sophotokin (174) In vitro 10 µM [34]
Maackiain (168) In vitro 10 µM [34]
Medicarpin (176) In vitro 10 µM [34]
Inhibit Hep3B and KG-1 cells Water extract of roots In vitro 6.5 µg/µL [82]
Decrease the number of cancer nodules in tumor tissue and reduce AFP in serum Alkaloids extract of roots In vivo 0.036 g/kg [90]
Effects on the liver
Protect HepG2 cell against acetaminophen (APAP)- induced damage 4-Methoxybenzamide (252) In vitro 10 µmol/L [64]
7,3’-Dihydroxy-8,4’-dimethoxyisoflavone (104) In vitro 10 µmol/L [64]
7,4’-Dihydroxy-3’-methoxyisoflavone (102) In vitro 10 µmol/L [64]
(±)-3-(p-Methoxyphenyl)-1,2-propanediol (255) In vitro 10 µmol/L [64]
Enhance L-02 hepatocytes Matrine (1) In vivo and vitro 10 µM [91]
Oxymatrine (4) In vivo and vitro 10 µM [91]
Increase SOD and GSH Non-alkaloids extract of roots In vivo 400 mg/kg [13]
Water extract of roots In vivo 400 mg/kg [13]
Increase ALT and AST Water extract of roots In vivo 0.59 g/kg [92]
Increase CPT 1A activity Water extract of roots In vivo 25 μg/mL [91]
Reduce nonestesterified fatty acid Induce cellular lipids accumulation in hepatocytes Matrine (1) In vivo 10 µM [91]
Oxymatrine (4) In vivo 10 µM [91]
Reduce immune liver injury Oxymatrine (4) In vivo 60 mg/kg [93]
Sophocarpine (34) In vivo 60 mg/kg [93]
Oxymatrine (4) In vivo 120 mg/kg [94]
Inhibite acetaminophen-induced hepatic oxidative damage in mice STRP1 (Polysaccharide part) In vivo 200 mg/kg [95]
STRP2 (Polysaccharide part) In vivo 200 mg/kg [95]
Alleviate non-alcoholic fatty liver disease of mice Water extract of roots In vivo 90 mg/kg [91]
Inhibit the production of tyrosinase Formononetin-7-O-β-D-glucoside(116) In vitro IC50 = (7.82 ± 0.28) × 10−4 mol/L [43]
Tectorigenin (112) In vitro IC50 = (3.73 ± 0.45) × 10−4 mol/L [43]
8-Prenylkeamferol (91) In vitro IC50 = (1.58 ± 0.31) × 10−5 mol/L [43]
Reduce AST and ALT Oxymatrine (4) In vivo 120 mg/kg [93]
Sophocarpine (34) In vivo 120 mg/kg [93]
Water extract of roots In vivo 0.25 g/kg [96]
Reduce AST Non-alkaloid extract of roots In vivo 100 mg/kg [13]
Water extract of roots In vivo 200 mg/kg [13]
Reduce ALT Non-alkaloid extracts of roots In vivo 400 mg/kg [13]
Water extract of roots In vivo 200 mg/kg [13]
Anti-viral activity
Anti-Coxsackie virus B3 (−)-12β-Hydroxyoxysophocarpine (18) In vitro IC50 = 26.62 µM [14]
(−)-9α-Hydroxysophocarpine (25) In vitro IC50 = 197.22 µM [14]
(+)-Sophoranol (5) In vitro IC50 = 252.18 µM [14]
(−)-14β-Hydroxymatrine (28) In vitro IC50 = 184.14 µM [14]
3-(4-Hydroxyphenyl)- 4- (3- methoxy- 4-hydroxyphenyl)-3,4-dehydroquinolizidine (75) In vitro IC50 = 6.40 µM [26]
Cermizine C (70) In vitro IC50 = 3.25 µM [26]
Jussiaeiine A (68) In vitro IC50 = 4.66 µM [26]
Jussiaeiine B (67) In vitro IC50 = 3.21 µM [26]
(+)-5α-Hydroxyoxysophocarpine (17) In vitro IC50 = 0.12 µM [26]
(−)-12β-Hydroxyoxysophocarpine (18) In vitro IC50 = 0.23 µM [26]
(−)-Clathrotropine (64) In vitro IC50 = 1.60 µM [26]
Anti-tobacco mosaic virus (TMV) Sophtonseedlin B (188) In vitro 100 µg/mL [56]
(−)-Trifolirhizin (190) In vitro 100 µg/mL [56]
Sophtonseedline B (21) In vitro 100 µg/mL [19]
Sophtonseedline D (23) In vitro 100 µg/mL [19]
Sophtonseedline F (8) In vitro 100 µg/mL [19]
(−)-N-Formylcytisine (52) In vitro 100 µg/mL [19]
Alkaloid extracts of seeds In vitro 0.5 mg/mL [19]
Methanol extracts of seeds In vitro 0.5 mg/mL [19]
Anti-hepatitis B virus (HBV) (+)-Oxysophocarpine (20) In vitro 0.4 µmol/mL [20]
(−)-Sophocarpine (34) In vitro 0.4 µmol/mL [20]
(+)-Lehmannine (14) In vitro 0.4 µmol/mL [20]
(−)-13,14-Dehydrosophoridine (16) In vitro 1.6 µmol/mL [20]
(−) -14β-Hydroxyoxymatrine (6) In vitro 0.4 µmol/mL [18]
(+)-Sophoranol (5) In vitro 0.2 µmol/mL [18]
(−)-Cytisine (50) In vitro 0.2 µmol/mL [18]
Anti-mouse hepatitis virus Methanol extracts of plant In vitro EC50 = 27.5 ± 1.1 µg/mL [97]
Inhibited influenza virus A/Hanfang/359/95 (+)-12α-Hydroxysophocarpine (15) In vitro IC50 = 84.70 µM [14]
(−)-12β-Hydroxysophocarpine (19) In vitro IC50 = 242.46 µM [14]
(+)-Sophoramine (49) In vitro IC50 = 63.07 µM [14]
Anti-oxidant capacity
ABTS free radical scavenging ability Chloroform extract of roots In vitro EC50 = 1.08 mg/mL [98]
Ethyl acetate extract of roots In vitro EC50 = 0.55 mg/mL [98]
N-butanol extract of roots In vitro EC50 = 1.27 mg/mL [98]
Ethanol extract of roots In vitro EC50 = 3.08 mg/mL [98]
Shandougenines A (263) In vitro IC50 = 0.532 ± 0.076 mM [40]
Shandougenines B (264) In vitro IC50 = 0.18 ± 0.032 mM [40]
Bolusanthin IV (261) In vitro IC50 = 0.3 ± 0.025 mM [40]
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260) In vitro IC50 = 0.726 ± 0.041 mM [40]
Shandougenine C (127) In vitro IC50 = 0.382 ± 0.055 mM [40]
Shandougenine D (128) In vitro IC50 = 0.341 ± 0.058 mM [40]
Demethylmedicarpin (179) In vitro IC50 = 0.503 ± 0.036 mM [40]
Scavenging of DPPH radicals Ethyl acetate extract of roots In vitro 0.5 mg/mL [98]
Ethanol extract of roots In vitro 0.5 mg/mL [98]
Chloroform extract of roots In vitro 0.5 mg/mL [98]
N-butanol extract of roots In vitro 0.5 mg/mL [98]
Water extract of aerial parts In vitro IC50 = 0.1434 g/L [17]
N-butyl alcohol extract of aerial parts In vitro IC50 = 0.0754 g/L [17]
Ethyl acetate extract of aerial parts In vitro IC50 = 0.0693 g/L [17]
Dichloromethane of aerial parts In vitro IC50 = 0.0494 g/L [17]
Petroleum ether extract of aerial parts In vitro IC50 = 0.1218 g/L [17]
STRP1 (Polysaccharide part) In vitro 1.0 mg/mL [95]
STRP2 (Polysaccharide part) In vitro 1.0 mg/mL [95]
Tonkinensisol (93) In vitro IC50 = 0.616 ± 0.021 mM [40]
Bolusanthin IV (261) In vitro IC50 = 0.502 ± 0.101 mM [40]
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260) In vitro IC50 = 0.527 ± 0.054 mM [40]
Shandougenines A (263) In vitro IC50 = 1.213 ± 0.101 mM [40]
Shandougenines B (264) In vitro IC50 = 0.327 ± 0.022 mM [40]
WRSP-A2b (Polysaccharide part) In vitro IC50 = 19.95 ± 0.25 mg/mL [99]
WRSP-A3a (Polysaccharide part) In vitro IC50 = 5.99 ± 0.20 mg/mL [99]
Reducing power Chloroform extract of roots In vitro EC50 = 0.60 mg/mL [98]
Ethyl acetate extract of roots In vitro EC50 = 0.64 mg/mL [98]
N-butanol extract of roots In vitro EC50 = 0.51 mg/mL [98]
Ethanol extract of roots In vitro EC50 = 0.84 mg/mL [98]
Hydroxyl radical scavenging ability Chloroform extract of roots In vitro EC50 = 1.33 mg/mL [98]
Ethyl acetate extract of roots In vitro EC50 = 2.80 mg/mL [98]
N-butanol extract of roots In vitro EC50 = 5.00 mg/mL [98]
WRSP-A2b (Polysaccharide part) In vitro IC50 = 19.78 ± 0.47 mg/mL [99]
WRSP-A3a (Polysaccharide part) In vitro IC50 = 8.38 ± 0.18 mg/mL [99]
Superoxide anion radical scavenging ability WRSP-A2b (Polysaccharide part) In vitro IC50 = 4.24 ± 0.11 mg/mL [99]
WRSP-A3a (Polysaccharide part) In vitro IC50 = 1.94 ± 0.05 mg/mL [99]
Toxicity
Respiratory depression, muscle fibrillation, convulsions, spasms, and death Hydroalcoholic extract from the roots Mice (i.g.) LD50 = 9.802 ± 2.0067 g/kg [100]
Convulsions, hair erection, rapid abdominal contraction and excitement, depression, abdominal breathing and eye closure, and death (−)- Cytisine (50) Mice (i.g.) LD50 = 48.16 mg/kg [101]
Irritability, hyperactivity, shortness of breath, and convulsions Water extract of roots Mice (i.g.) LD50 = 17.469 g/kg [102]
90% Ethanol extract of roots Mice (i.g.) LD50 = 27.135 g/kg [102]
Alkaloids of roots Mice (i.g.) LD50 = 13.399 g/kg [102]
Water and 70% Ethanol extract mixture of roots Mice (i.g.) MTD = 36 g/kg [103]
All-component of of roots Mice (i.g.) MTD = 10.68 g/kg [102]
Slow heartbeat, bent trunk of zebrafish, accelerated movement frequency, and abnormal movement track, Hepato renal, pericardial enlargement, death. Sophoranone (120) Zebrafish (p.o.) LC50 = 22.45 µmol/L [104]
To cause hepatomegaly Sophoranone (120) Zebrafish (p.o.) 3.86 µmol/L [104]
The zebrafish liver lost transparency and became dark or brown, and liver blood flow was no longer observable Dealkalized water extract of roots Zebrafish (p.o.) LC10 = 1009.1 µg/mL [105]
Ethanol sedimentation extract of roots Zebrafish (p.o.) LC10 = 4367.6 µg/mL [105]
N-Butyl ethanol extract of roots Zebrafish (p.o.) MNLC = 700.0 µg/mL [105]
Slowed heart rate, reduced blood flow, and absence of circulation in the cardiotoxic phenotype, neurotoxic, and presents with behavioral abnormalities, bent trunk. Sophoranone (120) Zebrafish (p.o.) 11.59 µmol/L [104]
Induced pericardial edema and slowed the blood circulation, heart rate lower Diethyl ether extract of roots Zebrafish (p.o.) LC10 = 93.6 µg/mL [105]
N-Butyl ethanol extract of roots Zebrafish (p.o.) LC10 = 538.3 µg/mL [105]
Pericardial edema, a misshaped atrium and ventricle as well as reduced number of endothelial cells and cardiomyocytes Dichloromethane extract of roots Zebrafish (p.o.) MNLC = 450.0 µg/mL [105]
Delayed yolk sac resorption in the hepatotoxic phenotype and Intestinal dysplasia Sophoranone (120) Zebrafish (p.o.) 1.29 µmol/L [104]
To cause renal and pericardial edema Sophoranone (120) Zebrafish (p.o.) 15.57 µmol/L [104]
Other pharmacological activities
Inhibit Pseudomonas aeruginosa 2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259) In vitro MIC = 125.0 µg/mL [16]
Genistin (115) In vitro MIC = 15.6 µg/mL [16]
Inhibit Bacillus megaterium 2-Methoxy-6-methyl-1,4-benzoquinone (277) In vitro MIC = 3.125 µg/mL [65]
Xylariphilone (282) In vitro MIC = 12.5 µg/mL [65]
Xylarphthalide A (283) In vitro MIC = 25 µg/mL [67]
(−)-5-Carboxylmellein (280) In vitro MIC = 25 µg/mL [67]
(−)-5-Methylmellein (281) In vitro MIC = 25 µg/mL [67]
Inhibit Escherichia coli Lanatine A (65) In vitro MIC = 1.0 g/L [26]
Jussiaeiines A (68) In vitro MIC = 3.2 g/L [26]
Jussiaeiines B (67) In vitro MIC = 0.8 g/L [26]
(−)-5-Carboxylmellein (280) In vitro MIC = 25 µg/mL [67]
21-Acetoxycytochalasin J3 (304) In vitro MIC = 12.5 µg/mL [71]
2-(2’,4’-Dihydroxy)-5,6-dioxomethylbenzofuran (260) In vitro MIC = 31.3 µg/mL [16]
Xylarphthalide A (283) In vitro MIC = 25 µg/mL [67]
(−)-5-Methylmellein (281) In vitro MIC = 25 µg/mL [67]
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286) In vitro MIC = 50 µg/mL [106]
Inhibit Staphylococcus aureus 3-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl) -3,4-dehydroquinolizidine (75) In vitro MIC = 8.0 g/L [26]
Cermizines C (70) In vitro MIC = 3.5 g/L [26]
Jussiaeiines B (67) In vitro MIC = 6.0 g/L [26]
Cytochalasin K (311) In vitro MIC = 12.5 µg/mL [65]
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286) In vitro MIC = 50 µg/mL [106]
(−) -N-methylcytisine (54) In vitro MIC = 12.0 g/L [26]
Xylarphthalide A (283) In vitro MIC = 25 µg/mL [67]
(−)-5-Carboxylmellein (280) In vitro MIC = 25 µg/mL [67]
(−)-5-Methylmellein (281) In vitro MIC = 12.5 µg/mL [67]
Cytochalasin K (311) In vitro MIC = 12.5 µg/mL [65]
2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259) In vitro MIC = 62.5 µg/mL [16]
Ethyl acetate extract of roots In vitro MIC = 0.313 mg/mL [98]
Inhibit Shigella dysenteriae Xylarphthalide A (283) In vitro MIC = 25 µg/mL [67]
(−)-5-Methylmellein (281) In vitro MIC = 25 µg/mL [67]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) In vitro MIC = 12.5 µg/mL [69]
Inhibit Proteus vulgaris Xylareremophil (287) In vitro MIC = 25 µg/mL [68]
Mairetolide G (291) In vitro MIC = 25 µg/mL [68]
Inhibit Micrococcus luteus Mairetolide G (291) In vitro MIC = 50 µg/mL [68]
Mairetolide B (290) In vitro MIC = 50 µg/mL [68]
Xylareremophil (287) In vitro MIC = 25 µg/mL [68]
Inhibit Micrococcus lysodeikticus Mairetolide B (290) In vitro MIC = 100 µg/ml [68]
Mairetolide G (291) In vitro MIC = 100 µg/mL [68]
Xylareremophil (287) In vitro MIC = 100 µg/mL [68]
Inhibit Bacillus subtilis (−)-5-Carboxylmellein (280) In vitro MIC = 12.5 µg/mL [67]
Mairetolide B (290) In vitro MIC = 100 µg/mL [68]
Mairetolide G (291) In vitro MIC = 100 µg/mL [68]
Xylarphthalide A (283) In vitro MIC = 25 µg/mL [67]
(−)-5-Methylmellein (281) In vitro MIC = 12.5 µg/mL [67]
Xylapeptide A (301) In vitro MIC = 12.5 µg/mL [70]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) In vitro MIC = 25 µg/mL [69]
Xylareremophil (287) In vitro MIC = 100 µg/mL [68]
Inhibit Bacillus anthracis (−)-5-Carboxylmellein (280) In vitro MIC = 25 µg/mL [67]
21-Acetoxycytochalasin J3 (304) In vitro MIC = 12.5 µg/mL [71]
Inhibit Alternaria oleracea Cytochalasin E (310) In vitro MIC = 3.125 µg/mL [71]
Cytochalasin H (306) In vitro MIC = 6.25 µg/mL [71]
Inhibit Colletotrichum capsici Cytochalasin E (310) In vitro MIC = 1.56 µg/mL [71]
Cytochalasin H (306) In vitro MIC = 6.25 µg/mL [71]
Inhibit Pestalotiopsis theae Cytochalasin E (310) In vitro MIC = 1.56 µg/mL [71]
Cytochalasin H (306) In vitro MIC = 12.5 µg/mL [71]
Inhibit Enterobacter areogenes (−)-3-Carboxypropyl-7-hydroxyphthalide methyl ester (294) In vitro MIC = 12.5 µg/mL [69]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) In vitro MIC = 12.5 µg/mL [69]
Inhibit Colletotriehum gloeosporioides Methanol extract of roots In vitro EC50 = 1.214 mg/mLMIC = 2.5 mg/mL [107]
Inhibit Fusarium solani Methanol extract of roots In vitro EC50 = 1.169 mg/mLMIC = 2.5 mg/mL [107]
Inhibit Ceratocystis paradoxa Cytochalasin H (306) In vitro MIC = 25 µg/mL [71]
Inhibit Bacillus cereus Xylapeptide A (301) In vitro MIC = 12.5 µg/mL [70]
Moderate activities against Aphis fabae Sophtonseedline G (9) In vivo LC50 = 38.29 mg/L [19]
Matrine (1) In vivo LC50 = 18.63 mg/L [19]
(−)-N-Formylcytisine (52) In vivo LC50 = 23.74 mg/L [19]
Decreased fasting blood glucose levels Matrine (1) In vivo 2.5 mg/kg [108]
Ethyl acetate extract of roots In vivo 60 mg/kg [33]
alleviate insulin resistance Ethyl acetate extract of roots In vivo 60 mg/kg [33]
Matrine (1) In vivo 10 mg/kg [108]
Inhibit 5-lipoxygenase 50 % (v/v) Ethanol–water mixture In vitro IC50 = 1.61 µg/mL [76]
Maackiain (168) In vitro IC50 = 7.9 µM [76]
Sophoranone (120) In vitro IC50 = 1.6 µM [76]
Inhibit thromboxane synthase 50 % (v/v) Ethanol–water mixture In vitro IC50 = 5.56 µg/mL [76]
Inhibit butyrylcholinesterase Ethanol extract of roots In vitro IC50 = 15. 169 µg/mL [109]

3.2. Anti-Tumor Effect

The anti-tumor effect was one of the most reported activities of S. tonkinensis (Table 2). The chloroform extracts of S. tonkinensis have been discovered its inhibitory effect on cell viability and clonal growth in a dose-dependent manner [87]. Meanwhile, the extracts of S. tonkinensis also have been reported the inhibit ability target the proliferation, adhesion, invasion, and metastasis of mouse melanoma cells [86]. The anticancer activities of compounds have also been reported [38]. The natural compounds from S. tonkinensis exhibited inhibitory effects against different tumor cells. The growth-inhibitory and apoptosis-inducing activities of sophoranone (120) for leukemia U937 cells were investigated [88].

3.3. Hepatoprotective

The components of S. tonkinensis were reported significant protective effects against immune induced liver injury (Table 2). Previous works suggested that the nonalkaloid constituents of S. tonkinensis obviously reduced the alanine aminotransferase (ALT), aspartate aminotransferase (AST) serum, malondialdehyde (MDA), and nitric oxide (NO), as well as increased the superoxide dismutase (SOD) and glutathione (GSH) in mice with immune-induced liver injury [13]. The water extract of S. tonkinensis alleviated hepatic inflammation, liver fibrosis, and hepatic lipids accumulation [91]. Compounds matrine (1) and oxymatrine (4) may be the main components contributing to the lipid-lowering activity of the water extract of S. tonkinensis [91]. Meanwhile, two purified polysaccharide fractions (STRP1 and STRP2) from the roots of S. tonkinensis have been reported to attenuate hepatic oxidative damage in vivo [95]. In addition, some compounds, including sophocarpine (34) from S. tonkinensis have been reported to significantly improve liver injury in mice [93].

3.4. Anti-Viral Activity

The compounds isolated from S. tonkinensis (Table 2), such as 3-(4-Hydroxyphenyl)-4-(3-methoxy-4- hydroxyphenyl)-3,4-dehydroquinolizidine (75), cermizine C (70), jussiaeiine A (68), jussiaeiine B (67), (+)-5α-hydroxyoxysophocarpine (17), (−)-12β- hydroxyoxysophocarpine (18), and (−)-clathrotropine (64), have reported the anti-coxsackie virus B3 (CVB3) activities with IC50 values rang of 0.12~6.40 µmol/L [26]. The compounds sophtonseedline B (188) and (−)-trifolirhizin (190) from S. tonkinensis exhibited anti-tobacco mosaic virus (TMV) activities with the inhibition rates of 69.62% and 68.72%, respectively, at a concentration of 100 µg/mL [56]. The other compounds, including sophtonseedline D (23), sophtonseedline F (8), and (−)-N-formylcytisine (52), have been reported to have anti-TMV activities as well [19]. In addition to TMV, compounds (+)-oxysophocarpine (20), (−)-sophocarpine (34), and (−)-13,14-Dehydrosophoridine (16) have showed anti-HBV activities [20].

3.5. Anti-Antioxidant Activities

The antioxidant activities of chloroform, ethyl acetate, N-butanol, and ethanol extracts of S. tonkinensis have been tested (Table 2). The results of DPPH, ABTS, and OH radical scavenging assay showed that all extracts exhibited antioxidant activities [98]. Some compounds from S. tonkinensis exhibited antioxidant activities. It is noteworthy that shandougenine A (263), shandougenine C (127), shandougenine D (128), and 7,4’-Dihydroxyisoflavone (103) showed stronger superoxide anion radical scavenging capacity than the known flavanone luteolin. Shandougenines B (264) showed DPPH free radical and ABTS cation radical scavenging capacity. Shandougenine A (263), shandougenine C (127), shandougenine D (128), bolusanthin IV (261), 2-(2’,4’-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260), and demethylmedicarpin (179) were reported parallel ABTS cation radical scavenging capacity to the positive control [40].

3.6. Toxicity

The roots of S. tonkinensis were the famous toxic Miao drug (Table 2) and were named Shan Dou Gen or Guang Dou Gen [4,110]. The aqueous and alcoholic parts of S. tonkinensis caused obvious liver damage in mice, which could result in both the alteration of liver function and the organelle damage of hepatocytes [111,112]. Meanwhile, the extracts of S. tonkinensis exhibited pulmonary toxicity, which may trigger pulmonary cancer, dyspnea, and oxidative stress [113]. The obvious toxicity of sophoranone (120) to zebrafish was mainly characterized as hepatotoxicity, neurotoxicity, cardiovascular toxicity, and nephrotoxicity in the acute toxicity model [104]. Besides, the alkaloids matrine (1), oxymatrine (4), cytisine (50), and sophocarpine (34) of S. tonkinensis showed significant cardiotoxicity [114].

3.7. Other Pharmacological Activities

The extracts of S. tonkinensis have the ability to reduce blood glucose and resist microbial activities (Table 2, Figure 2). Cytochalasin E (310) and H (306) inhibit a variety of plant pathogens [71]. The flavonoid-rich extracts of S. tonkinensis administrated orally to mice significantly increased sensibility to insulin, as well as reduced fasting blood-glucose levels [33]. Moreover, matrine (1) from S. tonkinensis could improve glucose metabolism and increased insulin secretion in diabetic mice, which may be used as a potential drug for diabetes treatment [108]. Methanol extracts of S. tonkinensis exhibited antidiarrheal activities [115]. Moreover, diverse anti-microbial activities of compounds from S. tonkinensis and its endophytic fungi have been reported [26,67].

Figure 2.

Figure 2

The biological activities of S. tonkinensis.

4. Conclusion and Future Prospective

In this review, we provide a detailed summary of the medicinal chemistry, pharmacological activities, and related toxicity research of S. tonkinensis. Structurally, more than 300 compounds have been isolated from S. tonkinensis and its endophytic fungi, including alkaloids, triterpenes and triterpenoid saponins, flavonoids, and so on. Some of the star molecules, including matrine (1) and oxymatrine (4), were documented to exhibit well biological activities [110]. For its pharmacological research, previous studies suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection diseases. It is generally believed that the alkaloid components of S. tonkinensis were the main active substances in the roots of S. tonkinensis [116]. Interestingly, the extracts of S. tonkinensis have been reported for hepatotoxicity, while the other related studies showed the opposite hepatoprotective effects. The in-depth toxicological or structure-activity relationship study may be worth for further research. Moreover, the roots of S. tonkinensis combined with other medicines form dozens of marketing Chinese patent medicine for the treatments of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. However, it is rare for its prescription pharmacological research in the treatment of upper respiratory tract diseases, especially works on the drug combination mechanism, which may need to be further developed.

Author Contributions

Resources, J.-J.L.; writing—original draft preparation, J.-J.L., P.-P.Z., and W.Z.; writing—review and editing, D.S., X.Y., Y.-Q.Z., and X.W.; project administration, X.W., X.P., and Y.Z.; funding acquisition, X.P. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research was funded by National Key Research and Development Program of China (2018YFC1708100), the Guiyang Science and Technology Planning Project (Zhu Ke He [2021]43-11), the National Natural Science Foundation of China (32000276), and the Doctoral Startup Funding of Guizhou University of Traditional Chinese Medicine ([2019]-17).

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Wu C., He L.J., Yi X., Qin J., Li Y.L., Zhang Y.B., Wang G.C. Three new alkaloids from the roots of Sophora tonkinensis. J. Nat. Med. 2019;73:667–671. doi: 10.1007/s11418-019-01313-8. [DOI] [PubMed] [Google Scholar]
  • 2.Zhou Y.Q., Tan X.M., Wu Q.H., Ling Z.Z., Yu L.Y. A Survey of Original Plant of Radix et Rhizoma Sophora tonkinensis in Guangxi. Guangxi Sci. 2010;17:259–262. [Google Scholar]
  • 3.Zou L., Zhao H.J., Li N., Zhao M.Y., Sun N., Song C. Herbal Textual Research and Toxicity Analysis of Radix Sophora tonkinensis. Mod. Tradit. Chin. Med. 2021;41:19–23. [Google Scholar]
  • 4.Lu L.F., Lin M.Y., Huang S.Y., Yu Q.R., Li T.S. Research Progress of Characteristic National Medicine of Youjiang River Basin in Ethnic Minority Areas. Chin. J. Exp. Tradit. Med. Formulae. 2018;24:191–200. [Google Scholar]
  • 5.Lan Y.S., Yang R.Y., Li Y., Guan H.B., Chu L.M. The Progress of Research on Chemical Composition and Pharmacological Activity in Sophora Tonkinensis. J. Chuzhou. Univ. 2010;12:48–51. [Google Scholar]
  • 6.Cai J., Ma J., Xu K., Gao G., Xiang Y., Lin C. Effect of Radix Sophora Tonkinensis on the activity of cytochrome P450 isoforms in rats. Int. J. Clin. Exp. Med. 2015;8:9737–9743. [PMC free article] [PubMed] [Google Scholar]
  • 7.Li Y.X., Wei H.L. Antitumor Effects of Ethanol Extract of Sophora tonkinensis on Lewis Lung Cancer Mice. J. Shaanxi Univ. Chin. Med. 2021;44:86–91. [Google Scholar]
  • 8.Huang D.Z., Zhang Y.Q. Current and existing problems with the clinical application of Sophora Tonkinensis. Chin. J. Inform. TCM. 2005;12:52–53. [Google Scholar]
  • 9.Sun J., Zhao R.H., Mao X., Guo S.S., Gao Y.J., Yao R.M., Dong X., Wu C.B., Cui X.L. Study on the Usage and Dosage of Kaihoujian Spray in the Treatment of Acute Pharyngitis. World.Chin. Med. 2019;14:577–580. [Google Scholar]
  • 10.Dai D., Li Y.J., Zhang J. Clinical Observation of Shuyanqing Spray in Treatment of Acute and Chronic Pharyngitis after Radiotherapy and Chemotherapy. Chin. Arch. Tradit. Chin. Med. 2018;36:908–911. [Google Scholar]
  • 11.Huang K.M., Shen Y.B. Clinical study of Guilin Xiguashuang in the treatment of acurate pharyngitis. China J. Tradit. Chin. Med. Pharm. 2012;27:2583–2584. [Google Scholar]
  • 12.He L.J., Liu J.S., Luo D., Zheng Y.R., Zhang Y.B., Wang G.C., Li Y.L. Quinolizidine alkaloids from Sophora tonkinensis and their anti-inflammatory activities. Fitoterapia. 2019;139:104391. doi: 10.1016/j.fitote.2019.104391. [DOI] [PubMed] [Google Scholar]
  • 13.Zhou M.M., Fan Z.Q., Zhao A.H., Zhu L., Jia W. Effects of nonalkaloid fractions of the roots of Sophora tonkinensis on mice in an immune induced liver injury model. Lishizhen Med. Mater. Med. Res. 2011;22:2709–2710. [Google Scholar]
  • 14.Pan Q.M., Li Y.H., Hua J., Huang F.P., Wang H.S., Liang D. Antiviral Matrine-Type Alkaloids from the Rhizomes of Sophora tonkinensis. J. Nat. Prod. 2015;78:1683–1688. doi: 10.1021/acs.jnatprod.5b00325. [DOI] [PubMed] [Google Scholar]
  • 15.Deng Y.H., Xu K.P., Zhou Y.J., Li F.S., Zeng G.Y., Tan G.S. A new flavonol from Sophora tonkinensis. J. Asian Nat. Prod. Res. 2007;9:45–48. doi: 10.1080/10286020500289634. [DOI] [PubMed] [Google Scholar]
  • 16.Wei X., Zhang W., Ding C.F., Yu H.F., Zhang L.Y., Zhou Y. Chemical constituents from the N-butanol extract of Sophora tonkinensis and their antibacterial activities. Guihaia. 2021;41:1054–1060. [Google Scholar]
  • 17.Liang S.L. Master’s Thesis. Guangxi University; Nanning, China: 2021. Chemical Constituents from the Aerial Part of Sophora tonkinensis and Their Activities. [Google Scholar]
  • 18.Ding P.L., Huang H., Zhou P., Chen D.F. Quinolizidine alkaloids with anti-HBV activity from Sophora tonkinensis. Planta Med. 2006;72:854–856. doi: 10.1055/s-2006-946639. [DOI] [PubMed] [Google Scholar]
  • 19.Zou J.B., Zhao L.H., Yi P., An Q., He L.X., Li Y.A., Lou H.Y., Yuan C.M., Gu W., Huang L.J., et al. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. J. Agric. Food Chem. 2020;68:15015–15026. doi: 10.1021/acs.jafc.0c06032. [DOI] [PubMed] [Google Scholar]
  • 20.Ding P.L., Liao Z.X., Huang H., Zhou P., Chen D.F. (+)-12 alpha-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg. Med. Chem. Lett. 2006;16:1231–1235. doi: 10.1016/j.bmcl.2005.11.073. [DOI] [PubMed] [Google Scholar]
  • 21.Xiao P., Kubo H., Komiya H., Higashiyama K., Yan Y., Li J.S., Ohmiya S. (−)-14β-acetoxymatrine and (+)-14α-acetoxymatrine, two new matrine-type lupin alkaloids from the leaves of Sophora tonkinensis. Chem. Pharm. Bull. (Tokyo) 1999;47:448–450. doi: 10.1248/cpb.47.448. [DOI] [Google Scholar]
  • 22.Xiao P., Li J.S., Hajime K., Saito K., Murakoshi I., Ohmiya S. (−)-14β-Hydroxymatrine, a New Lupine Alkaloid from the Roots of Sophora tonkinensis. Chem. Pharm. Bull. 1996;44:1951–1953. doi: 10.1248/cpb.44.1951. [DOI] [Google Scholar]
  • 23.Tang Q., Luo D., Lin D.C., Wang W.Z., Li C.J., Zhuo X.F., Wu Z.N., Zhang Y.B., Wang G.C., Li Y.L. Five matrine-type alkaloids from Sophora tonkinensis. J. Nat. Med. 2021;75:682–687. doi: 10.1007/s11418-021-01498-x. [DOI] [PubMed] [Google Scholar]
  • 24.Pan Q.M., Zhang G.J., Huang R.Z., Pan Y.M., Wang H.S., Liang D. Cytisine-type alkaloids and flavonoids from the rhizomes of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2016;18:429–435. doi: 10.1080/10286020.2015.1131680. [DOI] [PubMed] [Google Scholar]
  • 25.Li X.N., Lu Z.Q., Qin S., Yan H.X., Yang M., Guan S.H., Liu X., Hua H.M., Wu L.J., Guo D.A. Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis. Tetrahedron Lett. 2008;49:3797–3801. doi: 10.1016/j.tetlet.2008.04.003. [DOI] [Google Scholar]
  • 26.Yan Z., Hu W.Z., Chen X.Z., Peng Y.B., Shi Y.S. Bioactive quinolizidine alkaloids from Sophora tonkinensis. China J. Chin. Mater. Med. 2016;41:2261–2266. doi: 10.4268/cjcmm20161215. [DOI] [PubMed] [Google Scholar]
  • 27.Pan Q.M., Huang R.Z., Pan Y.M., Wang H.S., Liang D. Studies on chemical constituents of rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2016;41:96–100. doi: 10.4268/cjcmm20160119. [DOI] [PubMed] [Google Scholar]
  • 28.Lee J.W., Lee J.H., Lee C., Jin Q.H., Lee D., Kim Y., Hong J.T., Lee M.K., Hwang B.Y. Inhibitory constituents of Sophora tonkinensis on nitric oxide production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2015;25:960–962. doi: 10.1016/j.bmcl.2014.12.012. [DOI] [PubMed] [Google Scholar]
  • 29.Hu W.Z., Hou M.Y., Corzo N., Olano A., Villamiel M. Phytochemical Constituents of the Rhizomes of Sophora tonkinensis. Indian J. Pharm. Sci. 2018;111:8–9. [Google Scholar]
  • 30.Cheng Q., Wang J.F., Wang B.L., Dai Y.H., Xu K.X., Jia Z.Y., Li P., Ma Z.Q., Lin R.C. Research Progress in Chemical Components, Bioactivity and Quality Control of Radix et Rhizoma Sophora Tonkinensis. J. Liaoning Univ. Tradit. Chin. Med. 2017;19:119–125. [Google Scholar]
  • 31.Hou M.Y., Hu W.Z., Hao K.X., Xiu Z.L. Flavonoids and phenolic acids from the roots of Sophora tonkinensis Gagnep. Biochem. Syst. Ecol. 2020;89:104011. doi: 10.1016/j.bse.2020.104011. [DOI] [Google Scholar]
  • 32.Shirataki Y., Yokoe I., Komatsu M. Two New Flavone Glycosides from the Roots of Sophora subprostrata. J. Nat. Prod. 1986;49:645–649. doi: 10.1021/np50046a014. [DOI] [Google Scholar]
  • 33.Huang M., Deng S.H., Han Q.Q., Zhao P., Zhou Q., Zheng S.J., Ma X.H., Xu C., Yang J., Yang X.Z. Hypoglycemic Activity and the Potential Mechanism of the Flavonoid Rich Extract from Sophora tonkinensis Gagnep. in KK-Ay Mice. Front. Pharmacol. 2016;7:288. doi: 10.3389/fphar.2016.00288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Xia W.J., Luo P., Hua P., Ding P., Li C.J., Xu J., Zhou H.H., Gu Q. Discovery of a New Pterocarpan-Type Antineuroinflammatory Compound from Sophora tonkinensis through Suppression of the TLR4/NF kappa B/MAPK Signaling Pathway with PU.1 as a Potential Target. ACS Chem. Neurosci. 2019;10:295–303. doi: 10.1021/acschemneuro.8b00243. [DOI] [PubMed] [Google Scholar]
  • 35.Li X.G., Yan H.X., Pang X.Y., Sha N., Hua H.M., Wu L.J., Guo D.A. Chemical constituents of flavonoids from rhizome of Sophora tonkinensis. China J. Chin. Mater. Med. 2009;34:282–285. [PubMed] [Google Scholar]
  • 36.He C.M., Cheng Z.H., Chen D.F. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med. 2013;11:690–698. doi: 10.3724/SP.J.1009.2013.00690. [DOI] [PubMed] [Google Scholar]
  • 37.Jin X., Lu Y., Chen S.X., Chen D.F. UPLC-MS identification and anticomplement activity of the metabolites of Sophora tonkinensis flavonoids treated with human intestinal bacteria. J. Pharm. Biomed. Anal. 2020;184:113176. doi: 10.1016/j.jpba.2020.113176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Yang R.Y., Lan Y.S., Huang Z.J., Shao C.L., Liang H., Chen Z.F., Li J. Isoflavonoids from Sophora tonkinensis. Chem. Nat. Compd. 2012;48:674–676. doi: 10.1007/s10600-012-0345-7. [DOI] [Google Scholar]
  • 39.Zhang W., Wei X., Zhang L.Y., Hu X.Y., Zhou Y.Q., Zhou Y. Chemical constituents of Sophora tonkinensis. Chem. Nat. Compd. 2020;56:1140–1142. doi: 10.1007/s10600-020-03248-z. [DOI] [Google Scholar]
  • 40.Luo G.Y., Yang Y., Zhou M., Ye Q., Liu Y. Novel 2-arylbenzofuran dimers and polyisoprenylated flavanones from Sophora tonkinensis. Fitoterapia. 2014;99:21–27. doi: 10.1016/j.fitote.2014.08.019. [DOI] [PubMed] [Google Scholar]
  • 41.Ding P.L., Chen D.F. Study on phenolic constituents of the Sophora tonkinensis. Chin. Tradit. Herb. Drugs. 2008;39:186–188. [Google Scholar]
  • 42.Ahn J.M., Kim Y.M., Chae H.S., Choi Y.H., Ahn H.C., Yoo H., Kang M., Kim J., Chin Y.W. Prenylated flavonoids from the roots and rhizomes of Sophora tonkinensis and their effects on the expression of inflammatory mediators and proprotein convertase subtilisin/kexin type 9. J. Nat. Prod. 2019;82:309–317. doi: 10.1021/acs.jnatprod.8b00748. [DOI] [PubMed] [Google Scholar]
  • 43.Yang B.Y., He R.J., Wang Y.F., Huang Y.L. Chemical constituents from the aerial part of Sophora tonkinensis and their tyrosinase inhibitory activity. Guihaia. 2022 doi: 10.11931/guihaia.gxzw202108051. [DOI] [Google Scholar]
  • 44.Yang R.Y., Lan Y.S., Huang Z.J., Shao C.L., Liang H., Chen Z.F., Li J. A New Isoflavonolignan Glycoside from the Roots of Sophora tonkinensis. Rec. Nat. Prod. 2012;6:212–217. [Google Scholar]
  • 45.Chae H.S., Yoo H., Kim Y.M., Choi Y.H., Lee C.H., Chin Y.W. Anti-inflammatory effects of 6,8-diprenyl-7,4′-dihydroxyflavanone from Sophora tonkinensis on lipopolysaccharide-stimulated RAW 264.7 cells. Molecules. 2016;21:1049. doi: 10.3390/molecules21081049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Li X.N., Sha N., Yan H.X., Pang X.Y., Guan S.H., Yang M., Hua H.M., Wu L.J., Guo D.A. Isoprenylated flavonoids from the roots of Sophora tonkinensis. Phytochem. Lett. 2008;1:163–167. doi: 10.1016/j.phytol.2008.08.001. [DOI] [Google Scholar]
  • 47.Yoo H., Chae H.S., Kim Y.M., Kang M., Ryu K.H., Ahn H.C., Yoon K.D., Chin Y.W., Kim J. Flavonoids and arylbenzofurans from the rhizomes and roots of Sophora tonkinensis with IL-6 production inhibitory activity. Bioorg. Med. Chem. Lett. 2014;24:5644–5647. doi: 10.1016/j.bmcl.2014.10.077. [DOI] [PubMed] [Google Scholar]
  • 48.Yang X.Z., Deng S.H., Huang M., Wang J.L., Chen L., Xiong M.R., Yang J., Zheng S.J., Ma X.H., Zhao P., et al. Chemical constituents from Sophora tonkinensis and their glucose transporter 4 translocation activities. Bioorg. Med. Chem. Lett. 2017;27:1463–1466. doi: 10.1016/j.bmcl.2017.01.078. [DOI] [PubMed] [Google Scholar]
  • 49.Wang W., Nakashima K.-I., Hirai T., Inoue M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J. Nat. Med. 2019;73:154–162. doi: 10.1007/s11418-018-1257-z. [DOI] [PubMed] [Google Scholar]
  • 50.Ding P.L., Chen D.F. Three cyclized isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta. 2007;90:2236–2244. doi: 10.1002/hlca.200790232. [DOI] [Google Scholar]
  • 51.Inoue M., Tanabe H., Nakashima K., Ishida Y., Kotani H. Rexinoids Isolated from Sophora tonkinensis with a Gene Expression Profile Distinct from the Synthetic Rexinoid Bexarotene. J. Nat. Prod. 2014;77:1670–1677. doi: 10.1021/np5002016. [DOI] [PubMed] [Google Scholar]
  • 52.Li X.N., Lu Z.Q., Chen G.T., Yan H.X., Sha N., Guan S.H., Yang M., Hua H.M., Wu L., Guo D.A. NMR spectral assignments of isoprenylated flavanones from Sophora tonkinensis. Magn. Reson. Chem. 2008;46:898–902. doi: 10.1002/mrc.2274. [DOI] [PubMed] [Google Scholar]
  • 53.Ding P.L., Chen D.F. Isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta. 2006;89:103–110. doi: 10.1002/hlca.200690000. [DOI] [Google Scholar]
  • 54.He C.M. Ph.D. Thesis. Fudan University; Shanghai, China: 2010. Comparative Studies on Flavonoids and Their Bioactivities of Sophora flavescens and Sophora tonkinensis. [Google Scholar]
  • 55.Park J.A., Kim H.J., Jin C., Lee K.T., Yong S.L. A new pterocarpan, (−)-maackiain sulfate, from the roots of Sophora subprostrata. Arch. Pharm. Res. 2003;26:1009–1013. doi: 10.1007/BF02994750. [DOI] [PubMed] [Google Scholar]
  • 56.Hu Z.X., Zou J.B., An Q., Yi P., Yuan C.M., Gu W., Huang L.J., Lou H.Y., Zhao L.H., Hao X.J. Anti-tobacco mosaic virus (TMV) activity of chemical constituents from the seeds of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2021;23:644–651. doi: 10.1080/10286020.2021.1886089. [DOI] [PubMed] [Google Scholar]
  • 57.Chae H.S., Yoo H., Choi Y.H., Choi W.J., Chin Y.W. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways. Biol. Pharm. Bull. 2016;39:259–266. doi: 10.1248/bpb.b15-00680. [DOI] [PubMed] [Google Scholar]
  • 58.Li X.N. Ph.D. Thesis. Shenyang Pharmaceutical University; Shenyang, China: 2009. Chemical Constituents of Sophora tonkinensis and Fragmentation Patterns ofthe Flavonoids in ESI Mass Spectrometry. [Google Scholar]
  • 59.Takeshita T., Yokoyama K., Yi D., Kinjo J., Nohara T. Four new and twelve known sapogenols from Sophora Subprostrate Radix. Chem.pharm.bull. 1991;39:1908–1910. doi: 10.1248/cpb.39.1908. [DOI] [Google Scholar]
  • 60.Long J.Q., Lin H., Yang X.D., Zhao J.F., Liang L.I. Study on the chemical constituents of Sophora tonkinensis from Guangxi. J. Yunnan Univ. Nat. Sci. Ed. 2011;33:72–76. [Google Scholar]
  • 61.Ding Y., Takeshita T., Yokoyama K., Kinjo J., Nohara T. Triterpenoid Glycosides from Sophora Subprostratae Radix. Chem. Pharm. Bull. 1992;40:139–142. doi: 10.1248/cpb.40.139. [DOI] [Google Scholar]
  • 62.Sakamoto S., Kuroyanagi M., Ueno A., Sekita S. Triterpenoid saponins from Sophora subprostrata. Phytochemistry. 1992;31:1339–1342. doi: 10.1016/0031-9422(92)80286-N. [DOI] [PubMed] [Google Scholar]
  • 63.Ding Y., Tian R.H., Takeshita T., Kinjo J., Nohara T. Four new oleanene glycosides from Sophora Subprostratae Radix. III. Chem. Pharm. Bull. 1992;40:1831–1834. doi: 10.1248/cpb.40.1831. [DOI] [PubMed] [Google Scholar]
  • 64.He H.K., Sun H., Yang S.L., Tian M.Y., Wang S.J. Studies on active aromatic constituents from rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2019;44:4481–4485. doi: 10.19540/j.cnki.cjcmm.20190520.202. [DOI] [PubMed] [Google Scholar]
  • 65.Mo T.X., Liu X.B., Duan L.H., Zhang X.M., Xu Z.L., Qin X.Y., Li B.C., Li J., Yang R.Y. secondary metabolites of the endophytic fungus Xylaria sp.GDG-102 from Sophora tonkinensis. Chem. Nat. Compd. 2021;57:764–766. doi: 10.1007/s10600-021-03470-3. [DOI] [Google Scholar]
  • 66.Xu Z.L., Cao S.M., Qin Y.Y., Mo T.X., Li B.C., Qin X.Y., Huang X.S., Li J., Yang R.Y. Chemical Constituents of the Endophytic Fungus Penicillium macrosclerotiorum from Sophora tonkinensis. Chem. Nat. Compd. 2021;57:542–544. doi: 10.1007/s10600-021-03409-8. [DOI] [Google Scholar]
  • 67.Zheng N., Yao F.H., Liang X.F., Liu Q., Xu W.F., Liang Y., Liu X.B., Li J., Yang R.Y. A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2018;32:755–760. doi: 10.1080/14786419.2017.1311892. [DOI] [PubMed] [Google Scholar]
  • 68.Liang Y., Xu W.F., Liu C.M., Zhou D.X., Liu X.B., Qin Y.Y., Cao F., Li J., Yang R.Y., Qin J.K. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2019;33:1304–1309. doi: 10.1080/14786419.2018.1472597. [DOI] [PubMed] [Google Scholar]
  • 69.Qin Y.Y., Liu X.B., Lin J., Huang J.Y., Jiang X.F., Mo T.X., Xu Z.L., Li J., Yang R.Y. Two new phthalide derivatives from the endophytic fungus Penicillium vulpinum isolated from Sophora tonkinensis. Nat. Prod. Res. 2021;35:421–427. doi: 10.1080/14786419.2019.1636237. [DOI] [PubMed] [Google Scholar]
  • 70.Xu W.F., Hou X.M., Yao F.H., Zheng N., Li J., Wang C.Y., Yang R.Y., Shao C.L. Xylapeptide A, an Antibacterial Cyclopentapeptide with an Uncommon L-Pipecolinic Acid Moiety from the Associated Fungus Xylaria sp. (GDG-102) Sci. Rep. 2017;7:6937. doi: 10.1038/s41598-017-07331-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Huang X.S., Zhou D.X., Liang Y., Liu X.B., Cao F., Qin Y.Y., Mo T.X., Xu Z.L., Li J., Yang R.Y. Cytochalasins from endophytic Diaporthe sp. GDG-118. Nat. Prod. Res. 2019;35:3396–3403. doi: 10.1080/14786419.2019.1700504. [DOI] [PubMed] [Google Scholar]
  • 72.Qin Y.Y., Liu X.B., Mo T.X., Li J., Yang R.Y. Secondary Metabolites of Endophytic Fungus Xylaria sp. GDGJ-368 from Sophora tonkinensis. J.Guangxi. Nor. Univ. Nat. Sci. Ed. 2020;38:71–77. [Google Scholar]
  • 73.Ding P.L., Yu Y.Q., Chen D.F. Comparative Studies on the Chemical Constituents of Sophora tonkinensis and Sophora flavescens, 7th China Doctoral Forum for New Medicines, Nanchang, Jiangxi, China. China Academic Journal Electronic Publishing House; Nanchang, China: 2004. pp. 30–32. [Google Scholar]
  • 74.Li F., Li C.P., Fu H., Su X.L., Wang Z.J., Hou X.R., Lin R.C., Guan X.Y., Liu Q.M. Research progress of Radix Sophora Tonkinensis and supplementary reports of assay method for toxic chemical composition. Chin. J. Pharm. Anal. 2013;33:1453–1463. [Google Scholar]
  • 75.Ai H., Sun J., Sheng Y.H., Ning L., Tang L.M., Jin R.M. Study on anti-inflammation mechanism of Radix et Rhizome Sophora tonkinensis rat based on profile of pharmacokinetic parameters. Chin. Pharmacol. Bull. 2020;36:645–649. [Google Scholar]
  • 76.Yoo H., Kang M., Pyo S., Chae H.S., Ryu K.H., Kim J., Chin Y.W. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. J. Ethnopharmacol. 2017;206:298–305. doi: 10.1016/j.jep.2017.05.012. [DOI] [PubMed] [Google Scholar]
  • 77.Peng H.H., Huang J., Wen X.I., Ping L.I., Jiang H.Y. Anti-inflammatory Effect and Related Mechanism of Sophora tonkinensis Granula and its Herbal Piece. Chin. J. Exp. Tradit. Med. Formulae. 2013;19:265–269. [Google Scholar]
  • 78.Qian L.W., Dai W.H., Zhou G.Q., Wang L.L., Wang H.S. Antinociceptive and anti-inflammatory effects of major alkaloids from the roots of radix sophora flavescentis and Radix Sophora tonkinensis. Chin. Tradit. Pat. Med. 2012;34:1593–1596. [Google Scholar]
  • 79.Lu X.P., Zhou H.S., Xi W., Wei L., Li P. Study on anti-inflammatory effect of Shandougen Keli. Inn. Mongolia. J. Tradit. Chin. Med. 2011;30:85–86. [Google Scholar]
  • 80.Luan Y.F., Luo D., Zheng L.N., Xie Y.Z., Sun R. The Margin of Safety Study on Anti- inflammatory Effect of Different Components from Radix et Rhizome Sophora Tonkinensis. Chin. J. Pharmacovigil. 2012;9:392–396. [Google Scholar]
  • 81.Li X.Y., Sun R. Study on Mechanisms of Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015;12:82–85. [Google Scholar]
  • 82.Chui C.H., Lau F.Y., Tang J.C.O., Kan K.L., Cheng G.Y.M., Wong R.S.M., Kok S.H.L., Lai P.B.S., Ho R., Gambari R. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophora Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int. J. Mol. Med. 2005;16:337–341. [PubMed] [Google Scholar]
  • 83.Deng Y.H., Sun L., Zhang W., Xu K.P., Li F.S., Tan J.B., Cao J.G., Tan G.S. Studies on Cytotoxic Constituents from Sophora tonkinensis. Nat. Prod. Res. Dev. 2006;3:408–410. [Google Scholar]
  • 84.Chen Y., Zhang Q., Han S.X., Han F.M., Chen L.M., Tong Y., You Y. Studies on the toxic effects of different extraction sites from Radix Sophora tonkinensis. Chin. J. Pharmacovigil. 2017;14:188–189. [Google Scholar]
  • 85.Huang Z.R. Master’s Thesis. Xi’an University of Technology; Shaanxi, China: 2021. Exploration of an effective and safety method for thequality control of Sophora tonkinensis radix et rhizome. [Google Scholar]
  • 86.Li J.L., Zhang D., Liu S. Effect of Sophora Tonkinensis Gapnep. on Growth and Proliferation of Murine Melanoma Cell B16-BL6. Guangming. J. Chin. Med. 2017;32:1256–1259. [Google Scholar]
  • 87.Wang S., Song Z.J., Gong X.M., Ou C.L., Zhang W.Y., Wang J., Yao C.Y., Qin S.S., Yan B.X., Li Q.P., et al. Chloroform extract from Sophora tonkinensis Gagnep. inhibit proliferation, migration, invasion and promote apoptosis of nasopharyngeal carcinoma cells by silencing the PI3K/AKT/mTOR signaling pathway. J. Ethnopharmacol. 2021;271:113879. doi: 10.1016/j.jep.2021.113879. [DOI] [PubMed] [Google Scholar]
  • 88.Kajimoto S., Takanashi N., Kajimoto T., Xu M., Cao J.D., Masuda Y., Aiuchi T., Nakajo S., Ida Y., Nakaya K. Sophoranone, extracted from a traditional Chinese medicine Shan Dou Gen, induces apoptosis in human leukemia U937 cells via formation of reactive oxygen species and opening of mitochondrial permeability transition pores. Int. J. Cancer. 2002;99:879–890. doi: 10.1002/ijc.10414. [DOI] [PubMed] [Google Scholar]
  • 89.Yao Z.Q., Zhu H., Wang G.F. Anti-tumor Effect of Total Alkaloids of Radix Sophora tonkinensis. J. Nanjing. Univ. Tradit. Chin. Med. 2005;21:253–254. [Google Scholar]
  • 90.Cao L., Li T.J., Meng X.S., Bao Y.R., Wang S. Study on the Efficacy and Mechanism of Liver Cancer Induced by DEN in Rats of Alkaloids of Sophora Tonkinensis Radix Et Rhizoma. Chin. J. Mod. Appl. Pharm. 2018;35:370–374. [Google Scholar]
  • 91.Zhao Q., Wei M., Zhang S., Huang Z., Ji L. The water extract of Sophora tonkinensis Radix et Rhizoma alleviates non-alcoholic fatty liver disease and its mechanism. Phytomedicine. 2020;77:153270. doi: 10.1016/j.phymed.2020.153270. [DOI] [PubMed] [Google Scholar]
  • 92.Yin L.S., Lv L.L., Dou L.W., Li X.Y., Sun R. Study on Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015;12:79–81+85. [Google Scholar]
  • 93.Huang Y.Q. Master’s Thesis. Chengdu University of TCM; Chengdu, China: 2017. The Intervention of Major Alkaloids in Sophora tonkinensis on Immune Liver Injury in Mice. [Google Scholar]
  • 94.Han Y.Z. Master’s Thesis. Chengde Medical University; Sichuan, China: 2016. Preliminary study on the protective effect and mechanism of oxymatrine on Con A-induced liver injury in mice. [Google Scholar]
  • 95.Cai L.L., Zou S.S., Liang D.P., Luan L.B. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophora tonkinensis Radix. Carbohydr. Polym. 2018;184:354–365. doi: 10.1016/j.carbpol.2017.12.083. [DOI] [PubMed] [Google Scholar]
  • 96.Wang L.P., Lu J.Y., Sun W., Gu Y.M., Zhang C.C., Jin R.M., Li L.Y., Zhang Z.A., Tian X.S. Hepatotoxicity induced by radix Sophora tonkinensis in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol. 2017;69:193–202. doi: 10.1016/j.etp.2017.01.003. [DOI] [PubMed] [Google Scholar]
  • 97.Kim H.Y., Shin H.S., Park H., Kim Y.C., Yong G.Y., Sun P., Shin H.J., Kim K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol. 2008;41:122–128. doi: 10.1016/j.jcv.2007.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Xu H.T., Lu J.F., Zhao Y.Z., Zhou J.Y. Antioxidant and antibacterial activity of extracts from Sophora tonkinensis Gagnep. Sci. Technol. Food Ind. 2015;36:111–114. [Google Scholar]
  • 99.Ning X., Liu Y., Jia M., Wang Q., Sun L. Pectic polysaccharides from Radix Sophora Tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021;262:117925. doi: 10.1016/j.carbpol.2021.117925. [DOI] [PubMed] [Google Scholar]
  • 100.Peng T., Su L.J., Hu T.J., Shuai X.H. Acute toxicity test of ethanol extract from the radix et rhizome of Sophora tonkinensis Gagnep. Guangxi. J. Anim. Husbandry. 2010;26:5–7. [Google Scholar]
  • 101.Fan H.T., Gu Y.M., Sun W., Geng Y., Wang L.P., Jin R.M., Zhang Z.A., Tian X.S. Effect of Cytisine on Hepatotoxicity of Sophora tonkinensis Radix et Rhizoma. Chin. J. Exp. Tradit. Med. Formulae. 2018;24:176–181. [Google Scholar]
  • 102.Sun R., Yang Q., Zhao Y. Comparative Study on Acute Toxicity of Different Components of Radix et Rhizome Sophora tonkinensis in Mice. Chin. J. Pharmacovigil. 2010;7:257–262. [Google Scholar]
  • 103.Wang P., Wu X., Li J.P., Xie T.Z., Wu X.O., Wang X.W., Wen P., Zhan H.Q., Li J. Study on Acute Toxicity of Radix et Rhizome Sophora tonkinensis. Lishizhen Med. Mater. Med. Res. 2013;24:771–773. [Google Scholar]
  • 104.Yuan W.L., Huang Z.R., Xiao S.J., Zhang W.D., Shen Y.H. Acute toxicity study of flavonoids from Sophora Tonkinensis Radix et Rhizoma on zebrafish. Chin. Tradit. Herb. Drugs. 2021;52:2978–2986. [Google Scholar]
  • 105.Liu H.C., Zhu X.Y., Chen J.H., Guo S.Y., Li C.Q., Deng Z.P. Toxicity comparison of different active fractions extracted from radix Sophora tonkinensis in zebrafish. J. Zhejiang. Univ. Sci. B. 2017;18:757–769. doi: 10.1631/jzus.B1600158. [DOI] [Google Scholar]
  • 106.Zheng N., Liu Q., He D.L., Liang Y., Li J., Yang R.Y. A New Compound from the Endophytic Fungus Xylaria sp from Sophora tonkinensis. Chem. Nat. Compd. 2018;54:447–449. doi: 10.1007/s10600-018-2376-1. [DOI] [Google Scholar]
  • 107.Yao Y.Q., Wang D.K., Li L.B., Huang R.S., Lan F. Antifungal Activity of Methanol Extracts from the Root of Sophora tonkinensis Gapnep against Main Pathogenic Fungi of Panax notoginseng. Genom. Appl. Biol. 2016;35:2417–2422. [Google Scholar]
  • 108.Guo S., Yan T., Shi L., Liu A., Zhang T., Xu Y., Jiang W., Yang Q., Yang L., Liu L.N., et al. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. Phytomedicine. 2021;84:153507. doi: 10.1016/j.phymed.2021.153507. [DOI] [PubMed] [Google Scholar]
  • 109.Wang Z., Wang D., Liu A., Huang L. Analysis of Chemical Constituents of Effective Part of Anti-butyrylcholinesterase of Sophora tonkinensis by UPLC-Q-TOF-MS. Mod. Chin. Med. 2015;17:912–916. [Google Scholar]
  • 110.Zhou S.Y., Chen J.P., Liu Z.D., Zhou J.R., Liu Y., Liu S.X., Tian C.W., Chen C.Q. Research progress on chemical constituents and pharmacological effects of Sophora tonkinensis Radix et Rhizoma. Chin. Tradit. Herb. Drugs. 2021;52:1510–1521. [Google Scholar]
  • 111.Li S.J., Qian X.L., Li X.Y., Huang W., Sun R. Research of Hepatotoxic Damage Caused by Different Components of Radix et Rhizoma Sophora Tonkinensis. Chin. J. Pharmacovigil. 2011;8:577–580. [Google Scholar]
  • 112.Li S.J., Lv L.L., Qian X.L., Li X.Y., Sun R. Experimental Study on the “Dose-Time-Toxicity” Relationship of Hepatotoxicity Induced by Different Components from Radix et Rhizoma Sophora Tonkinensis in Mice. Chin. J. Pharmacovigil. 2011;8:81–84. [Google Scholar]
  • 113.Zhang S.N., Li X.Z., Yang W.D., Zhou Y. Sophora tonkinensis radix et rhizome-induced pulmonary toxicity: A study on the toxic mechanism and material basis based on integrated omics and bioinformatics analyses. J. Chromatogr. B. 2021;1179:122868. doi: 10.1016/j.jchromb.2021.122868. [DOI] [PubMed] [Google Scholar]
  • 114.Wang R., Wang M., Wang S., Yang K., Zhou P., Xie X.H., Cheng Q., Ye J.X., Sun G.B. An integrated characterization of contractile, electrophysiological, and structural cardiotoxicity of Sophora tonkinensis Gapnep. in human pluripotent stem cell-derived cardiomyocytes. Stem Cell. Res. Ther. 2019;10:1–15. doi: 10.1186/s13287-018-1126-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Li Y.Y., Li J., Liu X., Zhang J.W., Mei X., Zheng R.D., Chen W., Zheng Q., Zhong S.J. Antidiarrheal activity of methanol extract of Sophora tonkinensis in mice and spasmolytic effect on smooth muscle contraction of isolated jejunum in rabbits. Pharm. Biol. 2019;57:477–484. doi: 10.1080/13880209.2019.1645701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Dai W.H., Qian L.W., Yang S.Y., Zhou G.Q. Advance in pharmaceutical research of main alkaloid in Sophora flavescens and Sophora tonkinensis. Anhui Med. Pharm. J. 2011;15:1057–1060. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES