Skip to main content
IUCrData logoLink to IUCrData
. 2022 Feb 25;7(Pt 2):x220199. doi: 10.1107/S2414314622001997

Ethyl 10-cyano-7-hy­droxy-6-oxo-3-phenyl-8,9,10,10a-tetra­hydro-6H-benzo[c]chromene-10-carboxyl­ate

H Surya Prakash Rao a,b,*, Prabakaran M a, Jayaraman Muthukumaran c
Editor: W T A Harrisond
PMCID: PMC9461999  PMID: 36340871

The packing of the title compound is consolidated by C—H⋯O inter­actions.

Keywords: dibenzo­pyran, C—H⋯π inter­action, C—H⋯O inter­action, crystal structure

Abstract

In the title compound, C23H19NO5, the cyano group adopts an axial orientation and the ester group an equatorial orientation. The dihedral angle between the pendant phenyl group and the benzene ring of the fused-ring system is 25.97 (8)°. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed and the packing is consolidated by C—H⋯O and C—H⋯π inter­actions. graphic file with name x-07-x220199-scheme1-3D1.jpg

Structure description

Dibenzo­pyran-6-ones (also called 6H-benzo[c]chromen-6-ones or 3,4,5,6-dibenzo-α-pyran­ones) form an important group of biologically active natural products that occur in bacteria, fungi, lichens, higher plants and animal waste (Bialonska et al., 2009). Elsamitrucin, a dibenzo­pyran-6-one derived drug, is an efficient topoisomerase II inhibitor (Fiocchi et al., 2011). As well as their biological activities, some dibenzo­pyran-6-ones have served as inter­mediates in the synthesis of more complex organic compounds (see, for example, Coghlan et al., 2001). As a part of our ongoing studies in this area, we now describe the synthesis and crystal structure of the title compound.

The title compound has a dibenzo­pyran moiety decorated by several substituents, as shown in Fig. 1. There are two stereogenic centres: in the arbitrarily chosen asymmetric mol­ecule, C15 and C20 have S and R configurations, respectively, but crystal symmetry generates a racemic mixture. The nitrile group attached to C20 occupies an axial position and is anti to the hydrogen atom attached to C19. The dihedral angle between the pendant C1–C6 phenyl group and the C7–C12 benzene ring of the fused-ring system is 25.97 (8)°. The Cremer–Pople puckering parameters of the O1/C9/C10/C13–C15 and C14/C15/C17–C20 rings indicate half-chair conformations in each case with puckering amplitudes Q = 0.359 Å; θ = 104.52°; φ = 9.27° and Q = 0.49 Å; θ = 134.17°; φ = 327.35°, respectively. The O atom attached to C17 is stabilized in its enol (hy­droxy) form, presumably as a result of forming a strong intra­molecular hydrogen bond to O2. The packing is consolidated by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (Table 1) and an intra­molecular C—H⋯O inter­action is also observed (Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.86 2.5702 (16) 145
C11—H11⋯O4 0.93 2.54 3.399 (2) 154
C18—H18B⋯O1i 0.97 2.60 3.4289 (19) 144
C19—H19B⋯O2i 0.97 2.60 3.285 (2) 128
C15—H15⋯Cg2ii 0.98 2.95 3.7685 (17) 142
C23—H23BCg3iii 0.96 2.82 3.686 (3) 151

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

Inter­molecular inter­actions in the title compound.

From a Cambridge Structural Database search (Groom et al., 2016), we found compounds identified by refcodes OKEYUB (Xiao et al., 2021), QABVEY (Wang et al., 2021), ALTENU (McPhail et al., 1973), AMUYIS (Alzaydi et al., 2016), ANOVEG (Sosnovskikh et al., 2016), ANOVIK (Sosnovskikh et al., 2016), BUWJEK (Parveen et al., 2015), BUXLOW (Fatunsin et al., 2010), DIPTUR (Casiraghi et al., 1986), DISJAS (Lee et al., 2013), SEDFEN (Appel et al., 2006), SIVQIZ (Poudel & Lee, 2014), SIJZER (Hussain et al., 2007), TUPJOE (Siegel et al., 2010), ZAQHIK (Dasari et al., 2012) and IZACIY (Duan et al., 2021) to be similar to the title compound.

Synthesis and crystallization

A mixture of ethyl 10-cyano-7-hy­droxy-6-oxo-3-{[(tri­fluoro­meth­yl)sulfon­yl]­oxy}-8,9,10,10a-tetra­hydro-6H-benzo[c]chromene-10-carboxyl­ate (100 mg, 0.22 mmol), phenyl­boronic acid (34 mg, 0.28 mmol, 1.3 equiv.), K3PO4 (73 mg, 0.34 mmol, 1.6 equiv.) and Pd(PPh3)4 (3 mg, 3 mol%) in degassed 1,4-dioxane (10 mL) was stirred at 100° C for 12 h under nitro­gen. After completion of the coupling reaction (TLC), the mixture was cooled to room temperature, diluted with di­chloro­methane (DCM, 10 mL) and deca­nted. The residue was extracted with DCM (10 mL × 2) twice. The solvent was removed from the combined DCM layers and the residue was subjected to column chromatography on silica gel (100–200 mesh) by using increasing amounts of ethyl acetate in hexane (5% to 15%) as eluent to afford the title compound as a light-yellow solid in 90% yield (84 mg); R f = 0.4 (hexa­nes:ethyl acetate, 7:3); m.p. 155–158° C. A sample suitable for single-crystal X-ray analysis was obtained by recrystallization the 50 mg of the solid from a mixture of 1 mL of distilled chloro­form and 0.5 mL of distilled methanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C23H19NO5
M r 389.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.7089 (8), 14.3510 (12), 14.2749 (15)
β (°) 106.946 (10)
V3) 1902.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.75 × 0.44 × 0.42
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.932, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10689, 4413, 3119
R int 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.157, 0.95
No. of reflections 4413
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001997/hb4401sup1.cif

x-07-x220199-sup1.cif (381.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001997/hb4401Isup2.hkl

x-07-x220199-Isup2.hkl (351.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622001997/hb4401Isup3.cml

CCDC reference: 2153368

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST–FIST Single Crystal XRD facility at the Department of Chemistry, Pondicherry University, for the diffraction data and Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey. MP thanks the Department of Chemistry for facilities. JM thanks Dr Amit Kumar Singh (Sharda University, India) for support.

full crystallographic data

Crystal data

C23H19NO5 F(000) = 816
Mr = 389.39 Dx = 1.359 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.7089 (8) Å Cell parameters from 2883 reflections
b = 14.3510 (12) Å θ = 3.0–29.1°
c = 14.2749 (15) Å µ = 0.10 mm1
β = 106.946 (10)° T = 293 K
V = 1902.6 (3) Å3 Block, colorless
Z = 4 0.75 × 0.44 × 0.42 mm

Data collection

Xcalibur, Eos diffractometer 4413 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3119 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1 Rint = 0.026
ω scans θmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan (CrysalisPro; Agilent, 2014) h = −13→13
Tmin = 0.932, Tmax = 1.000 k = −18→17
10689 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
4413 reflections (Δ/σ)max = 0.010
264 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms in title compound were placed in calculated positions, with C—H = 0.93–0.97 A° and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C-methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53859 (10) 0.16733 (8) 0.92065 (7) 0.0410 (3)
O2 0.63028 (12) 0.27465 (8) 0.84841 (8) 0.0509 (3)
C14 0.44382 (14) 0.18379 (10) 0.74486 (11) 0.0347 (3)
O5 0.27716 (13) −0.06937 (8) 0.61784 (10) 0.0595 (4)
C15 0.36436 (14) 0.09212 (10) 0.73953 (10) 0.0332 (3)
H15 0.431514 0.042889 0.734017 0.040*
O3 0.50815 (13) 0.31695 (9) 0.66833 (9) 0.0588 (4)
H3 0.561932 0.325224 0.723781 0.088*
C9 0.42029 (14) 0.11197 (10) 0.92053 (11) 0.0337 (3)
C10 0.32907 (15) 0.07558 (10) 0.83485 (11) 0.0347 (3)
C7 0.29134 (15) 0.04148 (11) 1.02203 (11) 0.0366 (4)
C4 0.27309 (15) 0.02080 (11) 1.11980 (11) 0.0382 (4)
C19 0.28311 (17) 0.11903 (13) 0.55664 (11) 0.0447 (4)
H19A 0.360887 0.079214 0.550748 0.054*
H19B 0.203779 0.112652 0.497179 0.054*
C16 0.11816 (17) 0.14945 (12) 0.65498 (12) 0.0450 (4)
C13 0.54193 (15) 0.21194 (11) 0.83729 (11) 0.0375 (4)
C20 0.23367 (15) 0.08697 (11) 0.64512 (11) 0.0377 (4)
C8 0.40422 (15) 0.09584 (10) 1.01183 (11) 0.0366 (4)
H8 0.469369 0.121527 1.066950 0.044*
C21 0.17320 (17) −0.01170 (12) 0.62229 (11) 0.0437 (4)
O4 0.05006 (13) −0.03278 (10) 0.60776 (10) 0.0649 (4)
C12 0.19570 (17) 0.00624 (12) 0.93635 (12) 0.0443 (4)
H12 0.117331 −0.029036 0.940506 0.053*
C18 0.33369 (17) 0.21905 (12) 0.56740 (12) 0.0467 (4)
H18A 0.381800 0.232559 0.518170 0.056*
H18B 0.250752 0.259856 0.555766 0.056*
C17 0.43402 (16) 0.23902 (11) 0.66616 (12) 0.0410 (4)
C11 0.21487 (17) 0.02259 (12) 0.84563 (12) 0.0443 (4)
H11 0.149569 −0.002549 0.790253 0.053*
C6 0.20395 (18) −0.05906 (13) 1.13558 (13) 0.0507 (4)
H6 0.166517 −0.099657 1.083600 0.061*
C3 0.32765 (18) 0.08032 (12) 1.19927 (12) 0.0466 (4)
H3A 0.375026 0.134713 1.191218 0.056*
C2 0.2424 (2) −0.02057 (16) 1.30377 (15) 0.0627 (5)
H2 0.231601 −0.034154 1.364935 0.075*
C1 0.1887 (2) −0.08045 (15) 1.22642 (15) 0.0637 (5)
H1 0.142442 −0.135050 1.235243 0.076*
C5 0.3116 (2) 0.05875 (15) 1.29030 (14) 0.0579 (5)
H5 0.348412 0.098916 1.342756 0.070*
C22 0.2376 (2) −0.16616 (14) 0.59282 (18) 0.0714 (6)
H22A 0.150569 −0.169084 0.538150 0.086*
H22B 0.220030 −0.197877 0.648226 0.086*
C23 0.3565 (3) −0.21069 (18) 0.5666 (2) 0.1099 (10)
H23A 0.372605 −0.179133 0.511451 0.165*
H23B 0.333040 −0.274743 0.550071 0.165*
H23C 0.442123 −0.207456 0.621170 0.165*
N1 0.03398 (17) 0.20167 (13) 0.66178 (13) 0.0658 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0360 (5) 0.0501 (7) 0.0321 (6) −0.0093 (5) 0.0023 (4) 0.0025 (5)
O2 0.0501 (7) 0.0508 (7) 0.0448 (7) −0.0184 (6) 0.0029 (5) 0.0017 (5)
C14 0.0322 (7) 0.0351 (8) 0.0334 (8) −0.0002 (6) 0.0042 (6) 0.0018 (6)
O5 0.0520 (7) 0.0435 (7) 0.0799 (10) −0.0124 (6) 0.0143 (6) −0.0140 (6)
C15 0.0313 (7) 0.0349 (8) 0.0296 (8) 0.0014 (6) 0.0027 (6) 0.0016 (6)
O3 0.0606 (8) 0.0537 (8) 0.0516 (8) −0.0181 (6) −0.0003 (6) 0.0162 (6)
C9 0.0306 (7) 0.0323 (8) 0.0347 (8) 0.0019 (6) 0.0041 (6) 0.0024 (6)
C10 0.0364 (7) 0.0323 (8) 0.0318 (8) 0.0017 (6) 0.0040 (6) 0.0029 (6)
C7 0.0385 (7) 0.0357 (8) 0.0338 (9) 0.0056 (6) 0.0078 (6) 0.0026 (6)
C4 0.0365 (7) 0.0410 (9) 0.0375 (9) 0.0092 (6) 0.0115 (6) 0.0034 (7)
C19 0.0431 (8) 0.0569 (11) 0.0311 (9) −0.0059 (8) 0.0060 (6) 0.0023 (7)
C16 0.0375 (8) 0.0543 (10) 0.0396 (10) 0.0015 (8) 0.0056 (6) 0.0104 (8)
C13 0.0334 (7) 0.0373 (8) 0.0383 (9) −0.0003 (6) 0.0051 (6) 0.0039 (7)
C20 0.0341 (7) 0.0448 (9) 0.0307 (8) −0.0029 (6) 0.0039 (6) 0.0012 (7)
C8 0.0379 (7) 0.0349 (8) 0.0324 (8) 0.0026 (6) 0.0028 (6) −0.0005 (6)
C21 0.0431 (9) 0.0534 (10) 0.0307 (9) −0.0102 (8) 0.0049 (6) −0.0038 (7)
O4 0.0483 (7) 0.0789 (10) 0.0652 (9) −0.0248 (7) 0.0132 (6) −0.0154 (7)
C12 0.0437 (8) 0.0481 (10) 0.0389 (9) −0.0103 (7) 0.0086 (7) 0.0044 (7)
C18 0.0430 (9) 0.0564 (11) 0.0361 (9) −0.0032 (7) 0.0045 (7) 0.0121 (8)
C17 0.0377 (8) 0.0423 (9) 0.0399 (9) −0.0027 (7) 0.0064 (6) 0.0052 (7)
C11 0.0444 (8) 0.0481 (10) 0.0344 (9) −0.0110 (7) 0.0022 (7) 0.0010 (7)
C6 0.0548 (10) 0.0529 (11) 0.0485 (11) −0.0025 (8) 0.0214 (8) 0.0004 (8)
C3 0.0476 (9) 0.0504 (10) 0.0426 (10) 0.0034 (8) 0.0144 (7) −0.0021 (8)
C2 0.0683 (12) 0.0819 (15) 0.0468 (12) 0.0071 (11) 0.0307 (10) 0.0081 (10)
C1 0.0711 (12) 0.0699 (14) 0.0602 (13) −0.0059 (11) 0.0348 (10) 0.0087 (10)
C5 0.0591 (11) 0.0746 (13) 0.0424 (11) 0.0072 (10) 0.0185 (8) −0.0082 (9)
C22 0.0747 (13) 0.0481 (12) 0.0924 (17) −0.0228 (10) 0.0258 (11) −0.0196 (11)
C23 0.100 (2) 0.0564 (15) 0.188 (3) −0.0203 (13) 0.065 (2) −0.0405 (17)
N1 0.0558 (9) 0.0742 (11) 0.0700 (12) 0.0198 (9) 0.0222 (8) 0.0222 (9)

Geometric parameters (Å, º)

O1—C13 1.3599 (18) C7—C4 1.487 (2)
O1—C9 1.3961 (17) C4—C6 1.379 (2)
O2—C13 1.2212 (18) C4—C3 1.395 (2)
C14—C17 1.355 (2) C19—C18 1.510 (2)
C14—C13 1.442 (2) C19—C20 1.546 (2)
C14—C15 1.516 (2) C16—N1 1.134 (2)
O5—C21 1.321 (2) C16—C20 1.474 (2)
O5—C22 1.457 (2) C20—C21 1.531 (2)
C15—C10 1.516 (2) C21—O4 1.1913 (18)
C15—C20 1.5604 (19) C12—C11 1.381 (2)
O3—C17 1.3255 (19) C18—C17 1.489 (2)
C9—C8 1.377 (2) C6—C1 1.382 (2)
C9—C10 1.386 (2) C3—C5 1.388 (2)
C10—C11 1.390 (2) C2—C5 1.363 (3)
C7—C8 1.387 (2) C2—C1 1.376 (3)
C7—C12 1.397 (2) C22—C23 1.460 (3)
C13—O1—C9 119.76 (11) O1—C13—C14 119.40 (13)
C17—C14—C13 117.57 (14) C16—C20—C21 109.13 (13)
C17—C14—C15 123.65 (13) C16—C20—C19 108.83 (12)
C13—C14—C15 118.68 (13) C21—C20—C19 107.00 (13)
C21—O5—C22 117.30 (14) C16—C20—C15 109.78 (13)
C14—C15—C10 109.62 (12) C21—C20—C15 113.11 (12)
C14—C15—C20 111.00 (12) C19—C20—C15 108.88 (12)
C10—C15—C20 115.36 (12) C9—C8—C7 120.33 (13)
C8—C9—C10 123.53 (14) O4—C21—O5 125.08 (16)
C8—C9—O1 114.50 (12) O4—C21—C20 125.09 (16)
C10—C9—O1 121.96 (13) O5—C21—C20 109.79 (13)
C9—C10—C11 115.70 (14) C11—C12—C7 121.50 (15)
C9—C10—C15 118.66 (13) C17—C18—C19 112.50 (13)
C11—C10—C15 125.57 (13) O3—C17—C14 124.59 (14)
C8—C7—C12 117.11 (14) O3—C17—C18 112.66 (13)
C8—C7—C4 121.65 (13) C14—C17—C18 122.73 (14)
C12—C7—C4 121.25 (14) C12—C11—C10 121.79 (14)
C6—C4—C3 117.61 (15) C4—C6—C1 121.87 (18)
C6—C4—C7 121.05 (15) C5—C3—C4 120.32 (17)
C3—C4—C7 121.33 (15) C5—C2—C1 119.68 (18)
C18—C19—C20 111.65 (14) C2—C1—C6 119.68 (19)
N1—C16—C20 176.08 (18) C2—C5—C3 120.84 (18)
O2—C13—O1 115.36 (13) O5—C22—C23 107.97 (17)
O2—C13—C14 125.24 (14)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.82 1.86 2.5702 (16) 145
C11—H11···O4 0.93 2.54 3.399 (2) 154
C18—H18B···O1i 0.97 2.60 3.4289 (19) 144
C19—H19B···O2i 0.97 2.60 3.285 (2) 128
C15—H15···Cg2ii 0.98 2.95 3.7685 (17) 142
C23—H23B···Cg3iii 0.96 2.82 3.686 (3) 151

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z+2; (iii) −x+1/2, y−1/2, −z+3/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Alzaydi, K. M., Abojabal, N. S. & Elnagdi, M. H. (2016). Tetrahedron Lett. 57, 3596–3599.
  3. Appel, B., Saleh, N. N. R. & Langer, P. (2006). Chem. Eur. J. 12, 1221–1236. [DOI] [PubMed]
  4. Bialonska, D., Kasimsetty, S. G., Khan, S. I. & Ferreira, D. (2009). J. Agric. Food Chem. 57, 10181–10186. [DOI] [PubMed]
  5. Casiraghi, G., Cornia, M., Casnati, G., Fava, G. G. & Belicchi, M. F. (1986). J. Chem. Soc. Chem. Commun. pp. 271–273.
  6. Coghlan, M. J., Kym, P. R., Elmore, S. W., Wang, A. X., Luly, J. R., Wilcox, D., Stashko, M., Lin, C. W., Miner, J., Tyree, C., Nakane, M., Jacobson, P. & Lane, B. C. (2001). J. Med. Chem. 44, 2879–2885. [DOI] [PubMed]
  7. Dasari, S., Bhadbhade, M. & Neilan, B. A. (2012). Acta Cryst. E68, o1471. [DOI] [PMC free article] [PubMed]
  8. Duan, J., He, X., Choy, P. Y., Wang, Q., Xie, M., Li, R., Xu, K., Shang, Y. & Kwong, F. Y. (2021). Org. Lett. 23, 6455–6460. [DOI] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Fatunsin, O., Iaroshenko, V. O., Dudkin, S., Mkrtchyan, S., Villinger, A. & Langer, P. (2010). Tetrahedron Lett. 51, 4693–4695.
  11. Fiocchi, S. C., Selting, K. A., Rosenberg, M. P., Kolli, P., Lenaz, G. & Henry, C. (2011). J. Vet. Int. Med. 25, 897–902. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hussain, I., Nguyen, V. T. H., Yawer, M. A., Dang, T. T., Fischer, C., Reinke, H. & Langer, P. (2007). J. Org. Chem. 72, 6255–6258. [DOI] [PubMed]
  14. Lee, T., Jayakumar, J., Cheng, C. & Chuang, S. (2013). Chem. Commun. 49, 11797. [DOI] [PubMed]
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. McPhail, A. T., Miller, R. W., Harvan, D. & Pero, R. W. (1973). J. Chem. Soc. Chem. Commun. p. 682.
  17. Parveen, M., Malla, A. M., Ali, A., Nami, S. A. A., Silva, P. S. P. & Silva, M. R. (2015). Chem. Nat. Compd. 51, 62–66.
  18. Poudel, T. N. & Lee, Y. R. (2014). Org. Biomol. Chem. 12, 919–930. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366. [DOI] [PMC free article] [PubMed]
  22. Sosnovskikh, V. Y., Korotaev, V. Y., Kutyashev, I. B., Barkov, A. Y. & Safrygin, A. V. (2016). RSC Adv. 6, 58188–58202.
  23. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  24. Wang, B., Constantin, M., Singh, S., Zhou, Y., Davis, R. L. & West, F. G. (2021). Org. Biomol. Chem. 19, 399–405. [DOI] [PubMed]
  25. Xiao, Y., Zhou, L., Hao, H., Bao, Y., Yin, Q. & Xie, C. (2021). Cryst. Growth Des. 21, 1202–1217.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001997/hb4401sup1.cif

x-07-x220199-sup1.cif (381.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001997/hb4401Isup2.hkl

x-07-x220199-Isup2.hkl (351.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622001997/hb4401Isup3.cml

CCDC reference: 2153368

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES