Abstract
The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.
Keywords: S. tonkinensis, phytochemistry, pharmacology, review
1. Introduction
Sophora tonkinensis Gagnep. belongs to the Sophora genus of the Leguminosae family, which is widely distributed in the southwest provinces of China [1,2]. As a famous folk medicine of the Miao people, the roots of S. tonkinensis were known as Shan Dou Gen or Guang Dou Gen in the Miao ethnopharmacy [3,4]. The early medicinal records of Shan Dou Gen were contained in the classics “Kai Bao Ben Cao”, in which S. tonkinensis showed the effect of anti-sore throat diseases [5,6]. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection, including lung and throat diseases. Meanwhile, S. tonkinensis is also highly effective in the treatment of liver and skin diseases [7,8]. Moreover, the roots of S. tonkinensis can also be combined with other medicines to form dozens of clinical and marketing Chinese patent medicines, such as Kai Hou Jian throat spray, Shuyanqing Spray, and Watermelon Frost Spray, which is usually used for treatment of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. Existing phytochemical works reported more than 300 compounds with various structural skeleton types from different parts and endophytic fungi of S. tonkinensis. Some of the isolated monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on [12,13,14,15,16,17]. Herein, the research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.
2. Phytochemistry
Previous studies have shown that alkaloids, flavonoids, triterpenoids, and triterpenoid saponins were the main chemical components isolated from S. tonkinensis. To date, 78 (1–78) alkaloids, 115 (79–193) flavonoids, 46 (194–239) triterpenes and triterpenoid saponins, and 37 (240–276) other compounds have been isolated from S. tonkinensis, and it is worth mentioning that 40 (277–316) compounds were also isolated from the endophytic fungi produced by S. Tonkinensis (Table 1, Figure 1).
Table 1.
NO | Compounds | Molecular Formula | Parts of Plant | References |
---|---|---|---|---|
Matrine-Type alkaloids | ||||
1 | Matrine | C15H24N2O | Roots | [12] |
2 | 5α,14β-Dihydroxymatrine | C15H24N2O3 | Roots | [12] |
3 | (+)-5α-Hydroxyoxymatrine | C15H24N2O3 | Roots | [12] |
4 | (+)-Oxymatrine | C15H24N2O2 | Roots | [18] |
5 | (+)-5α-Hydroxymatrine ((+)-Sophoranol) | C15H24N2O2 | Roots | [12] |
6 | (−)- 14β-Hydroxyoxymatrine | C15H24N2O3 | Roots | [18] |
7 | Sophtonseedline E | C17H26N2O4 | Seeds | [19] |
8 | Sophtonseedline F | C17H28N2O3S | Seeds | [19] |
9 | Sophtonseedline G | C15H24N2O3 | Seeds | [19] |
10 | Sophtonseedline H | C16H26N2O2 | Seeds | [19] |
11 | (+)-9α-Hydroxymatrine | C15H24N2O2 | Seeds | [19] |
12 | (+)-5α-9α-Dihydroxymatrine | C15H24N2O3 | Seeds | [19] |
13 | (+)-Allomatrine (Sophoridine) | C15H24N2O | Roots | [20] |
14 | (+)-Lehmannine | C15H24N2O | Roots | [20] |
15 | (+)-12α-Hydroxysophocarpine | C15H24N2O2 | Roots | [20] |
16 | (−)-13,14-Dehydrosophoridine (12,13-Dehydrosophoridine) | C15H24N2O | Roots | [20] |
17 | (+)-5α-Hydroxyoxysophocarpine | C15H22N2O3 | Roots | [14] |
18 | (−)-12β-Hydroxyoxysophocarpine | C15H22N2O3 | Roots | [14] |
19 | (−)-12β-Hydroxysophocarpine | C15H22N2O2 | Roots | [14] |
20 | (+)-Oxysophocarpine | C15H22N2O2 | Roots | [14] |
21 | Sophtonseedline B | C15H22N2O3 | Seeds | [19] |
22 | Sophtonseedline C | C17H24N2O4 | Seeds | [19] |
23 | Sophtonseedline D | C17H26N2O3S | Seeds | [19] |
24 | (−)-5α-Hydroxysophocarpine (13,14-Dehydrosophoranol) | C15H22N2O2 | Seeds | [19] |
25 | (−)-9α-Hydroxysophocarpine | C15H22N2O2 | Seeds | [19] |
26 | (−)-14β-Acetoxymatrine | C17H26N2O3 | Leaves | [21] |
27 | (+)-14α-Acetoxymatrine | C17H26N2O3 | Leaves | [21] |
28 | (−)-14β-Hydroxymatrine | C15H24N2O2 | Leaves | [21] |
29 | (+)-14α-Hydroxymatrine | C15H24N2O2 | Leaves | [21] |
30 | Sophtonseedline I | C17H24N2O4 | Seeds | [19] |
31 | 6,7-Dehydro-matrine | C15H22N2O | Seeds | [19] |
32 | 5-Hydroxy-6,7-dehydro-matrine | C15H22N2O2 | Seeds | [19] |
33 | (+)-13,14-Dehydrosophoranol | C15H22N2O2 | Roots | [22] |
34 | (−)-Sophocarpine | C15H22N2O | Roots | [12] |
35 | (+)-5α-Hydroxylemannine | C15H22N2O2 | Roots | [14] |
36 | 13α-Hydroxymatrine | C15H24N2O2 | Roots | [23] |
37 | 13β-Hydroxymatrine | C15H24N2O2 | Roots | [23] |
38 | 11,12-Dehydroallmatrine | C15H22N2O | Roots | [1] |
39 | 11,12-Dehydromatrine | C15H22N2O | Roots | [1] |
40 | (+)-Matrine N-oxide | C15H24N2O | Leaves | [21] |
41 | (+)-Sophoranol N-oxide | C15H24N2O2 | Leaves | [21] |
42 | (+)-7,11-Dehydromatrine | C15H22N2O | Roots | [22] |
43 | Alopecurin A | C15H22N2O4 | Seeds | [19] |
44 | Sophtonseedline J | C15H20N2O3 | Seeds | [19] |
45 | Sophtonseedline K | C15H20N2O3 | Seeds | [19] |
46 | Sophtonseedline A | C15H22N2O2 | Seeds | [19] |
47 | 5,6-Dehydro-matrine | C15H22N2O | Seeds | [19] |
48 | Isosophocarpine | C15H22N2O | Roots | [23] |
49 | (+)-Sophoramine (7β-Sophoramine) | C15H20N2O | Roots | [14] |
Cytisine-type alkaloids | ||||
50 | (−)-Cytisine | C11H14N2O | Seeds | [19] |
51 | N-Methylcytisine | C12H16N2O | Seeds | [19] |
52 | (−)-N-Formylcytisine | C12H14N2O2 | Seeds | [19] |
53 | N-Acylcytisine | C13H16N2O2 | Seeds | [19] |
54 | (−)-N-Methylcytisine | C12H16N2O | Roots | [18] |
55 | (−)-N-Hexanoylcytisine | C17H24N2O2 | Roots | [24] |
56 | (−)-N-Ethylcytisine | C13H18N2O | Roots | [24] |
57 | (−)-N-Propionylcytisine | C14H18N2O2 | Roots | [24] |
58 | Tonkinensine A | C28H26N2O6 | Roots | [25] |
59 | Tonkinensine B | C28H26N2O6 | Roots | [25] |
Anagyrine-type alkaloids | ||||
60 | 17-Oxo-α-isosparteine | C15H24N2O | Leaves | [21] |
61 | (−)-Anagyrine | C15H20N2O | Roots | [12] |
62 | (−)-Thermopsine | C15H20N2O | Roots | [12] |
63 | (−)-Baptifoline | C15H20N2O2 | Leaves | [21] |
64 | (−)-Clathrotropine | C17H22N2O4 | Roots | [26] |
65 | Lanatine A | C22H29N3O3 | Roots | [26] |
Lupine-types and other alkaloids | ||||
66 | Lamprolobine | C15H24N2O2 | Leaves | [21] |
67 | Jussiaeiine B | C16H24N2O2 | Roots | [26] |
68 | Jussiaeiine A | C13H20N2O2 | Roots | [26] |
69 | Senepodine H | C14H26NO+ | Roots | [26] |
70 | Cermizine C | C11H21N | Roots | [26] |
71 | Senepodine G | C11H20N+ | Roots | [26] |
72 | Harmine | C13H12N2O | Roots | [1] |
73 | Tonkinensine C | C16H16N2O2 | Roots | [1] |
74 | Perlolyrine | C16H12N2O2 | Roots | [1] |
75 | 3-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dehydroquinolizidine | C22H25NO3 | Roots | [26] |
76 | 1-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl)ethanone | C8H10N2O | Roots | [27] |
77 | Cyclo (Pro-Pro) | C10H14N2O2 | Roots | [27] |
78 | Nicotinic acid | C6H5NO2 | Roots | [27] |
Flavonoids | ||||
79 | 4′,7-Dihydroxyflavone | C15H10O4 | Roots | [28] |
80 | Wogonin | C16H12O5 | Roots | [29] |
81 | Luteolin | C15H10O4 | Roots | [29] |
82 | Luteolin-7-glucoside | C21H20O11 | Roots | [30] |
83 | Baicalein 7-O-β-Ⅾ-glucuronide | C21H18O11 | Roots | [31] |
84 | Bayin | C21H20O9 | Roots | [15] |
85 | Swertisin | C22H22O10 | Roots | [31] |
86 | Sophoraflavone B | C21H20O9 | Roots | [32] |
87 | Sophoraflavone A | C27H30O13 | Roots | [32] |
Flavonols | ||||
88 | Quercetin | C15H10O7 | Roots | [33] |
89 | Morin | C15H10O7 | Roots | [31] |
90 | 6,8-Diprenylkaempferol | C25H26O6 | Roots | [34] |
91 | 8-C-prenylkeamferol | C20H18O6 | Roots | [35] |
92 | Dehydrolupinifolinol | C25H24O6 | Roots | [33] |
93 | Tonkinensisol | C25H24O6 | Roots | [15] |
94 | Isoquercitrin | C21H20O12 | Roots | [36] |
95 | Quercitrin | C21H20O11 | Roots | [37] |
96 | Rutin (Quercetin-3-O-β-D-rutinoside) | C27H30O16 | Roots | [31] |
97 | Isorhamnetin-3-O-β-D-rutinoside | C28H32O16 | Roots | [31] |
Isoflavones and Dihydroisoflavones | ||||
98 | 8,4′-Dihydroxy-7-methoxyisoflavone | C16H12O5 | Roots | [38] |
99 | 5,7,2′,4′-Tetrahydroxyisoflavone | C15H10O6 | Roots | [38] |
100 | Calycosin | C16H12O5 | Roots | [38] |
101 | 7,3′-Dihydroxy-5’-methoxyisoflavone | C16H12O5 | Roots | [38] |
102 | 7,4′-Dihydroxy-3′-methoxyisoflavone | C16H12O5 | Roots | [38] |
103 | Daidzein (7,4’-Dihydroxyisoflavone) | C15H10O4 | Roots | [38] |
104 | 7,3′-Dihydroxy-8,4′-dimethoxyisoflavone | C17H14O6 | Roots | [38] |
105 | 7,8-Dihydroxy-4′-methoxyisoflavone | C16H12O5 | Roots | [38] |
106 | 7,3′,4′-Trihydroxyisoflavone | C15H10O5 | Roots | [38] |
107 | Formononetin | C16H12O4 | Roots | [39] |
108 | Genistein | C15H10O5 | Roots | [39] |
109 | Wighteone | C20H18O5 | Roots | [40] |
110 | 8-Methylretusin | C17H14O5 | Roots | [41] |
111 | 7-Methoxyebenosin | C22H22O4 | Roots | [42] |
112 | Tectorigenin | C16H12O6 | Roots | [43] |
113 | Butesuperin A | C26H22O8 | Roots | [44] |
114 | Butesuperin B -7′-O-β-glucopyranoside | C33H34O14 | Roots | [44] |
115 | Genistin | C21H20O10 | Roots | [33] |
116 | Ononin (Formononetin-7-O-β-D-glucoside) | C22H22O9 | Roots | [33] |
117 | Daidzein-4′-glucoside-rhamnoside | C27H30O13 | Roots | [37] |
118 | Sophorabioside | C27H30O14 | Roots | [37] |
Dihydroflavones | ||||
119 | 6,8-Diprenyl-7,4′-Dihydroxyflavanone | C25H28O4 | Roots | [45] |
120 | Sophoranone | C30H36O4 | Roots | [45] |
121 | Glabrol | C25H28O4 | Roots | [45] |
122 | 6,8-Diprenyl-7,2′,4′-trihydroxyflavanone | C25H28O5 | Roots | [45] |
123 | Lespeflorin B4 | C30H36O6 | Roots | [33] |
124 | (2S)-7,4′-Dihydroxy-5′-aldehyde-8,3′-(3′′-methylbut-2′′-enyl) flavanone | C26H28O5 | Roots | [34] |
125 | (2S)-7,2′,4′-Trihydroxy-8,3′,5′-(3′′-methyl- but-2′′-enyl) flavanone | C30H36O5 | Roots | [34] |
126 | Tonkinochromane J | C25H28O5 | Roots | [46] |
127 | Shandougenine C | C30H36O5 | Roots | [40] |
128 | Shandougenine D | C25H28O5 | Roots | [40] |
129 | Sophoratonin F | C35H44O4 | Roots | [42] |
130 | Lonchocarpol A | C25H28O5 | Roots | [42] |
131 | 2′-Hydroxyglabrol | C25H28O5 | Roots | [47] |
132 | 8,5′-Diprenyl-7,2′,4′-trihydroxyflavanone | C25H28O5 | Roots | [45] |
133 | Sophoratonin A | C27H28O4 | Roots | [42] |
134 | Sophoratonin B | C30H32O4 | Roots | [42] |
135 | Tonkinochromane I | C30H36O5 | Roots | [35] |
136 | Tonkinochromane G | C30H36O5 | Roots | [34] |
137 | Sophoratonin C | C30H30O4 | Roots | [42] |
138 | Sophoratonin D | C30H36O4 | Roots | [42] |
139 | Flemichin D | C25H26O5 | Roots | [45] |
140 | 5-Dehydroxylupinifolin | C25H26O4 | Roots | [34] |
141 | Lupinifolin | C25H26O5 | Roots | [40] |
142 | 2-(2′,4′-Dihydroxyphenyl)-8,8-dimethyl-1′-(3-methyl-2-butenyl)-8H-pyrano[2,3-d] chroman-4-one | C25H26O5 | Roots | [48] |
143 | Tonkinochromane A | C30H36O4 | Roots | [45] |
144 | Sophoranochromene | C30H34O4 | Roots | [33] |
145 | 2-[{2-(1-Hydroxy-1-methylethyl)-7-(3-methyl-2-butenyl)-2′,3-dihydrobenzofuran}-5-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-one | C30H36O5 | Roots | [49] |
146 | Sophoratonin E | C30H32O4 | Roots | [42] |
147 | Tonkinochromane D | C30H38O5 | Roots | [50] |
148 | Tonkinochromane E | C32H42O5 | Roots | [50] |
149 | 2-[{2′-(1-Hydroxy-1-methylethyl)-7′-(3-methyl-2-butenyl)-2′,3′-dihydrobenzofuran}-5′-yl]-7-hy-droxy-8-(3-methyl-2-butenyl) chroman-4-one | C30H36O5 | Whole | [51] |
150 | Euchrenone A2 | C25H26O5 | Roots | [33] |
151 | Sophoratonin G | C27H28O4 | Roots | [42] |
152 | Tonkinochromane K | C30H36O6 | Roots | [46] |
153 | 2-[{3′-Hydroxy-2′,2′-dimethyl-8′-(3-methyl-2-butenyl)} chroman-6′-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-one | C30H36O5 | whole | [51] |
154 | 2-[{3-Hydroxy-2′,2-dimethyl-8-(3-methyl-2-butenyl)} chroman-6-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chro-man-4-one | C31H38O4 | Roots | [49] |
155 | Tonkinochromane H | C30H34O5 | Roots | [52] |
156 | Tonkinochromane B | C30H36O4 | Roots | [53] |
157 | Kushenol E | C25H28O6 | Roots | [46] |
158 | Naringenin 7-O-neo-hesperidoside | C27H32O14 | Roots | [31] |
Chalcones and Dihydrochalcones | ||||
159 | Isoliquiritigenin | C15H12O4 | Roots | [47] |
160 | Sophoradin | C30H36O4 | Roots | [34] |
161 | Xanthohumol | C21H22O5 | Roots | [54] |
162 | 7,9,2,4-Tetrahydroxy-8-isopentenyl-5-methoxychalcone | C21H22O6 | Roots | [54] |
163 | Tonkinochromane C | C28H30O4 | Roots | [53] |
164 | Tonkinochromane F | C32H42O5 | Roots | [50] |
165 | Kuraridine | C26H30O6 | Roots | [54] |
166 | Sophoradochromene | C30H34O4 | Roots | [42] |
167 | Tonkinochromane L | C21H24O4 | Roots | [46] |
Pterostanes | ||||
168 | (−)-Maackiain | C16H12O5 | Roots | [33] |
169 | Pisatin | C17H14O6 | Roots | [39] |
170 | Maackiain-3-O-glucoside 6′’-acetate | C24H24O11 | Roots | [47] |
171 | (−)-Maackiain 3-sulfate | C16H11O8S | Roots | [55] |
172 | 6aR,11aR-1-hydroxy-4-isoprenyl-maackiain | C21H20O6 | Roots | [48] |
173 | (6aR,11aR) - 2-hydroxy-3-methoxy-1-isopentenyl- maackiain | C22H22O6 | Roots | [47] |
174 | Sophotokin | C21H20O6 | Roots | [34] |
175 | (−)-Pterocarpin | C17H14O5 | Seeds | [56] |
176 | Medicarpin | C16H14O4 | Roots | [39] |
177 | (6aR, 11aR)-3-O-β-D-Glucopyranosylmedicarpin | C22H24O9 | Roots | [24] |
178 | Medicarpin-3-O-glucoside 6″-acetate | C24H26O10 | Roots | [47] |
179 | Demethylmedicarpin | C15H12O4 | Roots | [40] |
180 | Homopterocarpin | C17H16O4 | Roots | [42] |
181 | Dehydromaackiain | C16H10O5 | Roots | [42] |
182 | Flemichapparin B | C17H12O5 | Roots | [42] |
183 | Maackiapterocarpan B | C21H18O6 | Roots | [57] |
184 | 3-Methylmaackiapterocarpan B | C22H20O6 | Roots | [47] |
185 | Erybraedin D | C25H26O4 | Roots | [42] |
186 | Maackiapterocarpan A | C21H20O6 | Roots | [42] |
187 | Medicagol | C16H8O6 | Seeds | [56] |
188 | Sophtonseedlin B | C28H28O13 | Seeds | [56] |
189 | Sophoratonkin | C26H26O11 | Roots | [28] |
190 | (−)-Trifolirhizin | C22H22O10 | Seeds | [56] |
191 | (−)-Trifolirhizin-6′′-monoacetate | C24H24O11 | Seeds | [56] |
Flavanols | ||||
192 | 7,2’-Dihydroxy-4’-methoxy-isofiavanol | C16H16O5 | Roots | [58] |
193 | (3S,4R)-4-hydroxy-7,4′-dimethoxyisoflavan 3′-O-β-D-glucopyranoside | C23H28O10 | Roots | [24] |
Triterpenoids and Triterpenoid saponins | ||||
194 | Subprogenin A | C30H48O4 | Roots | [59] |
195 | Subprogenin B | C30H48O5 | Roots | [59] |
196 | Subprogenin C | C30H46O4 | Roots | [59] |
197 | Subprogenin C methylester | C31H48O4 | Roots | [59] |
198 | Subprogenin D | C30H46O4 | Roots | [59] |
199 | Subprogenin D methylester | C31H48O4 | Roots | [59] |
200 | Abrisapogenol H | C30H48O3 | Roots | [59] |
201 | Wistariasapogenol A | C30H48O4 | Roots | [59] |
202 | Melilotigenin | C30H46O5 | Roots | [59] |
203 | Abrisapogenol I | C30H46O5 | Roots | [59] |
204 | Sophoradiol | C30H50O2 | Roots | [59] |
205 | Cantoniensistiol | C30H50O3 | Roots | [59] |
206 | Soyasapogenol B | C30H50O3 | Roots | [59] |
207 | Soyasapogenol A | C30H50O4 | Roots | [59] |
208 | Abrisapogenol C | C30H50O4 | Roots | [59] |
209 | Abrisapogenol D | C30H50O3 | Roots | [59] |
210 | Abrisapogenol E | C30H50O4 | Roots | [59] |
211 | Kudzusapogenol A | C30H50O5 | Roots | [59] |
212 | Abrisapogenol A | C30H50O3 | Roots | [59] |
213 | Lupeol | C30H50O | Roots | [60] |
214 | Stigmasterol | C29H48O | Roots | [60] |
215 | β-Sitosterol | C29H50O | Roots | [60] |
216 | Daucosterol | C35H60O6 | Roots | [60] |
217 | Subproside Ⅰ | C48H78O19 | Roots | [61] |
218 | Subproside Ⅰ methylester | C49H80O19 | Roots | [61] |
219 | Subproside Ⅱ | C47H76O19 | Roots | [61] |
220 | Subproside Ⅱ methylester | C48H78O19 | Roots | [61] |
221 | Soyasaponin A3 methylester | C49H80O19 | Roots | [62] |
222 | Kuzusapogenol A methylester | C49H80O20 | Roots | [62] |
223 | Soyasaponin I methylester | C49H80O18 | Roots | [62] |
224 | Kaikasaponin Ⅲ methylester | C49H80O17 | Roots | [62] |
225 | Soyasaponin Ⅱ methylester | C48H78O17 | Roots | [62] |
226 | Kaikasapomn I methylester | C49H80O17 | Roots | [62] |
227 | Kudzusaponin A3 | C47H76O19 | Roots | [61] |
228 | Soyasaponin II | C47H76O17 | Roots | [61] |
229 | Dehydrosoyasaponin I | C48H76O18 | Roots | [61] |
230 | Subproside Ⅶ | C59H96O27 | Roots | [63] |
231 | Subproside Ⅶ methylester | C60H98O27 | Roots | [63] |
232 | Subproside Ⅳ | C54H88O23 | Roots | [63] |
233 | Subproside Ⅳ methylester | C55H90O23 | Roots | [63] |
234 | Subproside Ⅴ | C54H88O24 | Roots | [63] |
235 | Subproside Ⅴ methylester | C55H90O24 | Roots | [63] |
236 | Subproside Ⅲ | C54H86O24 | Roots | [61] |
237 | Subproside Ⅲ methylester | C55H88O24 | Roots | [61] |
238 | Subproside Ⅵ | C54H88O24 | Roots | [63] |
239 | Subproside Ⅵ methylester | C55H90O24 | Roots | [63] |
Other compounds | ||||
240 | Tyrosol | C8H10O2 | Roots | [64] |
241 | 4-(3-Hydroxypropyl) phenol | C9H12O2 | Roots | [64] |
242 | Vanillin alcohol | C8H10O3 | Roots | [64] |
243 | (±)-4-(2-Hydroxypropyl) phenol | C9H12O2 | Roots | [64] |
244 | 3,4,5-Trihydroxybenzoic acid | C7H6O5 | Roots | [31] |
245 | 3,4-Dihydroxybenzoic acid | C7H6O4 | Roots | [31] |
246 | 4-Hydroxy-3-methoxybenzoic acid | C8H8O4 | Roots | [31] |
247 | p-Hydroxybenzonic acid | C7H6O3 | Roots | [31] |
248 | Venillic acid | C8H8O4 | Roots | [41] |
249 | p-Methoxybenzonic acid | C8H8O3 | Roots | [27] |
250 | Salicylic acid | C7H6O3 | Roots | [43] |
251 | Benzamide | C7H7NO | Roots | [64] |
252 | 4-Methoxybenzamide | C8H9NO2 | Roots | [64] |
253 | Docosyl caffeate | C31H52O4 | Roots | [4] |
254 | Maltol | C6H6O3 | Roots | [41] |
255 | (±)-3-( p-Methoxyphenyl) -1,2-propanediol | C9H12O4 | Roots | [64] |
256 | 3,4-Dimethoxybenzeneacrylic acid methyl ester | C12H14O4 | Roots | [39] |
257 | Sophoratonin H | C22H26O5 | Roots | [42] |
258 | Piscidic acid monoethyl ester | C13H16O7 | Roots | [41] |
259 | 2′,4′, 7-trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone | C25H28O5 | Roots | [40] |
260 | 2-(2′, 4′-dihydroxylphenyl)-5,6-methylenedioxybenzoftiran | C15H10O5 | Roots | [56] |
261 | bolusanthin IV | C15H12O4 | Roots | [40] |
262 | 7,2′-Dihydroxy-4′,5′-methylenedioxyisoflavan | C16H14O5 | Roots | [40] |
263 | Shandougenine A | C30H18O10 | Roots | [40] |
264 | Shandougenine B | C30H18O10 | Roots | [40] |
265 | (−)-Syringaresinol-4,4’-di-O-β-D-glucopyranoside | C34H46O18 | Roots | [27] |
266 | (−)-Syringaresinol-4-O-β-D-glucopyranoside | C28H36O13 | Roots | [27] |
267 | (−)-Pinoresinol-4,4’-di-O-β-D-glucopyranoside | C32H42O16 | Roots | [27] |
268 | Pinoresinol | C20H22O6 | Roots | [28] |
269 | Syringaresinol | C22H26O8 | Roots | [28] |
270 | Medioresinol | C21H24O7 | Roots | [28] |
271 | Coniferin | C16H22O8 | Roots | [27] |
272 | 4-Hydroxymethyl-2,6-dimethoxyphenol-1-O-β-D-glucopyranoside | C15H22O9 | Roots | [27] |
273 | Syringin | C17H24O9 | Roots | [29] |
274 | Sophtonseedlin A | C23H14O9 | Roots | [56] |
275 | (6S,9R) -Roseoside | C19H30O8 | Roots | [27] |
276 | (−)-Secoisolariciresinol-4-O-β-D-glucopyranoside | C25H33NO9 | Roots | [27] |
Compounds produced by endophytic fungi | ||||
277 | 2-Methoxy-6-methyl-1,4-benzoquinone | C8H8O3 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
278 | 1-Methyl emodin | C16H12O5 | Endophytic Fungus Penicillium macrosclerotiorum | [66] |
279 | Isorhodoptilometrin | C17H14O6 | Endophytic Fungus Penicillium macrosclerotiorum | [66] |
280 | (−)-5-Carboxylmellein | C11H10O5 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
281 | (−)-5-Methylmellein | C11H12O3 | Endophytic Fungus Xylaria sp. GDG-102 | [67] |
282 | Xylariphilone | C11H16O4 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
283 | Xylarphthalide A | C11H10O6 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
284 | 2-Anhydromevalonic acid | C6H10O3 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
285 | (2S,5R)-2-Ethyl-5-methylhexanedioic acid | C9H16O4 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
286 | 6-Heptanoyl-4-methoxy-2H-pyran-2-one | C13H18O4 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
287 | Xylareremophil | C15H18O3 | Endophytic Fungus Xylaria sp. GDG-102 | [68] |
288 | 1α,10α-Epoxy-13-hydroxyeremophil-7(11)-en-12,8-β-olide | C15H20O4 | Endophytic Fungus Xylaria sp. GDG-102 | [68] |
289 | 1α,10α-Epoxy-3α-hydroxyeremophil-7(11)-en-12,8-β-olide | C15H20O5 | Endophytic Fungus Xylaria sp. GDG-102 | [68] |
290 | Mairetolide B | C15H20O4 | Endophytic Fungus Xylaria sp. GDG-102 | [68] |
291 | Mairetolide G | C15H22O5 | Endophytic Fungus Xylaria sp. GDG-102 | [68] |
292 | 1β,10α,13-Trihydroxyeremophil-7(11)-en-12,8-olide | C16H24O4 | Endophytic Fungus Xylaria sp. GDG-102 | [65] |
293 | (−)-3-Carboxypropyl-7-hydroxyphthalide | C12H12O5 | Endophytic fungus Penicillium vulpinum | [69] |
294 | (−)-3-Carboxypropyl-7-hydroxyphthalide methyl ester | C13H14O5 | Endophytic fungus Penicillium vulpinum | [69] |
295 | Sulochrin | C17H16O7 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
296 | Monoacetylasterric acid | C18H16O9 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
297 | Methyl dichloroasterrate | C18H16Cl2O8 | Endophytic Fungus Penicillium macrosclerotiorum | [66] |
298 | Penicillither | C18H17 ClO8 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
299 | Methyl asterrate | C18H18O8 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
300 | Asterric acid | C17H16O8 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
301 | Xylapeptide A | C30H45N5O5 | Endophytic Fungus Xylaria sp. GDG-102 | [70] |
302 | Xylapeptide B | C29H43N5O5 | Endophytic Fungus Xylaria sp. GDG-102 | [70] |
303 | 21-Acetoxycytochalasin J2 | C30H37NO4 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
304 | 21-Acetoxycytochalasin J3 | C30H39NO3 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
305 | Cytochalasin J3 | C32H41NO4 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
306 | Cytochalasin H | C30H39NO5 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
307 | 7-Acetoxycytochalasin H | C32H41NO6 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
308 | Cytochalasin J | C28H37NO4 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
309 | Geomycin A | C35H32O15 | Endophytic fungus Penicillium macrosclerotiorum | [66] |
310 | Cytochalasin E | C28H33NO7 | Endophytic fungus Diaporthe sp.GDG-118 | [71] |
311 | Cytochalasin K | C28H33NO7 | Endophytic fungus Xylaria sp. GDG-102 | [65] |
312 | Diaporthein B | C20H28O6 | Endophytic fungus Xylaria sp. GDGJ-368 | [72] |
313 | Piliformic | C11H18O4 | Endophytic fungus Xylaria sp. GDGJ-368 | [72] |
314 | Cytochalasin C | C30H37NO6 | Endophytic fungus Xylaria sp. GDGJ-368 | [72] |
315 | Cytochalasin D | C30H37NO6 | Endophytic fungus Xylaria sp. GDGJ-368 | [72] |
316 | (22E)-ergosta-6,22-diene-3β,5β,8α-triol | C28H46O3 | Endophytic fungus Xylaria sp. GDGJ-368 | [72] |
2.1. Alkaloids
The alkaloids isolated in S. tonkinensis were mainly quinolizidine-type alkaloids [73]. To date, 78 alkaloids have been identified and isolated, of which 49 (1–49) are matrine type alkaloids. Sophtonseedline A (46) was isolated from the seeds of S. tonkinensis, which featured an unprecedented 5/6/6/6 tetracyclic skeleton [19]. Meanwhile, tonkinensines A (58) and B (59) with the rare multi group bridging structures were isolated from S. tonkinensis also [25].
2.2. Flavonoids
Flavonoids generically referred to the compounds with C6-C3-C6 structure skeleton. The flavonoids were rich in S. tonkinensis, and more than 115 flavonoids have been reported as far as we know. Their structural types can be classified as flavonoids (79-87), flavonols (88–97), isoflavones and dihydroisoflavones (98–118), dihydroflavones (119–158), chalcones and dihydrochalcones (159–167), pterostanes (168–191), and flavanols (192–193). Interestingly, tonkinochromanes A (143) and B (156) may ring-fused in the isoprenyl substituents [53]. Meanwhile, sophoraflavones A (87) and B (86) were the rare 5-deoxyflavonoids from the roots of S. tonkinensis [32]. Among the eighteen flavonoids identified using UPLC-ESI-LTQ/MS methods, formononetin (107), quercetin (88), rutin (96), isoquercitrin (94), and quercitrin (95) were suggested as the major quality markers of S. tonkinensis roots [37].
2.3. Triterpenoids and Triterpenoid Saponins
As far as we know, more than 46 (194–239) triterpenoids and triterpenoid saponins have been isolated from S. tonkinensis. Isolated triterpenoids are mainly of the oleanane type with carbonyl substitution at position C-22 [30,74]. Compared with flavonoids and alkaloids, the triterpenoids and triterpenoid saponins of S. tonkinensis were rarely reported [59,61,62].
2.4. Other Compounds
In addition to alkaloids, flavonoids, and triterpenoids, a total of 37 (240–276) phenolic acids, sterols, and other compounds were reported from S. tonkinensis. Two new 2-arylbenzofuran dimers, shandougenines A (263) and B (264), were isolated from the roots of S. tonkinensis. It is noteworthy that shandougenine A (263) has the unique dimeric 2-Arylbenzofuran with a C-3\C-5 bond, and shandougenine B (264) was the natural dimeric 2-arylbenzofuran with a novel C-3/C-3 bond [40]. Meanwhile, a new propenyl phenylacetone was also isolated from S. tonkinensis and named sophoratonin H (257) [42].
2.5. Compounds Produced by Endophytic Fungi
The endophytic fungus Xylaria sp.GDG-102, Penicillium macrosclerotiorum, Penicillium vulpinum, Diaporthe sp.GDG-118, and Xylaria sp. GDGJ-368 [65,66,69,71] were isolated from S. tonkinensis, and some compounds produced by these endophytic fungi were interesting. More than 40 (277–316) compounds have been isolated from its endophytic fungi. Xylapeptide A (301) identified from the associated fungus Xylaria sp. GDG-102 was the first example of cyclopentapeptide with an L-Pip of terrestrial origin [70].
3. Pharmacological Activities
3.1. Anti-Inflammatory Effect
Reported studies have shown the anti-inflammatory activities of S. tonkinensis (Table 2) [45,75]. Some novel compounds, including 12,13-dehydrosophoridine (16) from S. tonkinensis, showed significant activity against inflammatory cytokines TNF-α and IL-6 on LPS-induced RAW264.7 macrophages [23]. Moreover, 6,8-diprenyl-7,4’-dihydroxyflavanone (DDF) (119) inhibited the production of NO and the expression of TNF-α, IL-1β, and IL-6 [45]. Meanwhile, the compounds 2′-hydroxyglabrol (131), glabrol (121), maackiain (168), and bolusanthin IV (261) showed strong inhibitory effects on IL-6 [47]. Sophotokin (174) dose-dependently inhibited the lipopolysaccharide (LPS)-stimulated production of NO, TNF-α, PGE2, and IL-1β in microglial cells [34]. Moreover, the orally administered roots extract of S. tonkinensis attenuated the total leukocytes, eosinophil infiltration, and IL-5 level in BAL fluids [76]. Another study also showed S. tonkinensis were able to reduce TNF-α, NO, and IL-6 contents in rat paw edema induced by carrageenan [77].
Table 2.
Detail | Extracts/Compounds | In Vivo/In Vitro | Active Concentration/Dose | References |
---|---|---|---|---|
Anti-inflammatory activity | ||||
Reduce TNF-α | (−)-Anagyrine (61) | In vitro | 50 µM | [12] |
Sophocarpine (34) | In vitro | 50 µM | [12] | |
14β-Hydroxymatrine (28) | In vitro | 50 µM | [12] | |
7β-Sophoramine (49) | In vitro | 50 µM | [12] | |
Matrine (1) | In vivo | 50 µM | [12] | |
(+)-5α-Hydroxymatrine (5) | In vivo | 50 µM | [12] | |
12,13-Dehydrosophoridine (16) | In vitro | 50 µM | [23] | |
13α-Hydroxymatrine (36) | In vitro | 50 µM | [23] | |
13β-Hydroxymatrine (37) | In vitro | 50 µM | [23] | |
Isosophocarpine (48) | In vitro | 50 µM | [23] | |
Sophoridine (13) | In vitro | 50 µM | [23] | |
Water extract of roots | In vivo | 0.3 g/kg | [75] | |
Inhibit the production of NO | sophoratonkin (189) | In vitro | IC50 = 33.0 µM | [28] |
Maackiain (168) | In vitro | IC50 = 27.0 µM | [28] | |
Sophoranone (120) | In vitro | IC50 = 28.1 µM | [28] | |
Sophoranochromene (144) | In vitro | IC50 = 13.6 µM | [28] | |
Tonkinochromane A (143) | In vitro | 20 µM | [45] | |
Flemichin D (139) | In vitro | 20 µM | [45] | |
6,8-Diprenyl-7,4′-dihydroxyflavanone (119) | In vitro | IC50 = 12.21 µM | [45] | |
Water extract of roots | In vivo | 100 mg/kg | [13] | |
Non-alkaloid extracts of roots | In vivo | 400 mg/kg | [13] | |
Reduce IL- 6 | 2′-Hydroxyglabrol (131) | In vitro | IC50 = 1.62 µM | [47] |
Glabrol (121) | In vitro | IC50 = 0.73 µM | [47] | |
Maackiain (168) | In vitro | IC50 = 3.01 µM | [47] | |
Bolusanthin IV (261) | In vitro | IC50 = 4.02 µM | [47] | |
Ethanol extract of roots | In vivo | 100 mg/kg | [7] | |
(−)-Anagyrine (61) | In vitro | 50 µM | [12] | |
Sophocarpine (34) | In vitro | 50 µM | [12] | |
14β-Hydroxymatrine (28) | In vitro | 50 µM | [12] | |
7β-Sophoramine (49) | In vitro | 50 µM | [12] | |
Matrine (1) | In vitro | 50 µM | [12] | |
(+)-5α-Hydroxyoxymatrine (3) | In vivo | 50 µM | [12] | |
(+)-5α-Hydroxymatrine (5) | In vivo | 50 µM | [12] | |
12,13-Dehydrosophoridine (16) | In vitro | 50 µM | [23] | |
13α-Hydroxymatrine (36) | In vitro | 50 µM | [23] | |
13β-Hydroxymatrine (37) | In vitro | 50 µM | [23] | |
Isosophocarpine (48) | In vitro | 50 µM | [23] | |
Sophoridine (13) | In vitro | 50 µM | [23] | |
Water extract of roots | In vivo | 0.3 g/kg | [75] | |
Reduce IL-5 | 50% (v/v) ethanol-water mixture | In vivo | 100 mg/kg | [76] |
Reduce IL-10 | Ethanol extract of roots | In vivo | 100 mg/kg | [7] |
Reduce IL-1β | Water extract of roots | In vivo | 0.3 g/kg | [75] |
Reduced the hyperplasia of goblet cell | 50% (v/v) ethanol-water mixture | In vivo | 10 mg/kg | [76] |
Inhibit xylene induced auricle swelling in mice | Oxymatrine (4) | In vivo | 40 mg/kg | [78] |
(−)-Cytisine (50) | In vivo | 40 mg/kg | [78] | |
S. tonkinensis particles | In vivo | 1.75 g/kg | [79] | |
Inhibit pain induced by acetic acid stimulation of the celiac mucosa | Matrine (1) | In vivo | 40 mg/kg | [78] |
Sophoridine (13) | In vivo | 30 mg/kg | [78] | |
Sophocarpine (34) | In vivo | 40 mg/kg | [78] | |
S. tonkinensis particles | In vivo | 3.5 g/kg | [79] | |
Inhibit croton oil induced ear swelling in mice | Water extract of roots | In vivo | 0.35–1.12 g/kg | [80] |
Ethanol extract of roots | In vivo | 0.35–1.12 g/kg | [80] | |
Water extract of roots | In vivo | 0.39 g/kg | [81] | |
Anti-tumor activity | ||||
Inhibit A549 | (−)-N-hexanoylcytisine (55) | In vitro | IC50 = 31.64 µM | [24] |
(−)-N-Formylcytisine (52) | In vitro | IC50 = 22.05 µM | [24] | |
(6aR, 11aR)-Maackiain (168) | In vitro | IC50 = 24.58 µM | [24] | |
Water extracts of roots | In vitro | 6.5 µg/µL | [82] | |
1-(6,7-Dihydro-5H-pyrrolo [1,2-a] imidazol-3-yl) ethenone (76) | In vitro | IC50 = 23.05 ± 0.46 µM | [27] | |
Inhibit HL-60 | Tonkinensisol (93) | In vitro | IC50 = 36.48 μg/mL | [15] |
Sophoranol (5) | In vitro | 10.00 µg/mL | [83] | |
13,14-Dehydrosophoranol (24) | In vitro | 1.00 µg/m L | [83] | |
Inhibit HepG2 | Tonkinensine C (73) | In vitro | IC50 = 87.4 ± 7.1 µM | [1] |
Perlolyrine (74) | In vitro | IC50 = 91.8 ± 3.5 µM | [1] | |
Harmine (72) | In vitro | IC50 = 48.9 ± 5.2 µM | [1] | |
Alkaloids | In vitro | IC50 = 9.04 g/L | [84] | |
Non-alkaloids extract of roots | In vitro | IC50 = 0.98 g/L | [84] | |
Water extracts of roots | In vitro | 6.5 µg/µL | [82] | |
Inhibit SH-SY5Y | Sophoranone (120) | In vitro | IC50 = 18.49 µM | [85] |
Matrine (1) | In vitro | IC50 = 60.81 µM | [85] | |
Oxymatrine (4) | In vitro | IC50 = 42.56 µM | [85] | |
(−)-Trifolirhizin (190) | In vitro | IC50 = 72.11 µM | [85] | |
(−)-Maackiain (168) | In vitro | IC50 = 65.62 µM | [85] | |
Inhibit B16-BL6 | Extract of roots | In vitro | 400 µg/mL | [86] |
Inhibit CNE-1, CNE-2 | Chloroform extract of roots | In vitro | 25 µg/mL | [87] |
Inhibit U937 | Sophoranone (120) | In vitro | IC50 = 3.8 ± 0.9 µM | [88] |
Inhibit HeLa | Tonkinensine B (59) | In vitro | IC50 = 24.3± 0.3 µM | [25] |
Inhibit MDA-MB-231 | Tonkinensine B (59) | In vitro | IC50 = 48.9± 0.5 µM | [25] |
Water extract of roots | In vitro | 6.5 µg/µL | [82] | |
Inhibit ESC solid tumor cell | Total alkaloids of roots | In vivo | 100 mg/kg | [89] |
Inhibit H22 ascites tumor cells | Total alkaloids of roots | In vivo | 100 mg/kg | [89] |
Inhibit S180 solid tumor cell | Total alkaloids of roots | In vivo | 75 mg/kg | [89] |
Inhibit BV2 glioma cell lines | Sophotokin (174) | In vitro | 10 µM | [34] |
Maackiain (168) | In vitro | 10 µM | [34] | |
Medicarpin (176) | In vitro | 10 µM | [34] | |
Inhibit Hep3B and KG-1 cells | Water extract of roots | In vitro | 6.5 µg/µL | [82] |
Decrease the number of cancer nodules in tumor tissue and reduce AFP in serum | Alkaloids extract of roots | In vivo | 0.036 g/kg | [90] |
Effects on the liver | ||||
Protect HepG2 cell against acetaminophen (APAP)- induced damage | 4-Methoxybenzamide (252) | In vitro | 10 µmol/L | [64] |
7,3’-Dihydroxy-8,4’-dimethoxyisoflavone (104) | In vitro | 10 µmol/L | [64] | |
7,4’-Dihydroxy-3’-methoxyisoflavone (102) | In vitro | 10 µmol/L | [64] | |
(±)-3-(p-Methoxyphenyl)-1,2-propanediol (255) | In vitro | 10 µmol/L | [64] | |
Enhance L-02 hepatocytes | Matrine (1) | In vivo and vitro | 10 µM | [91] |
Oxymatrine (4) | In vivo and vitro | 10 µM | [91] | |
Increase SOD and GSH | Non-alkaloids extract of roots | In vivo | 400 mg/kg | [13] |
Water extract of roots | In vivo | 400 mg/kg | [13] | |
Increase ALT and AST | Water extract of roots | In vivo | 0.59 g/kg | [92] |
Increase CPT 1A activity | Water extract of roots | In vivo | 25 μg/mL | [91] |
Reduce nonestesterified fatty acid Induce cellular lipids accumulation in hepatocytes | Matrine (1) | In vivo | 10 µM | [91] |
Oxymatrine (4) | In vivo | 10 µM | [91] | |
Reduce immune liver injury | Oxymatrine (4) | In vivo | 60 mg/kg | [93] |
Sophocarpine (34) | In vivo | 60 mg/kg | [93] | |
Oxymatrine (4) | In vivo | 120 mg/kg | [94] | |
Inhibite acetaminophen-induced hepatic oxidative damage in mice | STRP1 (Polysaccharide part) | In vivo | 200 mg/kg | [95] |
STRP2 (Polysaccharide part) | In vivo | 200 mg/kg | [95] | |
Alleviate non-alcoholic fatty liver disease of mice | Water extract of roots | In vivo | 90 mg/kg | [91] |
Inhibit the production of tyrosinase | Formononetin-7-O-β-D-glucoside(116) | In vitro | IC50 = (7.82 ± 0.28) × 10−4 mol/L | [43] |
Tectorigenin (112) | In vitro | IC50 = (3.73 ± 0.45) × 10−4 mol/L | [43] | |
8-Prenylkeamferol (91) | In vitro | IC50 = (1.58 ± 0.31) × 10−5 mol/L | [43] | |
Reduce AST and ALT | Oxymatrine (4) | In vivo | 120 mg/kg | [93] |
Sophocarpine (34) | In vivo | 120 mg/kg | [93] | |
Water extract of roots | In vivo | 0.25 g/kg | [96] | |
Reduce AST | Non-alkaloid extract of roots | In vivo | 100 mg/kg | [13] |
Water extract of roots | In vivo | 200 mg/kg | [13] | |
Reduce ALT | Non-alkaloid extracts of roots | In vivo | 400 mg/kg | [13] |
Water extract of roots | In vivo | 200 mg/kg | [13] | |
Anti-viral activity | ||||
Anti-Coxsackie virus B3 | (−)-12β-Hydroxyoxysophocarpine (18) | In vitro | IC50 = 26.62 µM | [14] |
(−)-9α-Hydroxysophocarpine (25) | In vitro | IC50 = 197.22 µM | [14] | |
(+)-Sophoranol (5) | In vitro | IC50 = 252.18 µM | [14] | |
(−)-14β-Hydroxymatrine (28) | In vitro | IC50 = 184.14 µM | [14] | |
3-(4-Hydroxyphenyl)- 4- (3- methoxy- 4-hydroxyphenyl)-3,4-dehydroquinolizidine (75) | In vitro | IC50 = 6.40 µM | [26] | |
Cermizine C (70) | In vitro | IC50 = 3.25 µM | [26] | |
Jussiaeiine A (68) | In vitro | IC50 = 4.66 µM | [26] | |
Jussiaeiine B (67) | In vitro | IC50 = 3.21 µM | [26] | |
(+)-5α-Hydroxyoxysophocarpine (17) | In vitro | IC50 = 0.12 µM | [26] | |
(−)-12β-Hydroxyoxysophocarpine (18) | In vitro | IC50 = 0.23 µM | [26] | |
(−)-Clathrotropine (64) | In vitro | IC50 = 1.60 µM | [26] | |
Anti-tobacco mosaic virus (TMV) | Sophtonseedlin B (188) | In vitro | 100 µg/mL | [56] |
(−)-Trifolirhizin (190) | In vitro | 100 µg/mL | [56] | |
Sophtonseedline B (21) | In vitro | 100 µg/mL | [19] | |
Sophtonseedline D (23) | In vitro | 100 µg/mL | [19] | |
Sophtonseedline F (8) | In vitro | 100 µg/mL | [19] | |
(−)-N-Formylcytisine (52) | In vitro | 100 µg/mL | [19] | |
Alkaloid extracts of seeds | In vitro | 0.5 mg/mL | [19] | |
Methanol extracts of seeds | In vitro | 0.5 mg/mL | [19] | |
Anti-hepatitis B virus (HBV) | (+)-Oxysophocarpine (20) | In vitro | 0.4 µmol/mL | [20] |
(−)-Sophocarpine (34) | In vitro | 0.4 µmol/mL | [20] | |
(+)-Lehmannine (14) | In vitro | 0.4 µmol/mL | [20] | |
(−)-13,14-Dehydrosophoridine (16) | In vitro | 1.6 µmol/mL | [20] | |
(−) -14β-Hydroxyoxymatrine (6) | In vitro | 0.4 µmol/mL | [18] | |
(+)-Sophoranol (5) | In vitro | 0.2 µmol/mL | [18] | |
(−)-Cytisine (50) | In vitro | 0.2 µmol/mL | [18] | |
Anti-mouse hepatitis virus | Methanol extracts of plant | In vitro | EC50 = 27.5 ± 1.1 µg/mL | [97] |
Inhibited influenza virus A/Hanfang/359/95 | (+)-12α-Hydroxysophocarpine (15) | In vitro | IC50 = 84.70 µM | [14] |
(−)-12β-Hydroxysophocarpine (19) | In vitro | IC50 = 242.46 µM | [14] | |
(+)-Sophoramine (49) | In vitro | IC50 = 63.07 µM | [14] | |
Anti-oxidant capacity | ||||
ABTS free radical scavenging ability | Chloroform extract of roots | In vitro | EC50 = 1.08 mg/mL | [98] |
Ethyl acetate extract of roots | In vitro | EC50 = 0.55 mg/mL | [98] | |
N-butanol extract of roots | In vitro | EC50 = 1.27 mg/mL | [98] | |
Ethanol extract of roots | In vitro | EC50 = 3.08 mg/mL | [98] | |
Shandougenines A (263) | In vitro | IC50 = 0.532 ± 0.076 mM | [40] | |
Shandougenines B (264) | In vitro | IC50 = 0.18 ± 0.032 mM | [40] | |
Bolusanthin IV (261) | In vitro | IC50 = 0.3 ± 0.025 mM | [40] | |
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260) | In vitro | IC50 = 0.726 ± 0.041 mM | [40] | |
Shandougenine C (127) | In vitro | IC50 = 0.382 ± 0.055 mM | [40] | |
Shandougenine D (128) | In vitro | IC50 = 0.341 ± 0.058 mM | [40] | |
Demethylmedicarpin (179) | In vitro | IC50 = 0.503 ± 0.036 mM | [40] | |
Scavenging of DPPH radicals | Ethyl acetate extract of roots | In vitro | 0.5 mg/mL | [98] |
Ethanol extract of roots | In vitro | 0.5 mg/mL | [98] | |
Chloroform extract of roots | In vitro | 0.5 mg/mL | [98] | |
N-butanol extract of roots | In vitro | 0.5 mg/mL | [98] | |
Water extract of aerial parts | In vitro | IC50 = 0.1434 g/L | [17] | |
N-butyl alcohol extract of aerial parts | In vitro | IC50 = 0.0754 g/L | [17] | |
Ethyl acetate extract of aerial parts | In vitro | IC50 = 0.0693 g/L | [17] | |
Dichloromethane of aerial parts | In vitro | IC50 = 0.0494 g/L | [17] | |
Petroleum ether extract of aerial parts | In vitro | IC50 = 0.1218 g/L | [17] | |
STRP1 (Polysaccharide part) | In vitro | 1.0 mg/mL | [95] | |
STRP2 (Polysaccharide part) | In vitro | 1.0 mg/mL | [95] | |
Tonkinensisol (93) | In vitro | IC50 = 0.616 ± 0.021 mM | [40] | |
Bolusanthin IV (261) | In vitro | IC50 = 0.502 ± 0.101 mM | [40] | |
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260) | In vitro | IC50 = 0.527 ± 0.054 mM | [40] | |
Shandougenines A (263) | In vitro | IC50 = 1.213 ± 0.101 mM | [40] | |
Shandougenines B (264) | In vitro | IC50 = 0.327 ± 0.022 mM | [40] | |
WRSP-A2b (Polysaccharide part) | In vitro | IC50 = 19.95 ± 0.25 mg/mL | [99] | |
WRSP-A3a (Polysaccharide part) | In vitro | IC50 = 5.99 ± 0.20 mg/mL | [99] | |
Reducing power | Chloroform extract of roots | In vitro | EC50 = 0.60 mg/mL | [98] |
Ethyl acetate extract of roots | In vitro | EC50 = 0.64 mg/mL | [98] | |
N-butanol extract of roots | In vitro | EC50 = 0.51 mg/mL | [98] | |
Ethanol extract of roots | In vitro | EC50 = 0.84 mg/mL | [98] | |
Hydroxyl radical scavenging ability | Chloroform extract of roots | In vitro | EC50 = 1.33 mg/mL | [98] |
Ethyl acetate extract of roots | In vitro | EC50 = 2.80 mg/mL | [98] | |
N-butanol extract of roots | In vitro | EC50 = 5.00 mg/mL | [98] | |
WRSP-A2b (Polysaccharide part) | In vitro | IC50 = 19.78 ± 0.47 mg/mL | [99] | |
WRSP-A3a (Polysaccharide part) | In vitro | IC50 = 8.38 ± 0.18 mg/mL | [99] | |
Superoxide anion radical scavenging ability | WRSP-A2b (Polysaccharide part) | In vitro | IC50 = 4.24 ± 0.11 mg/mL | [99] |
WRSP-A3a (Polysaccharide part) | In vitro | IC50 = 1.94 ± 0.05 mg/mL | [99] | |
Toxicity | ||||
Respiratory depression, muscle fibrillation, convulsions, spasms, and death | Hydroalcoholic extract from the roots | Mice (i.g.) | LD50 = 9.802 ± 2.0067 g/kg | [100] |
Convulsions, hair erection, rapid abdominal contraction and excitement, depression, abdominal breathing and eye closure, and death | (−)- Cytisine (50) | Mice (i.g.) | LD50 = 48.16 mg/kg | [101] |
Irritability, hyperactivity, shortness of breath, and convulsions | Water extract of roots | Mice (i.g.) | LD50 = 17.469 g/kg | [102] |
90% Ethanol extract of roots | Mice (i.g.) | LD50 = 27.135 g/kg | [102] | |
Alkaloids of roots | Mice (i.g.) | LD50 = 13.399 g/kg | [102] | |
Water and 70% Ethanol extract mixture of roots | Mice (i.g.) | MTD = 36 g/kg | [103] | |
All-component of of roots | Mice (i.g.) | MTD = 10.68 g/kg | [102] | |
Slow heartbeat, bent trunk of zebrafish, accelerated movement frequency, and abnormal movement track, Hepato renal, pericardial enlargement, death. | Sophoranone (120) | Zebrafish (p.o.) | LC50 = 22.45 µmol/L | [104] |
To cause hepatomegaly | Sophoranone (120) | Zebrafish (p.o.) | 3.86 µmol/L | [104] |
The zebrafish liver lost transparency and became dark or brown, and liver blood flow was no longer observable | Dealkalized water extract of roots | Zebrafish (p.o.) | LC10 = 1009.1 µg/mL | [105] |
Ethanol sedimentation extract of roots | Zebrafish (p.o.) | LC10 = 4367.6 µg/mL | [105] | |
N-Butyl ethanol extract of roots | Zebrafish (p.o.) | MNLC = 700.0 µg/mL | [105] | |
Slowed heart rate, reduced blood flow, and absence of circulation in the cardiotoxic phenotype, neurotoxic, and presents with behavioral abnormalities, bent trunk. | Sophoranone (120) | Zebrafish (p.o.) | 11.59 µmol/L | [104] |
Induced pericardial edema and slowed the blood circulation, heart rate lower | Diethyl ether extract of roots | Zebrafish (p.o.) | LC10 = 93.6 µg/mL | [105] |
N-Butyl ethanol extract of roots | Zebrafish (p.o.) | LC10 = 538.3 µg/mL | [105] | |
Pericardial edema, a misshaped atrium and ventricle as well as reduced number of endothelial cells and cardiomyocytes | Dichloromethane extract of roots | Zebrafish (p.o.) | MNLC = 450.0 µg/mL | [105] |
Delayed yolk sac resorption in the hepatotoxic phenotype and Intestinal dysplasia | Sophoranone (120) | Zebrafish (p.o.) | 1.29 µmol/L | [104] |
To cause renal and pericardial edema | Sophoranone (120) | Zebrafish (p.o.) | 15.57 µmol/L | [104] |
Other pharmacological activities | ||||
Inhibit Pseudomonas aeruginosa | 2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259) | In vitro | MIC = 125.0 µg/mL | [16] |
Genistin (115) | In vitro | MIC = 15.6 µg/mL | [16] | |
Inhibit Bacillus megaterium | 2-Methoxy-6-methyl-1,4-benzoquinone (277) | In vitro | MIC = 3.125 µg/mL | [65] |
Xylariphilone (282) | In vitro | MIC = 12.5 µg/mL | [65] | |
Xylarphthalide A (283) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Carboxylmellein (280) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Methylmellein (281) | In vitro | MIC = 25 µg/mL | [67] | |
Inhibit Escherichia coli | Lanatine A (65) | In vitro | MIC = 1.0 g/L | [26] |
Jussiaeiines A (68) | In vitro | MIC = 3.2 g/L | [26] | |
Jussiaeiines B (67) | In vitro | MIC = 0.8 g/L | [26] | |
(−)-5-Carboxylmellein (280) | In vitro | MIC = 25 µg/mL | [67] | |
21-Acetoxycytochalasin J3 (304) | In vitro | MIC = 12.5 µg/mL | [71] | |
2-(2’,4’-Dihydroxy)-5,6-dioxomethylbenzofuran (260) | In vitro | MIC = 31.3 µg/mL | [16] | |
Xylarphthalide A (283) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Methylmellein (281) | In vitro | MIC = 25 µg/mL | [67] | |
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286) | In vitro | MIC = 50 µg/mL | [106] | |
Inhibit Staphylococcus aureus | 3-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl) -3,4-dehydroquinolizidine (75) | In vitro | MIC = 8.0 g/L | [26] |
Cermizines C (70) | In vitro | MIC = 3.5 g/L | [26] | |
Jussiaeiines B (67) | In vitro | MIC = 6.0 g/L | [26] | |
Cytochalasin K (311) | In vitro | MIC = 12.5 µg/mL | [65] | |
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286) | In vitro | MIC = 50 µg/mL | [106] | |
(−) -N-methylcytisine (54) | In vitro | MIC = 12.0 g/L | [26] | |
Xylarphthalide A (283) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Carboxylmellein (280) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Methylmellein (281) | In vitro | MIC = 12.5 µg/mL | [67] | |
Cytochalasin K (311) | In vitro | MIC = 12.5 µg/mL | [65] | |
2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259) | In vitro | MIC = 62.5 µg/mL | [16] | |
Ethyl acetate extract of roots | In vitro | MIC = 0.313 mg/mL | [98] | |
Inhibit Shigella dysenteriae | Xylarphthalide A (283) | In vitro | MIC = 25 µg/mL | [67] |
(−)-5-Methylmellein (281) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) | In vitro | MIC = 12.5 µg/mL | [69] | |
Inhibit Proteus vulgaris | Xylareremophil (287) | In vitro | MIC = 25 µg/mL | [68] |
Mairetolide G (291) | In vitro | MIC = 25 µg/mL | [68] | |
Inhibit Micrococcus luteus | Mairetolide G (291) | In vitro | MIC = 50 µg/mL | [68] |
Mairetolide B (290) | In vitro | MIC = 50 µg/mL | [68] | |
Xylareremophil (287) | In vitro | MIC = 25 µg/mL | [68] | |
Inhibit Micrococcus lysodeikticus | Mairetolide B (290) | In vitro | MIC = 100 µg/ml | [68] |
Mairetolide G (291) | In vitro | MIC = 100 µg/mL | [68] | |
Xylareremophil (287) | In vitro | MIC = 100 µg/mL | [68] | |
Inhibit Bacillus subtilis | (−)-5-Carboxylmellein (280) | In vitro | MIC = 12.5 µg/mL | [67] |
Mairetolide B (290) | In vitro | MIC = 100 µg/mL | [68] | |
Mairetolide G (291) | In vitro | MIC = 100 µg/mL | [68] | |
Xylarphthalide A (283) | In vitro | MIC = 25 µg/mL | [67] | |
(−)-5-Methylmellein (281) | In vitro | MIC = 12.5 µg/mL | [67] | |
Xylapeptide A (301) | In vitro | MIC = 12.5 µg/mL | [70] | |
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) | In vitro | MIC = 25 µg/mL | [69] | |
Xylareremophil (287) | In vitro | MIC = 100 µg/mL | [68] | |
Inhibit Bacillus anthracis | (−)-5-Carboxylmellein (280) | In vitro | MIC = 25 µg/mL | [67] |
21-Acetoxycytochalasin J3 (304) | In vitro | MIC = 12.5 µg/mL | [71] | |
Inhibit Alternaria oleracea | Cytochalasin E (310) | In vitro | MIC = 3.125 µg/mL | [71] |
Cytochalasin H (306) | In vitro | MIC = 6.25 µg/mL | [71] | |
Inhibit Colletotrichum capsici | Cytochalasin E (310) | In vitro | MIC = 1.56 µg/mL | [71] |
Cytochalasin H (306) | In vitro | MIC = 6.25 µg/mL | [71] | |
Inhibit Pestalotiopsis theae | Cytochalasin E (310) | In vitro | MIC = 1.56 µg/mL | [71] |
Cytochalasin H (306) | In vitro | MIC = 12.5 µg/mL | [71] | |
Inhibit Enterobacter areogenes | (−)-3-Carboxypropyl-7-hydroxyphthalide methyl ester (294) | In vitro | MIC = 12.5 µg/mL | [69] |
(−)-3-Carboxypropyl-7-hydroxyphthalide (293) | In vitro | MIC = 12.5 µg/mL | [69] | |
Inhibit Colletotriehum gloeosporioides | Methanol extract of roots | In vitro | EC50 = 1.214 mg/mLMIC = 2.5 mg/mL | [107] |
Inhibit Fusarium solani | Methanol extract of roots | In vitro | EC50 = 1.169 mg/mLMIC = 2.5 mg/mL | [107] |
Inhibit Ceratocystis paradoxa | Cytochalasin H (306) | In vitro | MIC = 25 µg/mL | [71] |
Inhibit Bacillus cereus | Xylapeptide A (301) | In vitro | MIC = 12.5 µg/mL | [70] |
Moderate activities against Aphis fabae | Sophtonseedline G (9) | In vivo | LC50 = 38.29 mg/L | [19] |
Matrine (1) | In vivo | LC50 = 18.63 mg/L | [19] | |
(−)-N-Formylcytisine (52) | In vivo | LC50 = 23.74 mg/L | [19] | |
Decreased fasting blood glucose levels | Matrine (1) | In vivo | 2.5 mg/kg | [108] |
Ethyl acetate extract of roots | In vivo | 60 mg/kg | [33] | |
alleviate insulin resistance | Ethyl acetate extract of roots | In vivo | 60 mg/kg | [33] |
Matrine (1) | In vivo | 10 mg/kg | [108] | |
Inhibit 5-lipoxygenase | 50 % (v/v) Ethanol–water mixture | In vitro | IC50 = 1.61 µg/mL | [76] |
Maackiain (168) | In vitro | IC50 = 7.9 µM | [76] | |
Sophoranone (120) | In vitro | IC50 = 1.6 µM | [76] | |
Inhibit thromboxane synthase | 50 % (v/v) Ethanol–water mixture | In vitro | IC50 = 5.56 µg/mL | [76] |
Inhibit butyrylcholinesterase | Ethanol extract of roots | In vitro | IC50 = 15. 169 µg/mL | [109] |
3.2. Anti-Tumor Effect
The anti-tumor effect was one of the most reported activities of S. tonkinensis (Table 2). The chloroform extracts of S. tonkinensis have been discovered its inhibitory effect on cell viability and clonal growth in a dose-dependent manner [87]. Meanwhile, the extracts of S. tonkinensis also have been reported the inhibit ability target the proliferation, adhesion, invasion, and metastasis of mouse melanoma cells [86]. The anticancer activities of compounds have also been reported [38]. The natural compounds from S. tonkinensis exhibited inhibitory effects against different tumor cells. The growth-inhibitory and apoptosis-inducing activities of sophoranone (120) for leukemia U937 cells were investigated [88].
3.3. Hepatoprotective
The components of S. tonkinensis were reported significant protective effects against immune induced liver injury (Table 2). Previous works suggested that the nonalkaloid constituents of S. tonkinensis obviously reduced the alanine aminotransferase (ALT), aspartate aminotransferase (AST) serum, malondialdehyde (MDA), and nitric oxide (NO), as well as increased the superoxide dismutase (SOD) and glutathione (GSH) in mice with immune-induced liver injury [13]. The water extract of S. tonkinensis alleviated hepatic inflammation, liver fibrosis, and hepatic lipids accumulation [91]. Compounds matrine (1) and oxymatrine (4) may be the main components contributing to the lipid-lowering activity of the water extract of S. tonkinensis [91]. Meanwhile, two purified polysaccharide fractions (STRP1 and STRP2) from the roots of S. tonkinensis have been reported to attenuate hepatic oxidative damage in vivo [95]. In addition, some compounds, including sophocarpine (34) from S. tonkinensis have been reported to significantly improve liver injury in mice [93].
3.4. Anti-Viral Activity
The compounds isolated from S. tonkinensis (Table 2), such as 3-(4-Hydroxyphenyl)-4-(3-methoxy-4- hydroxyphenyl)-3,4-dehydroquinolizidine (75), cermizine C (70), jussiaeiine A (68), jussiaeiine B (67), (+)-5α-hydroxyoxysophocarpine (17), (−)-12β- hydroxyoxysophocarpine (18), and (−)-clathrotropine (64), have reported the anti-coxsackie virus B3 (CVB3) activities with IC50 values rang of 0.12~6.40 µmol/L [26]. The compounds sophtonseedline B (188) and (−)-trifolirhizin (190) from S. tonkinensis exhibited anti-tobacco mosaic virus (TMV) activities with the inhibition rates of 69.62% and 68.72%, respectively, at a concentration of 100 µg/mL [56]. The other compounds, including sophtonseedline D (23), sophtonseedline F (8), and (−)-N-formylcytisine (52), have been reported to have anti-TMV activities as well [19]. In addition to TMV, compounds (+)-oxysophocarpine (20), (−)-sophocarpine (34), and (−)-13,14-Dehydrosophoridine (16) have showed anti-HBV activities [20].
3.5. Anti-Antioxidant Activities
The antioxidant activities of chloroform, ethyl acetate, N-butanol, and ethanol extracts of S. tonkinensis have been tested (Table 2). The results of DPPH, ABTS, and OH radical scavenging assay showed that all extracts exhibited antioxidant activities [98]. Some compounds from S. tonkinensis exhibited antioxidant activities. It is noteworthy that shandougenine A (263), shandougenine C (127), shandougenine D (128), and 7,4’-Dihydroxyisoflavone (103) showed stronger superoxide anion radical scavenging capacity than the known flavanone luteolin. Shandougenines B (264) showed DPPH free radical and ABTS cation radical scavenging capacity. Shandougenine A (263), shandougenine C (127), shandougenine D (128), bolusanthin IV (261), 2-(2’,4’-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260), and demethylmedicarpin (179) were reported parallel ABTS cation radical scavenging capacity to the positive control [40].
3.6. Toxicity
The roots of S. tonkinensis were the famous toxic Miao drug (Table 2) and were named Shan Dou Gen or Guang Dou Gen [4,110]. The aqueous and alcoholic parts of S. tonkinensis caused obvious liver damage in mice, which could result in both the alteration of liver function and the organelle damage of hepatocytes [111,112]. Meanwhile, the extracts of S. tonkinensis exhibited pulmonary toxicity, which may trigger pulmonary cancer, dyspnea, and oxidative stress [113]. The obvious toxicity of sophoranone (120) to zebrafish was mainly characterized as hepatotoxicity, neurotoxicity, cardiovascular toxicity, and nephrotoxicity in the acute toxicity model [104]. Besides, the alkaloids matrine (1), oxymatrine (4), cytisine (50), and sophocarpine (34) of S. tonkinensis showed significant cardiotoxicity [114].
3.7. Other Pharmacological Activities
The extracts of S. tonkinensis have the ability to reduce blood glucose and resist microbial activities (Table 2, Figure 2). Cytochalasin E (310) and H (306) inhibit a variety of plant pathogens [71]. The flavonoid-rich extracts of S. tonkinensis administrated orally to mice significantly increased sensibility to insulin, as well as reduced fasting blood-glucose levels [33]. Moreover, matrine (1) from S. tonkinensis could improve glucose metabolism and increased insulin secretion in diabetic mice, which may be used as a potential drug for diabetes treatment [108]. Methanol extracts of S. tonkinensis exhibited antidiarrheal activities [115]. Moreover, diverse anti-microbial activities of compounds from S. tonkinensis and its endophytic fungi have been reported [26,67].
4. Conclusion and Future Prospective
In this review, we provide a detailed summary of the medicinal chemistry, pharmacological activities, and related toxicity research of S. tonkinensis. Structurally, more than 300 compounds have been isolated from S. tonkinensis and its endophytic fungi, including alkaloids, triterpenes and triterpenoid saponins, flavonoids, and so on. Some of the star molecules, including matrine (1) and oxymatrine (4), were documented to exhibit well biological activities [110]. For its pharmacological research, previous studies suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection diseases. It is generally believed that the alkaloid components of S. tonkinensis were the main active substances in the roots of S. tonkinensis [116]. Interestingly, the extracts of S. tonkinensis have been reported for hepatotoxicity, while the other related studies showed the opposite hepatoprotective effects. The in-depth toxicological or structure-activity relationship study may be worth for further research. Moreover, the roots of S. tonkinensis combined with other medicines form dozens of marketing Chinese patent medicine for the treatments of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. However, it is rare for its prescription pharmacological research in the treatment of upper respiratory tract diseases, especially works on the drug combination mechanism, which may need to be further developed.
Author Contributions
Resources, J.-J.L.; writing—original draft preparation, J.-J.L., P.-P.Z., and W.Z.; writing—review and editing, D.S., X.Y., Y.-Q.Z., and X.W.; project administration, X.W., X.P., and Y.Z.; funding acquisition, X.P. and Y.Z. All authors have read and agreed to the published version of the manuscript.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
Funding Statement
This research was funded by National Key Research and Development Program of China (2018YFC1708100), the Guiyang Science and Technology Planning Project (Zhu Ke He [2021]43-11), the National Natural Science Foundation of China (32000276), and the Doctoral Startup Funding of Guizhou University of Traditional Chinese Medicine ([2019]-17).
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Wu C., He L.J., Yi X., Qin J., Li Y.L., Zhang Y.B., Wang G.C. Three new alkaloids from the roots of Sophora tonkinensis. J. Nat. Med. 2019;73:667–671. doi: 10.1007/s11418-019-01313-8. [DOI] [PubMed] [Google Scholar]
- 2.Zhou Y.Q., Tan X.M., Wu Q.H., Ling Z.Z., Yu L.Y. A Survey of Original Plant of Radix et Rhizoma Sophora tonkinensis in Guangxi. Guangxi Sci. 2010;17:259–262. [Google Scholar]
- 3.Zou L., Zhao H.J., Li N., Zhao M.Y., Sun N., Song C. Herbal Textual Research and Toxicity Analysis of Radix Sophora tonkinensis. Mod. Tradit. Chin. Med. 2021;41:19–23. [Google Scholar]
- 4.Lu L.F., Lin M.Y., Huang S.Y., Yu Q.R., Li T.S. Research Progress of Characteristic National Medicine of Youjiang River Basin in Ethnic Minority Areas. Chin. J. Exp. Tradit. Med. Formulae. 2018;24:191–200. [Google Scholar]
- 5.Lan Y.S., Yang R.Y., Li Y., Guan H.B., Chu L.M. The Progress of Research on Chemical Composition and Pharmacological Activity in Sophora Tonkinensis. J. Chuzhou. Univ. 2010;12:48–51. [Google Scholar]
- 6.Cai J., Ma J., Xu K., Gao G., Xiang Y., Lin C. Effect of Radix Sophora Tonkinensis on the activity of cytochrome P450 isoforms in rats. Int. J. Clin. Exp. Med. 2015;8:9737–9743. [PMC free article] [PubMed] [Google Scholar]
- 7.Li Y.X., Wei H.L. Antitumor Effects of Ethanol Extract of Sophora tonkinensis on Lewis Lung Cancer Mice. J. Shaanxi Univ. Chin. Med. 2021;44:86–91. [Google Scholar]
- 8.Huang D.Z., Zhang Y.Q. Current and existing problems with the clinical application of Sophora Tonkinensis. Chin. J. Inform. TCM. 2005;12:52–53. [Google Scholar]
- 9.Sun J., Zhao R.H., Mao X., Guo S.S., Gao Y.J., Yao R.M., Dong X., Wu C.B., Cui X.L. Study on the Usage and Dosage of Kaihoujian Spray in the Treatment of Acute Pharyngitis. World.Chin. Med. 2019;14:577–580. [Google Scholar]
- 10.Dai D., Li Y.J., Zhang J. Clinical Observation of Shuyanqing Spray in Treatment of Acute and Chronic Pharyngitis after Radiotherapy and Chemotherapy. Chin. Arch. Tradit. Chin. Med. 2018;36:908–911. [Google Scholar]
- 11.Huang K.M., Shen Y.B. Clinical study of Guilin Xiguashuang in the treatment of acurate pharyngitis. China J. Tradit. Chin. Med. Pharm. 2012;27:2583–2584. [Google Scholar]
- 12.He L.J., Liu J.S., Luo D., Zheng Y.R., Zhang Y.B., Wang G.C., Li Y.L. Quinolizidine alkaloids from Sophora tonkinensis and their anti-inflammatory activities. Fitoterapia. 2019;139:104391. doi: 10.1016/j.fitote.2019.104391. [DOI] [PubMed] [Google Scholar]
- 13.Zhou M.M., Fan Z.Q., Zhao A.H., Zhu L., Jia W. Effects of nonalkaloid fractions of the roots of Sophora tonkinensis on mice in an immune induced liver injury model. Lishizhen Med. Mater. Med. Res. 2011;22:2709–2710. [Google Scholar]
- 14.Pan Q.M., Li Y.H., Hua J., Huang F.P., Wang H.S., Liang D. Antiviral Matrine-Type Alkaloids from the Rhizomes of Sophora tonkinensis. J. Nat. Prod. 2015;78:1683–1688. doi: 10.1021/acs.jnatprod.5b00325. [DOI] [PubMed] [Google Scholar]
- 15.Deng Y.H., Xu K.P., Zhou Y.J., Li F.S., Zeng G.Y., Tan G.S. A new flavonol from Sophora tonkinensis. J. Asian Nat. Prod. Res. 2007;9:45–48. doi: 10.1080/10286020500289634. [DOI] [PubMed] [Google Scholar]
- 16.Wei X., Zhang W., Ding C.F., Yu H.F., Zhang L.Y., Zhou Y. Chemical constituents from the N-butanol extract of Sophora tonkinensis and their antibacterial activities. Guihaia. 2021;41:1054–1060. [Google Scholar]
- 17.Liang S.L. Master’s Thesis. Guangxi University; Nanning, China: 2021. Chemical Constituents from the Aerial Part of Sophora tonkinensis and Their Activities. [Google Scholar]
- 18.Ding P.L., Huang H., Zhou P., Chen D.F. Quinolizidine alkaloids with anti-HBV activity from Sophora tonkinensis. Planta Med. 2006;72:854–856. doi: 10.1055/s-2006-946639. [DOI] [PubMed] [Google Scholar]
- 19.Zou J.B., Zhao L.H., Yi P., An Q., He L.X., Li Y.A., Lou H.Y., Yuan C.M., Gu W., Huang L.J., et al. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. J. Agric. Food Chem. 2020;68:15015–15026. doi: 10.1021/acs.jafc.0c06032. [DOI] [PubMed] [Google Scholar]
- 20.Ding P.L., Liao Z.X., Huang H., Zhou P., Chen D.F. (+)-12 alpha-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg. Med. Chem. Lett. 2006;16:1231–1235. doi: 10.1016/j.bmcl.2005.11.073. [DOI] [PubMed] [Google Scholar]
- 21.Xiao P., Kubo H., Komiya H., Higashiyama K., Yan Y., Li J.S., Ohmiya S. (−)-14β-acetoxymatrine and (+)-14α-acetoxymatrine, two new matrine-type lupin alkaloids from the leaves of Sophora tonkinensis. Chem. Pharm. Bull. (Tokyo) 1999;47:448–450. doi: 10.1248/cpb.47.448. [DOI] [Google Scholar]
- 22.Xiao P., Li J.S., Hajime K., Saito K., Murakoshi I., Ohmiya S. (−)-14β-Hydroxymatrine, a New Lupine Alkaloid from the Roots of Sophora tonkinensis. Chem. Pharm. Bull. 1996;44:1951–1953. doi: 10.1248/cpb.44.1951. [DOI] [Google Scholar]
- 23.Tang Q., Luo D., Lin D.C., Wang W.Z., Li C.J., Zhuo X.F., Wu Z.N., Zhang Y.B., Wang G.C., Li Y.L. Five matrine-type alkaloids from Sophora tonkinensis. J. Nat. Med. 2021;75:682–687. doi: 10.1007/s11418-021-01498-x. [DOI] [PubMed] [Google Scholar]
- 24.Pan Q.M., Zhang G.J., Huang R.Z., Pan Y.M., Wang H.S., Liang D. Cytisine-type alkaloids and flavonoids from the rhizomes of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2016;18:429–435. doi: 10.1080/10286020.2015.1131680. [DOI] [PubMed] [Google Scholar]
- 25.Li X.N., Lu Z.Q., Qin S., Yan H.X., Yang M., Guan S.H., Liu X., Hua H.M., Wu L.J., Guo D.A. Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis. Tetrahedron Lett. 2008;49:3797–3801. doi: 10.1016/j.tetlet.2008.04.003. [DOI] [Google Scholar]
- 26.Yan Z., Hu W.Z., Chen X.Z., Peng Y.B., Shi Y.S. Bioactive quinolizidine alkaloids from Sophora tonkinensis. China J. Chin. Mater. Med. 2016;41:2261–2266. doi: 10.4268/cjcmm20161215. [DOI] [PubMed] [Google Scholar]
- 27.Pan Q.M., Huang R.Z., Pan Y.M., Wang H.S., Liang D. Studies on chemical constituents of rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2016;41:96–100. doi: 10.4268/cjcmm20160119. [DOI] [PubMed] [Google Scholar]
- 28.Lee J.W., Lee J.H., Lee C., Jin Q.H., Lee D., Kim Y., Hong J.T., Lee M.K., Hwang B.Y. Inhibitory constituents of Sophora tonkinensis on nitric oxide production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2015;25:960–962. doi: 10.1016/j.bmcl.2014.12.012. [DOI] [PubMed] [Google Scholar]
- 29.Hu W.Z., Hou M.Y., Corzo N., Olano A., Villamiel M. Phytochemical Constituents of the Rhizomes of Sophora tonkinensis. Indian J. Pharm. Sci. 2018;111:8–9. [Google Scholar]
- 30.Cheng Q., Wang J.F., Wang B.L., Dai Y.H., Xu K.X., Jia Z.Y., Li P., Ma Z.Q., Lin R.C. Research Progress in Chemical Components, Bioactivity and Quality Control of Radix et Rhizoma Sophora Tonkinensis. J. Liaoning Univ. Tradit. Chin. Med. 2017;19:119–125. [Google Scholar]
- 31.Hou M.Y., Hu W.Z., Hao K.X., Xiu Z.L. Flavonoids and phenolic acids from the roots of Sophora tonkinensis Gagnep. Biochem. Syst. Ecol. 2020;89:104011. doi: 10.1016/j.bse.2020.104011. [DOI] [Google Scholar]
- 32.Shirataki Y., Yokoe I., Komatsu M. Two New Flavone Glycosides from the Roots of Sophora subprostrata. J. Nat. Prod. 1986;49:645–649. doi: 10.1021/np50046a014. [DOI] [Google Scholar]
- 33.Huang M., Deng S.H., Han Q.Q., Zhao P., Zhou Q., Zheng S.J., Ma X.H., Xu C., Yang J., Yang X.Z. Hypoglycemic Activity and the Potential Mechanism of the Flavonoid Rich Extract from Sophora tonkinensis Gagnep. in KK-Ay Mice. Front. Pharmacol. 2016;7:288. doi: 10.3389/fphar.2016.00288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Xia W.J., Luo P., Hua P., Ding P., Li C.J., Xu J., Zhou H.H., Gu Q. Discovery of a New Pterocarpan-Type Antineuroinflammatory Compound from Sophora tonkinensis through Suppression of the TLR4/NF kappa B/MAPK Signaling Pathway with PU.1 as a Potential Target. ACS Chem. Neurosci. 2019;10:295–303. doi: 10.1021/acschemneuro.8b00243. [DOI] [PubMed] [Google Scholar]
- 35.Li X.G., Yan H.X., Pang X.Y., Sha N., Hua H.M., Wu L.J., Guo D.A. Chemical constituents of flavonoids from rhizome of Sophora tonkinensis. China J. Chin. Mater. Med. 2009;34:282–285. [PubMed] [Google Scholar]
- 36.He C.M., Cheng Z.H., Chen D.F. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med. 2013;11:690–698. doi: 10.3724/SP.J.1009.2013.00690. [DOI] [PubMed] [Google Scholar]
- 37.Jin X., Lu Y., Chen S.X., Chen D.F. UPLC-MS identification and anticomplement activity of the metabolites of Sophora tonkinensis flavonoids treated with human intestinal bacteria. J. Pharm. Biomed. Anal. 2020;184:113176. doi: 10.1016/j.jpba.2020.113176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Yang R.Y., Lan Y.S., Huang Z.J., Shao C.L., Liang H., Chen Z.F., Li J. Isoflavonoids from Sophora tonkinensis. Chem. Nat. Compd. 2012;48:674–676. doi: 10.1007/s10600-012-0345-7. [DOI] [Google Scholar]
- 39.Zhang W., Wei X., Zhang L.Y., Hu X.Y., Zhou Y.Q., Zhou Y. Chemical constituents of Sophora tonkinensis. Chem. Nat. Compd. 2020;56:1140–1142. doi: 10.1007/s10600-020-03248-z. [DOI] [Google Scholar]
- 40.Luo G.Y., Yang Y., Zhou M., Ye Q., Liu Y. Novel 2-arylbenzofuran dimers and polyisoprenylated flavanones from Sophora tonkinensis. Fitoterapia. 2014;99:21–27. doi: 10.1016/j.fitote.2014.08.019. [DOI] [PubMed] [Google Scholar]
- 41.Ding P.L., Chen D.F. Study on phenolic constituents of the Sophora tonkinensis. Chin. Tradit. Herb. Drugs. 2008;39:186–188. [Google Scholar]
- 42.Ahn J.M., Kim Y.M., Chae H.S., Choi Y.H., Ahn H.C., Yoo H., Kang M., Kim J., Chin Y.W. Prenylated flavonoids from the roots and rhizomes of Sophora tonkinensis and their effects on the expression of inflammatory mediators and proprotein convertase subtilisin/kexin type 9. J. Nat. Prod. 2019;82:309–317. doi: 10.1021/acs.jnatprod.8b00748. [DOI] [PubMed] [Google Scholar]
- 43.Yang B.Y., He R.J., Wang Y.F., Huang Y.L. Chemical constituents from the aerial part of Sophora tonkinensis and their tyrosinase inhibitory activity. Guihaia. 2022 doi: 10.11931/guihaia.gxzw202108051. [DOI] [Google Scholar]
- 44.Yang R.Y., Lan Y.S., Huang Z.J., Shao C.L., Liang H., Chen Z.F., Li J. A New Isoflavonolignan Glycoside from the Roots of Sophora tonkinensis. Rec. Nat. Prod. 2012;6:212–217. [Google Scholar]
- 45.Chae H.S., Yoo H., Kim Y.M., Choi Y.H., Lee C.H., Chin Y.W. Anti-inflammatory effects of 6,8-diprenyl-7,4′-dihydroxyflavanone from Sophora tonkinensis on lipopolysaccharide-stimulated RAW 264.7 cells. Molecules. 2016;21:1049. doi: 10.3390/molecules21081049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Li X.N., Sha N., Yan H.X., Pang X.Y., Guan S.H., Yang M., Hua H.M., Wu L.J., Guo D.A. Isoprenylated flavonoids from the roots of Sophora tonkinensis. Phytochem. Lett. 2008;1:163–167. doi: 10.1016/j.phytol.2008.08.001. [DOI] [Google Scholar]
- 47.Yoo H., Chae H.S., Kim Y.M., Kang M., Ryu K.H., Ahn H.C., Yoon K.D., Chin Y.W., Kim J. Flavonoids and arylbenzofurans from the rhizomes and roots of Sophora tonkinensis with IL-6 production inhibitory activity. Bioorg. Med. Chem. Lett. 2014;24:5644–5647. doi: 10.1016/j.bmcl.2014.10.077. [DOI] [PubMed] [Google Scholar]
- 48.Yang X.Z., Deng S.H., Huang M., Wang J.L., Chen L., Xiong M.R., Yang J., Zheng S.J., Ma X.H., Zhao P., et al. Chemical constituents from Sophora tonkinensis and their glucose transporter 4 translocation activities. Bioorg. Med. Chem. Lett. 2017;27:1463–1466. doi: 10.1016/j.bmcl.2017.01.078. [DOI] [PubMed] [Google Scholar]
- 49.Wang W., Nakashima K.-I., Hirai T., Inoue M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J. Nat. Med. 2019;73:154–162. doi: 10.1007/s11418-018-1257-z. [DOI] [PubMed] [Google Scholar]
- 50.Ding P.L., Chen D.F. Three cyclized isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta. 2007;90:2236–2244. doi: 10.1002/hlca.200790232. [DOI] [Google Scholar]
- 51.Inoue M., Tanabe H., Nakashima K., Ishida Y., Kotani H. Rexinoids Isolated from Sophora tonkinensis with a Gene Expression Profile Distinct from the Synthetic Rexinoid Bexarotene. J. Nat. Prod. 2014;77:1670–1677. doi: 10.1021/np5002016. [DOI] [PubMed] [Google Scholar]
- 52.Li X.N., Lu Z.Q., Chen G.T., Yan H.X., Sha N., Guan S.H., Yang M., Hua H.M., Wu L., Guo D.A. NMR spectral assignments of isoprenylated flavanones from Sophora tonkinensis. Magn. Reson. Chem. 2008;46:898–902. doi: 10.1002/mrc.2274. [DOI] [PubMed] [Google Scholar]
- 53.Ding P.L., Chen D.F. Isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta. 2006;89:103–110. doi: 10.1002/hlca.200690000. [DOI] [Google Scholar]
- 54.He C.M. Ph.D. Thesis. Fudan University; Shanghai, China: 2010. Comparative Studies on Flavonoids and Their Bioactivities of Sophora flavescens and Sophora tonkinensis. [Google Scholar]
- 55.Park J.A., Kim H.J., Jin C., Lee K.T., Yong S.L. A new pterocarpan, (−)-maackiain sulfate, from the roots of Sophora subprostrata. Arch. Pharm. Res. 2003;26:1009–1013. doi: 10.1007/BF02994750. [DOI] [PubMed] [Google Scholar]
- 56.Hu Z.X., Zou J.B., An Q., Yi P., Yuan C.M., Gu W., Huang L.J., Lou H.Y., Zhao L.H., Hao X.J. Anti-tobacco mosaic virus (TMV) activity of chemical constituents from the seeds of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2021;23:644–651. doi: 10.1080/10286020.2021.1886089. [DOI] [PubMed] [Google Scholar]
- 57.Chae H.S., Yoo H., Choi Y.H., Choi W.J., Chin Y.W. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways. Biol. Pharm. Bull. 2016;39:259–266. doi: 10.1248/bpb.b15-00680. [DOI] [PubMed] [Google Scholar]
- 58.Li X.N. Ph.D. Thesis. Shenyang Pharmaceutical University; Shenyang, China: 2009. Chemical Constituents of Sophora tonkinensis and Fragmentation Patterns ofthe Flavonoids in ESI Mass Spectrometry. [Google Scholar]
- 59.Takeshita T., Yokoyama K., Yi D., Kinjo J., Nohara T. Four new and twelve known sapogenols from Sophora Subprostrate Radix. Chem.pharm.bull. 1991;39:1908–1910. doi: 10.1248/cpb.39.1908. [DOI] [Google Scholar]
- 60.Long J.Q., Lin H., Yang X.D., Zhao J.F., Liang L.I. Study on the chemical constituents of Sophora tonkinensis from Guangxi. J. Yunnan Univ. Nat. Sci. Ed. 2011;33:72–76. [Google Scholar]
- 61.Ding Y., Takeshita T., Yokoyama K., Kinjo J., Nohara T. Triterpenoid Glycosides from Sophora Subprostratae Radix. Chem. Pharm. Bull. 1992;40:139–142. doi: 10.1248/cpb.40.139. [DOI] [Google Scholar]
- 62.Sakamoto S., Kuroyanagi M., Ueno A., Sekita S. Triterpenoid saponins from Sophora subprostrata. Phytochemistry. 1992;31:1339–1342. doi: 10.1016/0031-9422(92)80286-N. [DOI] [PubMed] [Google Scholar]
- 63.Ding Y., Tian R.H., Takeshita T., Kinjo J., Nohara T. Four new oleanene glycosides from Sophora Subprostratae Radix. III. Chem. Pharm. Bull. 1992;40:1831–1834. doi: 10.1248/cpb.40.1831. [DOI] [PubMed] [Google Scholar]
- 64.He H.K., Sun H., Yang S.L., Tian M.Y., Wang S.J. Studies on active aromatic constituents from rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2019;44:4481–4485. doi: 10.19540/j.cnki.cjcmm.20190520.202. [DOI] [PubMed] [Google Scholar]
- 65.Mo T.X., Liu X.B., Duan L.H., Zhang X.M., Xu Z.L., Qin X.Y., Li B.C., Li J., Yang R.Y. secondary metabolites of the endophytic fungus Xylaria sp.GDG-102 from Sophora tonkinensis. Chem. Nat. Compd. 2021;57:764–766. doi: 10.1007/s10600-021-03470-3. [DOI] [Google Scholar]
- 66.Xu Z.L., Cao S.M., Qin Y.Y., Mo T.X., Li B.C., Qin X.Y., Huang X.S., Li J., Yang R.Y. Chemical Constituents of the Endophytic Fungus Penicillium macrosclerotiorum from Sophora tonkinensis. Chem. Nat. Compd. 2021;57:542–544. doi: 10.1007/s10600-021-03409-8. [DOI] [Google Scholar]
- 67.Zheng N., Yao F.H., Liang X.F., Liu Q., Xu W.F., Liang Y., Liu X.B., Li J., Yang R.Y. A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2018;32:755–760. doi: 10.1080/14786419.2017.1311892. [DOI] [PubMed] [Google Scholar]
- 68.Liang Y., Xu W.F., Liu C.M., Zhou D.X., Liu X.B., Qin Y.Y., Cao F., Li J., Yang R.Y., Qin J.K. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2019;33:1304–1309. doi: 10.1080/14786419.2018.1472597. [DOI] [PubMed] [Google Scholar]
- 69.Qin Y.Y., Liu X.B., Lin J., Huang J.Y., Jiang X.F., Mo T.X., Xu Z.L., Li J., Yang R.Y. Two new phthalide derivatives from the endophytic fungus Penicillium vulpinum isolated from Sophora tonkinensis. Nat. Prod. Res. 2021;35:421–427. doi: 10.1080/14786419.2019.1636237. [DOI] [PubMed] [Google Scholar]
- 70.Xu W.F., Hou X.M., Yao F.H., Zheng N., Li J., Wang C.Y., Yang R.Y., Shao C.L. Xylapeptide A, an Antibacterial Cyclopentapeptide with an Uncommon L-Pipecolinic Acid Moiety from the Associated Fungus Xylaria sp. (GDG-102) Sci. Rep. 2017;7:6937. doi: 10.1038/s41598-017-07331-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Huang X.S., Zhou D.X., Liang Y., Liu X.B., Cao F., Qin Y.Y., Mo T.X., Xu Z.L., Li J., Yang R.Y. Cytochalasins from endophytic Diaporthe sp. GDG-118. Nat. Prod. Res. 2019;35:3396–3403. doi: 10.1080/14786419.2019.1700504. [DOI] [PubMed] [Google Scholar]
- 72.Qin Y.Y., Liu X.B., Mo T.X., Li J., Yang R.Y. Secondary Metabolites of Endophytic Fungus Xylaria sp. GDGJ-368 from Sophora tonkinensis. J.Guangxi. Nor. Univ. Nat. Sci. Ed. 2020;38:71–77. [Google Scholar]
- 73.Ding P.L., Yu Y.Q., Chen D.F. Comparative Studies on the Chemical Constituents of Sophora tonkinensis and Sophora flavescens, 7th China Doctoral Forum for New Medicines, Nanchang, Jiangxi, China. China Academic Journal Electronic Publishing House; Nanchang, China: 2004. pp. 30–32. [Google Scholar]
- 74.Li F., Li C.P., Fu H., Su X.L., Wang Z.J., Hou X.R., Lin R.C., Guan X.Y., Liu Q.M. Research progress of Radix Sophora Tonkinensis and supplementary reports of assay method for toxic chemical composition. Chin. J. Pharm. Anal. 2013;33:1453–1463. [Google Scholar]
- 75.Ai H., Sun J., Sheng Y.H., Ning L., Tang L.M., Jin R.M. Study on anti-inflammation mechanism of Radix et Rhizome Sophora tonkinensis rat based on profile of pharmacokinetic parameters. Chin. Pharmacol. Bull. 2020;36:645–649. [Google Scholar]
- 76.Yoo H., Kang M., Pyo S., Chae H.S., Ryu K.H., Kim J., Chin Y.W. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. J. Ethnopharmacol. 2017;206:298–305. doi: 10.1016/j.jep.2017.05.012. [DOI] [PubMed] [Google Scholar]
- 77.Peng H.H., Huang J., Wen X.I., Ping L.I., Jiang H.Y. Anti-inflammatory Effect and Related Mechanism of Sophora tonkinensis Granula and its Herbal Piece. Chin. J. Exp. Tradit. Med. Formulae. 2013;19:265–269. [Google Scholar]
- 78.Qian L.W., Dai W.H., Zhou G.Q., Wang L.L., Wang H.S. Antinociceptive and anti-inflammatory effects of major alkaloids from the roots of radix sophora flavescentis and Radix Sophora tonkinensis. Chin. Tradit. Pat. Med. 2012;34:1593–1596. [Google Scholar]
- 79.Lu X.P., Zhou H.S., Xi W., Wei L., Li P. Study on anti-inflammatory effect of Shandougen Keli. Inn. Mongolia. J. Tradit. Chin. Med. 2011;30:85–86. [Google Scholar]
- 80.Luan Y.F., Luo D., Zheng L.N., Xie Y.Z., Sun R. The Margin of Safety Study on Anti- inflammatory Effect of Different Components from Radix et Rhizome Sophora Tonkinensis. Chin. J. Pharmacovigil. 2012;9:392–396. [Google Scholar]
- 81.Li X.Y., Sun R. Study on Mechanisms of Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015;12:82–85. [Google Scholar]
- 82.Chui C.H., Lau F.Y., Tang J.C.O., Kan K.L., Cheng G.Y.M., Wong R.S.M., Kok S.H.L., Lai P.B.S., Ho R., Gambari R. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophora Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int. J. Mol. Med. 2005;16:337–341. [PubMed] [Google Scholar]
- 83.Deng Y.H., Sun L., Zhang W., Xu K.P., Li F.S., Tan J.B., Cao J.G., Tan G.S. Studies on Cytotoxic Constituents from Sophora tonkinensis. Nat. Prod. Res. Dev. 2006;3:408–410. [Google Scholar]
- 84.Chen Y., Zhang Q., Han S.X., Han F.M., Chen L.M., Tong Y., You Y. Studies on the toxic effects of different extraction sites from Radix Sophora tonkinensis. Chin. J. Pharmacovigil. 2017;14:188–189. [Google Scholar]
- 85.Huang Z.R. Master’s Thesis. Xi’an University of Technology; Shaanxi, China: 2021. Exploration of an effective and safety method for thequality control of Sophora tonkinensis radix et rhizome. [Google Scholar]
- 86.Li J.L., Zhang D., Liu S. Effect of Sophora Tonkinensis Gapnep. on Growth and Proliferation of Murine Melanoma Cell B16-BL6. Guangming. J. Chin. Med. 2017;32:1256–1259. [Google Scholar]
- 87.Wang S., Song Z.J., Gong X.M., Ou C.L., Zhang W.Y., Wang J., Yao C.Y., Qin S.S., Yan B.X., Li Q.P., et al. Chloroform extract from Sophora tonkinensis Gagnep. inhibit proliferation, migration, invasion and promote apoptosis of nasopharyngeal carcinoma cells by silencing the PI3K/AKT/mTOR signaling pathway. J. Ethnopharmacol. 2021;271:113879. doi: 10.1016/j.jep.2021.113879. [DOI] [PubMed] [Google Scholar]
- 88.Kajimoto S., Takanashi N., Kajimoto T., Xu M., Cao J.D., Masuda Y., Aiuchi T., Nakajo S., Ida Y., Nakaya K. Sophoranone, extracted from a traditional Chinese medicine Shan Dou Gen, induces apoptosis in human leukemia U937 cells via formation of reactive oxygen species and opening of mitochondrial permeability transition pores. Int. J. Cancer. 2002;99:879–890. doi: 10.1002/ijc.10414. [DOI] [PubMed] [Google Scholar]
- 89.Yao Z.Q., Zhu H., Wang G.F. Anti-tumor Effect of Total Alkaloids of Radix Sophora tonkinensis. J. Nanjing. Univ. Tradit. Chin. Med. 2005;21:253–254. [Google Scholar]
- 90.Cao L., Li T.J., Meng X.S., Bao Y.R., Wang S. Study on the Efficacy and Mechanism of Liver Cancer Induced by DEN in Rats of Alkaloids of Sophora Tonkinensis Radix Et Rhizoma. Chin. J. Mod. Appl. Pharm. 2018;35:370–374. [Google Scholar]
- 91.Zhao Q., Wei M., Zhang S., Huang Z., Ji L. The water extract of Sophora tonkinensis Radix et Rhizoma alleviates non-alcoholic fatty liver disease and its mechanism. Phytomedicine. 2020;77:153270. doi: 10.1016/j.phymed.2020.153270. [DOI] [PubMed] [Google Scholar]
- 92.Yin L.S., Lv L.L., Dou L.W., Li X.Y., Sun R. Study on Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015;12:79–81+85. [Google Scholar]
- 93.Huang Y.Q. Master’s Thesis. Chengdu University of TCM; Chengdu, China: 2017. The Intervention of Major Alkaloids in Sophora tonkinensis on Immune Liver Injury in Mice. [Google Scholar]
- 94.Han Y.Z. Master’s Thesis. Chengde Medical University; Sichuan, China: 2016. Preliminary study on the protective effect and mechanism of oxymatrine on Con A-induced liver injury in mice. [Google Scholar]
- 95.Cai L.L., Zou S.S., Liang D.P., Luan L.B. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophora tonkinensis Radix. Carbohydr. Polym. 2018;184:354–365. doi: 10.1016/j.carbpol.2017.12.083. [DOI] [PubMed] [Google Scholar]
- 96.Wang L.P., Lu J.Y., Sun W., Gu Y.M., Zhang C.C., Jin R.M., Li L.Y., Zhang Z.A., Tian X.S. Hepatotoxicity induced by radix Sophora tonkinensis in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol. 2017;69:193–202. doi: 10.1016/j.etp.2017.01.003. [DOI] [PubMed] [Google Scholar]
- 97.Kim H.Y., Shin H.S., Park H., Kim Y.C., Yong G.Y., Sun P., Shin H.J., Kim K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol. 2008;41:122–128. doi: 10.1016/j.jcv.2007.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Xu H.T., Lu J.F., Zhao Y.Z., Zhou J.Y. Antioxidant and antibacterial activity of extracts from Sophora tonkinensis Gagnep. Sci. Technol. Food Ind. 2015;36:111–114. [Google Scholar]
- 99.Ning X., Liu Y., Jia M., Wang Q., Sun L. Pectic polysaccharides from Radix Sophora Tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021;262:117925. doi: 10.1016/j.carbpol.2021.117925. [DOI] [PubMed] [Google Scholar]
- 100.Peng T., Su L.J., Hu T.J., Shuai X.H. Acute toxicity test of ethanol extract from the radix et rhizome of Sophora tonkinensis Gagnep. Guangxi. J. Anim. Husbandry. 2010;26:5–7. [Google Scholar]
- 101.Fan H.T., Gu Y.M., Sun W., Geng Y., Wang L.P., Jin R.M., Zhang Z.A., Tian X.S. Effect of Cytisine on Hepatotoxicity of Sophora tonkinensis Radix et Rhizoma. Chin. J. Exp. Tradit. Med. Formulae. 2018;24:176–181. [Google Scholar]
- 102.Sun R., Yang Q., Zhao Y. Comparative Study on Acute Toxicity of Different Components of Radix et Rhizome Sophora tonkinensis in Mice. Chin. J. Pharmacovigil. 2010;7:257–262. [Google Scholar]
- 103.Wang P., Wu X., Li J.P., Xie T.Z., Wu X.O., Wang X.W., Wen P., Zhan H.Q., Li J. Study on Acute Toxicity of Radix et Rhizome Sophora tonkinensis. Lishizhen Med. Mater. Med. Res. 2013;24:771–773. [Google Scholar]
- 104.Yuan W.L., Huang Z.R., Xiao S.J., Zhang W.D., Shen Y.H. Acute toxicity study of flavonoids from Sophora Tonkinensis Radix et Rhizoma on zebrafish. Chin. Tradit. Herb. Drugs. 2021;52:2978–2986. [Google Scholar]
- 105.Liu H.C., Zhu X.Y., Chen J.H., Guo S.Y., Li C.Q., Deng Z.P. Toxicity comparison of different active fractions extracted from radix Sophora tonkinensis in zebrafish. J. Zhejiang. Univ. Sci. B. 2017;18:757–769. doi: 10.1631/jzus.B1600158. [DOI] [Google Scholar]
- 106.Zheng N., Liu Q., He D.L., Liang Y., Li J., Yang R.Y. A New Compound from the Endophytic Fungus Xylaria sp from Sophora tonkinensis. Chem. Nat. Compd. 2018;54:447–449. doi: 10.1007/s10600-018-2376-1. [DOI] [Google Scholar]
- 107.Yao Y.Q., Wang D.K., Li L.B., Huang R.S., Lan F. Antifungal Activity of Methanol Extracts from the Root of Sophora tonkinensis Gapnep against Main Pathogenic Fungi of Panax notoginseng. Genom. Appl. Biol. 2016;35:2417–2422. [Google Scholar]
- 108.Guo S., Yan T., Shi L., Liu A., Zhang T., Xu Y., Jiang W., Yang Q., Yang L., Liu L.N., et al. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. Phytomedicine. 2021;84:153507. doi: 10.1016/j.phymed.2021.153507. [DOI] [PubMed] [Google Scholar]
- 109.Wang Z., Wang D., Liu A., Huang L. Analysis of Chemical Constituents of Effective Part of Anti-butyrylcholinesterase of Sophora tonkinensis by UPLC-Q-TOF-MS. Mod. Chin. Med. 2015;17:912–916. [Google Scholar]
- 110.Zhou S.Y., Chen J.P., Liu Z.D., Zhou J.R., Liu Y., Liu S.X., Tian C.W., Chen C.Q. Research progress on chemical constituents and pharmacological effects of Sophora tonkinensis Radix et Rhizoma. Chin. Tradit. Herb. Drugs. 2021;52:1510–1521. [Google Scholar]
- 111.Li S.J., Qian X.L., Li X.Y., Huang W., Sun R. Research of Hepatotoxic Damage Caused by Different Components of Radix et Rhizoma Sophora Tonkinensis. Chin. J. Pharmacovigil. 2011;8:577–580. [Google Scholar]
- 112.Li S.J., Lv L.L., Qian X.L., Li X.Y., Sun R. Experimental Study on the “Dose-Time-Toxicity” Relationship of Hepatotoxicity Induced by Different Components from Radix et Rhizoma Sophora Tonkinensis in Mice. Chin. J. Pharmacovigil. 2011;8:81–84. [Google Scholar]
- 113.Zhang S.N., Li X.Z., Yang W.D., Zhou Y. Sophora tonkinensis radix et rhizome-induced pulmonary toxicity: A study on the toxic mechanism and material basis based on integrated omics and bioinformatics analyses. J. Chromatogr. B. 2021;1179:122868. doi: 10.1016/j.jchromb.2021.122868. [DOI] [PubMed] [Google Scholar]
- 114.Wang R., Wang M., Wang S., Yang K., Zhou P., Xie X.H., Cheng Q., Ye J.X., Sun G.B. An integrated characterization of contractile, electrophysiological, and structural cardiotoxicity of Sophora tonkinensis Gapnep. in human pluripotent stem cell-derived cardiomyocytes. Stem Cell. Res. Ther. 2019;10:1–15. doi: 10.1186/s13287-018-1126-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Li Y.Y., Li J., Liu X., Zhang J.W., Mei X., Zheng R.D., Chen W., Zheng Q., Zhong S.J. Antidiarrheal activity of methanol extract of Sophora tonkinensis in mice and spasmolytic effect on smooth muscle contraction of isolated jejunum in rabbits. Pharm. Biol. 2019;57:477–484. doi: 10.1080/13880209.2019.1645701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Dai W.H., Qian L.W., Yang S.Y., Zhou G.Q. Advance in pharmaceutical research of main alkaloid in Sophora flavescens and Sophora tonkinensis. Anhui Med. Pharm. J. 2011;15:1057–1060. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Not applicable.