Skip to main content
IUCrData logoLink to IUCrData
. 2022 Feb 17;7(Pt 2):x220148. doi: 10.1107/S2414314622001481

Bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1–)]nickel(II)

Sydney Koehne a, Bailey Mirmelli a, Joel T Mague a, James P Donahue a,*
Editor: J F Gallagherb
PMCID: PMC9462000  PMID: 36340872

Bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) crystallizes as pairs of mol­ecules related by an inversion center with close inter­molecular C—H⋯S and C—H⋯Ni contacts.

Keywords: crystal structure, nickel bis­(di­thiol­ene), 4-chloro­phenyl-substituted di­thiol­ene

Abstract

The title compound, [Ni(S2C2(C6H4-p-Cl)2)2] or [Ni(C14H8Cl2S2)2], crystallizes in the triclinic space group P Inline graphic as pairs of mol­ecules disposed about an inversion center at the bc face of the cell. Close inter­molecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts that are less than the sum of the van der Waals radii appear to induce slight bowing of the mol­ecular planes toward one another. The angles at which the four p-ClC6H4- rings join the NiS2C2 chelate rings [39.37 (9)– 53.41 (6)°] are similarly influenced by these inter­molecular contacts. In the larger packing arrangement, sheets of mol­ecules extend in the direction of the ac face diagonal. graphic file with name x-07-x220148-scheme1-3D1.jpg

Structure description

As seen from a survey of the Cambridge Structural Database, nickel has enjoyed the most extensive development of its coordination chemistry with di­thiol­ene ligands that bear aryl substituents. One reason for the attention given to these nickel complexes is the application they have found as reversibly bleachable Q-switching dyes for near infrared lasers (Mueller-Westerhoff et al., 1991). Their photochemical, thermal, and chemical stability, in conjunction with the relative ease with which they are synthesized, has made such nickel bis­(di­thiol­ene) complexes impactful enough that a variety are now sold commercially. Charge-neutral, aryl-substituted nickel di­thiol­ene complexes, [(R 2C2S2)2Ni], that have been structurally characterized include the complexes where R = Ph (Megnamisi-Belombe & Nuber, 1989; Kuramoto & Asao, 1990), p-CH3C6H4– (Miao et al., 2011), p-CH3OC6H4– (Arumugam et al., 2007), p- n BuOC6H4– (Perochon et al., 2009), p-CH3(CH2)11C6H4– (Perochon et al., 2009), and 3,5-(CH3O)2-4- n BuOC6H2– (Nakazumi et al., 1992).

Compounds of this type are electrochemically rich and typically support two successive ligand-based one-electron reductions that correspond to the transformations depicted as (a) → (b) and (b) → (c) in Fig. 1. The redox-active mol­ecular orbital has rather modest metal character and is best described as being delocalized among both di­thiol­ene ligands, which individually may be regarded as radical monoanions but which collectively have their spins paired such that the charge-neutral state is diamagnetic. In structure (c), both di­thiol­ene ligands are in a fully reduced ene-1,2-di­thiol­ate dianionic state. The potentials at which these reductions occur are quite sensitive to the nature and placement of ring substituents. As part of an effort to more fully map the potential range in which the electron transfers in these complexes occur, we have undertaken the synthesis and characterization of aryl-substituted nickel(II) bis(di­thiol­ene) complexes bearing electron-withdrawing groups. Although a known compound, the nickel(II) bis­(di­thiol­ene) variant with p-ClC6H4– substituents has not been the subject of an X-ray diffraction study, nor has a coordination compound of this ligand with any other metal. We briefly relate here the structural and crystal packing features of [((p-ClC6H4)2C2S2)2Ni].

Figure 1.

Figure 1

(a)–(c) Di­thiol­ene-based electron-transfer reactions within nickel(II) bis­(di­thiol­ene) complexes whereby the ligands are transformed from radical monoanions to fully reduced ene-1,2-di­thiol­ate dianions. (d)–(e) Resonance forms within the di­thiol­ene radical monoanion.

Bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) crystallizes upon a general position in triclinic space group P Inline graphic (Fig. 2). Its idealized point-group symmetry is D 2h if the phenyl groups are either perfectly perpendicular to, or fully planar with, the Ni(S2C2)2 core. However, the four arene rings are canted from the NiS2C2 chelate ring to which they are attached by values ranging from 38.39 (9)– 53.41 (6)°, the average being 44.87°. A similar description is pertinent to the compounds featuring phenyl, p-CH3C6H4–, and p-CH3OC6H4– substituents. The averaged S—C bond length in [(p-ClC6H4)2C2S2)2Ni] is 1.707 (1) Å. This inter­mediate value between S—C thione (1.63 Å, Rindorf & Carlsen, 1979; Fu et al., 1997a ,b , 1998) and vinyl thio­ether (1.74 Å; Tian et al., 1995; Yu et al., 2011) bond lengths is due to the presence of some thione character to the bond order in the radical monoanion arising from resonance form (e) (Fig. 1), even as the ligands are coordinating to the metal. Similarly, the C—Cchelate bond lengths are between the 1.54 and 1.34 Å values that are typical of carbon–carbon sp 3sp 3 single and sp 2sp 2 double bonds, respectively (Carey & Sundberg, 2000), further indicating the participation of both resonance forms (d) and (e) in the electronic structure of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II).

Figure 2.

Figure 2

Displacement ellipsoid plot (50% probability level) for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) with complete atom labeling.

The packing arrangement for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) is such that mol­ecules occur in centrosymmetric pairs around the inversion centers that occur at each bc face of the cell (Fig. 3). These pairwise associations juxtapose two mol­ecules in a nearly parallel planar fashion but with an offset that places the phenyl groups of one ligand over the relatively open NiS4 inter­ior of its partner mol­ecule. Relatively close inter­molecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts are made (Fig. 4), two each that are related by the inversion symmetry. The C—H⋯S and C—N⋯Ni close contacts are less than the sum of the hydrogen–sulfur and hydrogen–nickel van der Waals radii (Batsanov, 2001) and appear to be favorable inter­actions that induce a slight but discernible concave bowing of the mol­ecules toward one another (Fig. 4). This curvature, defined as the angle between the seven-atom mean planes given by each NiS2C2 chelate and the first carbon atom of each aryl ring, is 11.87 (5)°. It is likely that the angled disposition of some of the aryl substituents with respect to the NiS2C2 chelate have their origin in these inter­molecular inter­actions. The larger packing arrangement is best described as translations of these centrosymmetric pairs along the a axis, the upshot of which is that extended mol­ecular sheets are formed that are oriented in the direction of the ac face diagonal (Fig. 5).

Figure 3.

Figure 3

Packing arrangement of mol­ecules of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) in the unit cell. Ellipsoids are shown at the 50% probability level, and all H atoms are omitted for clarity. Pairs of mol­ecules are related by inversion across the center of symmetry at the center of the bc face.

Figure 4.

Figure 4

Illustration of the C—H⋯S and C—H⋯Ni contacts that occur between closest pairs of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) mol­ecules. Ellipsoids are presented at the 50% probability level. Symmetry operation: −x, 1 − y, 1 − z.

Figure 5.

Figure 5

Packing diagram for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) showing the parallel arrangement of mol­ecules in the direction of the ac face diagonal. Displacement ellipsoids are depicted at the 50% probability level.

Synthesis and crystallization

The title compound was prepared from 4,4′-di­chloro­benzil, P4S10, and NiCl2·6H2O according to the literature procedure (Schrauzer & Mayweg, 1965). Yield: 50%. Intense green column-shaped crystals were grown by the diffusion of tert-butyl methyl ether vapor into a solution of the title compound in 1,2-dichloro­ethane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. One reflection affected by the beamstop was omitted from the final refinement.

Table 1. Experimental details.

Crystal data
Chemical formula [Ni(C14H8Cl2S2)2]
M r 681.16
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 170
a, b, c (Å) 9.5487 (4), 11.4141 (4), 15.0254 (6)
α, β, γ (°) 107.486 (2), 94.791 (2), 111.423 (2)
V3) 1419.16 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.37
Crystal size (mm) 0.27 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.76, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 89629, 8009, 5941
R int 0.056
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.112, 1.03
No. of reflections 8009
No. of parameters 334
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.45

Computer programs: APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622001481/gg4008sup1.cif

x-07-x220148-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001481/gg4008Isup2.hkl

x-07-x220148-Isup2.hkl (635.9KB, hkl)

CCDC reference: 2150616

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility and for publication costs.

full crystallographic data

Crystal data

[Ni(C14H8Cl2S2)2] Z = 2
Mr = 681.16 F(000) = 688
Triclinic, P1 Dx = 1.594 Mg m3
a = 9.5487 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.4141 (4) Å Cell parameters from 9023 reflections
c = 15.0254 (6) Å θ = 2.4–29.5°
α = 107.486 (2)° µ = 1.37 mm1
β = 94.791 (2)° T = 170 K
γ = 111.423 (2)° Column, intense green
V = 1419.16 (10) Å3 0.27 × 0.15 × 0.10 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 8009 independent reflections
Radiation source: fine-focus sealed tube 5941 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.056
Detector resolution: 7.3910 pixels mm-1 θmax = 29.7°, θmin = 2.4°
φ and ω scans h = −13→13
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −15→15
Tmin = 0.76, Tmax = 0.88 l = −20→20
89629 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.0724P] where P = (Fo2 + 2Fc2)/3
8009 reflections (Δ/σ)max = 0.001
334 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Experimental. The diffraction data were obtained from sets 11 of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 15 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.35173 (3) 0.63386 (3) 0.56629 (2) 0.03136 (9)
Cl1 1.01198 (10) 0.89129 (9) 1.11457 (5) 0.0646 (2)
Cl2 0.44766 (10) 0.05522 (7) 0.82193 (5) 0.05315 (18)
Cl3 −0.27660 (10) 0.36001 (13) 0.00470 (6) 0.0866 (3)
Cl4 0.00224 (9) 1.14473 (7) 0.34765 (5) 0.05241 (18)
S1 0.51018 (7) 0.75530 (5) 0.69986 (4) 0.03387 (13)
S2 0.35562 (7) 0.45659 (5) 0.58196 (4) 0.03250 (13)
S3 0.19444 (7) 0.50969 (5) 0.43335 (4) 0.03449 (13)
S4 0.32801 (6) 0.80720 (5) 0.55486 (4) 0.03159 (12)
C1 0.6573 (3) 0.7049 (2) 0.83698 (16) 0.0316 (4)
C2 0.6637 (3) 0.8171 (2) 0.91031 (18) 0.0402 (5)
H2 0.591392 0.854176 0.902039 0.048*
C3 0.7730 (3) 0.8754 (3) 0.99479 (19) 0.0458 (6)
H3 0.776586 0.952416 1.043937 0.055*
C4 0.8768 (3) 0.8206 (3) 1.00694 (18) 0.0423 (6)
C5 0.8749 (3) 0.7106 (3) 0.9358 (2) 0.0460 (6)
H5 0.947798 0.674405 0.944845 0.055*
C6 0.7664 (3) 0.6533 (3) 0.85115 (18) 0.0392 (5)
H6 0.765655 0.577825 0.801809 0.047*
C7 0.5440 (3) 0.6456 (2) 0.74536 (16) 0.0307 (4)
C8 0.4672 (3) 0.5076 (2) 0.69248 (16) 0.0314 (4)
C9 0.4672 (2) 0.3986 (2) 0.72654 (16) 0.0296 (4)
C10 0.4301 (3) 0.3963 (2) 0.81393 (16) 0.0334 (5)
H10 0.410317 0.468058 0.853727 0.040*
C11 0.4218 (3) 0.2903 (2) 0.84348 (17) 0.0353 (5)
H11 0.394413 0.288101 0.902488 0.042*
C12 0.4541 (3) 0.1880 (2) 0.78565 (17) 0.0343 (5)
C13 0.4911 (3) 0.1876 (2) 0.69874 (17) 0.0349 (5)
H13 0.512544 0.116288 0.659864 0.042*
C14 0.4966 (3) 0.2923 (2) 0.66892 (17) 0.0325 (5)
H14 0.520569 0.292032 0.608783 0.039*
C15 0.0353 (3) 0.5525 (2) 0.29789 (17) 0.0330 (5)
C16 −0.0885 (3) 0.4265 (3) 0.27169 (19) 0.0409 (5)
H16 −0.106881 0.381348 0.316152 0.049*
C17 −0.1839 (3) 0.3672 (3) 0.1819 (2) 0.0527 (7)
H17 −0.268122 0.281852 0.164421 0.063*
C18 −0.1553 (3) 0.4339 (3) 0.11759 (19) 0.0512 (7)
C19 −0.0334 (3) 0.5563 (3) 0.14068 (19) 0.0475 (6)
H19 −0.015078 0.600008 0.095417 0.057*
C20 0.0625 (3) 0.6152 (3) 0.23024 (18) 0.0395 (5)
H20 0.147957 0.699344 0.246213 0.047*
C21 0.1388 (2) 0.6145 (2) 0.39363 (16) 0.0308 (4)
C22 0.1954 (2) 0.7506 (2) 0.45073 (16) 0.0304 (4)
C23 0.1474 (2) 0.8490 (2) 0.42788 (15) 0.0295 (4)
C24 −0.0076 (3) 0.8158 (2) 0.39296 (17) 0.0343 (5)
H24 −0.082964 0.729787 0.385917 0.041*
C25 −0.0535 (3) 0.9061 (2) 0.36839 (17) 0.0353 (5)
H25 −0.159136 0.882127 0.344000 0.042*
C26 0.0569 (3) 1.0315 (2) 0.37998 (17) 0.0349 (5)
C27 0.2113 (3) 1.0700 (2) 0.41777 (18) 0.0349 (5)
H27 0.285423 1.157701 0.427417 0.042*
C28 0.2555 (3) 0.9781 (2) 0.44116 (17) 0.0319 (4)
H28 0.360993 1.003321 0.466667 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03557 (16) 0.02817 (15) 0.03695 (16) 0.01568 (12) 0.01086 (12) 0.01650 (12)
Cl1 0.0720 (5) 0.0606 (5) 0.0441 (4) 0.0149 (4) −0.0060 (3) 0.0158 (3)
Cl2 0.0827 (5) 0.0370 (3) 0.0519 (4) 0.0335 (3) 0.0112 (3) 0.0221 (3)
Cl3 0.0569 (5) 0.1278 (9) 0.0417 (4) 0.0310 (5) −0.0044 (3) −0.0022 (5)
Cl4 0.0681 (4) 0.0482 (4) 0.0639 (4) 0.0402 (3) 0.0187 (3) 0.0293 (3)
S1 0.0401 (3) 0.0266 (3) 0.0392 (3) 0.0155 (2) 0.0100 (2) 0.0150 (2)
S2 0.0382 (3) 0.0270 (3) 0.0364 (3) 0.0152 (2) 0.0095 (2) 0.0143 (2)
S3 0.0407 (3) 0.0255 (3) 0.0398 (3) 0.0148 (2) 0.0085 (2) 0.0136 (2)
S4 0.0346 (3) 0.0263 (3) 0.0358 (3) 0.0140 (2) 0.0065 (2) 0.0121 (2)
C1 0.0365 (11) 0.0275 (10) 0.0344 (11) 0.0145 (9) 0.0131 (9) 0.0126 (9)
C2 0.0494 (14) 0.0340 (12) 0.0426 (13) 0.0231 (11) 0.0139 (11) 0.0126 (10)
C3 0.0614 (17) 0.0352 (13) 0.0393 (13) 0.0203 (12) 0.0158 (12) 0.0095 (11)
C4 0.0470 (14) 0.0411 (13) 0.0370 (12) 0.0132 (11) 0.0078 (11) 0.0183 (11)
C5 0.0453 (14) 0.0478 (15) 0.0491 (15) 0.0244 (12) 0.0081 (12) 0.0169 (12)
C6 0.0429 (13) 0.0389 (13) 0.0388 (12) 0.0226 (11) 0.0115 (10) 0.0100 (10)
C7 0.0331 (11) 0.0318 (11) 0.0379 (11) 0.0182 (9) 0.0162 (9) 0.0186 (9)
C8 0.0366 (11) 0.0325 (11) 0.0360 (11) 0.0201 (9) 0.0160 (9) 0.0171 (9)
C9 0.0310 (10) 0.0260 (10) 0.0358 (11) 0.0143 (8) 0.0100 (9) 0.0125 (9)
C10 0.0403 (12) 0.0303 (11) 0.0365 (11) 0.0199 (10) 0.0137 (9) 0.0131 (9)
C11 0.0448 (13) 0.0326 (11) 0.0346 (11) 0.0197 (10) 0.0103 (10) 0.0151 (9)
C12 0.0384 (12) 0.0292 (11) 0.0386 (12) 0.0163 (9) 0.0027 (9) 0.0149 (9)
C13 0.0378 (12) 0.0283 (11) 0.0408 (12) 0.0180 (9) 0.0081 (10) 0.0099 (9)
C14 0.0341 (11) 0.0297 (11) 0.0369 (11) 0.0159 (9) 0.0122 (9) 0.0117 (9)
C15 0.0331 (11) 0.0297 (11) 0.0371 (12) 0.0164 (9) 0.0089 (9) 0.0082 (9)
C16 0.0363 (12) 0.0365 (12) 0.0449 (14) 0.0140 (10) 0.0136 (10) 0.0079 (11)
C17 0.0325 (13) 0.0517 (16) 0.0531 (16) 0.0120 (12) 0.0110 (12) −0.0032 (13)
C18 0.0410 (14) 0.0702 (19) 0.0369 (13) 0.0308 (14) 0.0056 (11) 0.0028 (13)
C19 0.0536 (16) 0.0589 (17) 0.0385 (13) 0.0344 (14) 0.0107 (12) 0.0145 (12)
C20 0.0444 (13) 0.0385 (13) 0.0404 (13) 0.0219 (11) 0.0105 (10) 0.0139 (10)
C21 0.0303 (10) 0.0281 (10) 0.0397 (12) 0.0141 (9) 0.0116 (9) 0.0161 (9)
C22 0.0286 (10) 0.0309 (11) 0.0385 (11) 0.0149 (9) 0.0119 (9) 0.0170 (9)
C23 0.0318 (11) 0.0277 (10) 0.0327 (11) 0.0142 (9) 0.0107 (9) 0.0121 (9)
C24 0.0307 (11) 0.0293 (11) 0.0458 (13) 0.0127 (9) 0.0127 (10) 0.0157 (10)
C25 0.0307 (11) 0.0374 (12) 0.0408 (12) 0.0177 (9) 0.0073 (9) 0.0132 (10)
C26 0.0466 (13) 0.0349 (12) 0.0363 (12) 0.0270 (10) 0.0141 (10) 0.0161 (10)
C27 0.0372 (12) 0.0255 (10) 0.0453 (13) 0.0128 (9) 0.0168 (10) 0.0152 (9)
C28 0.0301 (10) 0.0278 (10) 0.0393 (12) 0.0131 (9) 0.0106 (9) 0.0117 (9)

Geometric parameters (Å, º)

Ni1—S2 2.1192 (6) C11—C12 1.383 (3)
Ni1—S3 2.1207 (7) C11—H11 0.9500
Ni1—S4 2.1261 (6) C12—C13 1.380 (3)
Ni1—S1 2.1277 (7) C13—C14 1.382 (3)
Cl1—C4 1.743 (3) C13—H13 0.9500
Cl2—C12 1.741 (2) C14—H14 0.9500
Cl3—C18 1.740 (3) C15—C20 1.400 (3)
Cl4—C26 1.733 (2) C15—C16 1.400 (3)
S1—C7 1.706 (2) C15—C21 1.479 (3)
S2—C8 1.704 (2) C16—C17 1.380 (4)
S3—C21 1.706 (2) C16—H16 0.9500
S4—C22 1.713 (2) C17—C18 1.387 (5)
C1—C2 1.393 (3) C17—H17 0.9500
C1—C6 1.402 (3) C18—C19 1.371 (4)
C1—C7 1.477 (3) C19—C20 1.379 (4)
C2—C3 1.381 (4) C19—H19 0.9500
C2—H2 0.9500 C20—H20 0.9500
C3—C4 1.378 (4) C21—C22 1.397 (3)
C3—H3 0.9500 C22—C23 1.473 (3)
C4—C5 1.376 (4) C23—C24 1.397 (3)
C5—C6 1.379 (4) C23—C28 1.398 (3)
C5—H5 0.9500 C24—C25 1.386 (3)
C6—H6 0.9500 C24—H24 0.9500
C7—C8 1.399 (3) C25—C26 1.381 (3)
C8—C9 1.480 (3) C25—H25 0.9500
C9—C10 1.394 (3) C26—C27 1.388 (3)
C9—C14 1.400 (3) C27—C28 1.386 (3)
C10—C11 1.387 (3) C27—H27 0.9500
C10—H10 0.9500 C28—H28 0.9500
S2—Ni1—S3 87.80 (2) C12—C13—H13 120.4
S2—Ni1—S4 174.64 (3) C14—C13—H13 120.4
S3—Ni1—S4 91.24 (2) C13—C14—C9 120.6 (2)
S2—Ni1—S1 91.15 (2) C13—C14—H14 119.7
S3—Ni1—S1 178.94 (2) C9—C14—H14 119.7
S4—Ni1—S1 89.82 (2) C20—C15—C16 118.6 (2)
C7—S1—Ni1 105.72 (8) C20—C15—C21 121.0 (2)
C8—S2—Ni1 105.67 (8) C16—C15—C21 120.4 (2)
C21—S3—Ni1 105.66 (8) C17—C16—C15 120.6 (3)
C22—S4—Ni1 105.76 (8) C17—C16—H16 119.7
C2—C1—C6 117.9 (2) C15—C16—H16 119.7
C2—C1—C7 121.3 (2) C16—C17—C18 119.1 (3)
C6—C1—C7 120.7 (2) C16—C17—H17 120.5
C3—C2—C1 121.3 (2) C18—C17—H17 120.5
C3—C2—H2 119.3 C19—C18—C17 121.6 (3)
C1—C2—H2 119.3 C19—C18—Cl3 119.3 (2)
C4—C3—C2 119.2 (2) C17—C18—Cl3 119.1 (2)
C4—C3—H3 120.4 C18—C19—C20 119.3 (3)
C2—C3—H3 120.4 C18—C19—H19 120.3
C5—C4—C3 121.1 (2) C20—C19—H19 120.3
C5—C4—Cl1 119.5 (2) C19—C20—C15 120.8 (3)
C3—C4—Cl1 119.4 (2) C19—C20—H20 119.6
C4—C5—C6 119.6 (2) C15—C20—H20 119.6
C4—C5—H5 120.2 C22—C21—C15 124.79 (19)
C6—C5—H5 120.2 C22—C21—S3 119.14 (17)
C5—C6—C1 120.9 (2) C15—C21—S3 116.05 (16)
C5—C6—H6 119.6 C21—C22—C23 124.3 (2)
C1—C6—H6 119.6 C21—C22—S4 118.07 (16)
C8—C7—C1 124.84 (19) C23—C22—S4 117.60 (17)
C8—C7—S1 118.29 (17) C24—C23—C28 118.3 (2)
C1—C7—S1 116.84 (16) C24—C23—C22 120.7 (2)
C7—C8—C9 125.3 (2) C28—C23—C22 120.95 (19)
C7—C8—S2 118.86 (16) C25—C24—C23 121.3 (2)
C9—C8—S2 115.76 (17) C25—C24—H24 119.4
C10—C9—C14 118.9 (2) C23—C24—H24 119.4
C10—C9—C8 120.74 (19) C26—C25—C24 118.9 (2)
C14—C9—C8 120.3 (2) C26—C25—H25 120.6
C11—C10—C9 120.8 (2) C24—C25—H25 120.6
C11—C10—H10 119.6 C25—C26—C27 121.5 (2)
C9—C10—H10 119.6 C25—C26—Cl4 119.58 (18)
C12—C11—C10 118.9 (2) C27—C26—Cl4 118.88 (18)
C12—C11—H11 120.5 C28—C27—C26 118.8 (2)
C10—C11—H11 120.5 C28—C27—H27 120.6
C13—C12—C11 121.6 (2) C26—C27—H27 120.6
C13—C12—Cl2 118.56 (18) C27—C28—C23 121.1 (2)
C11—C12—Cl2 119.87 (18) C27—C28—H28 119.4
C12—C13—C14 119.3 (2) C23—C28—H28 119.4
C6—C1—C2—C3 −0.5 (4) C20—C15—C16—C17 −1.7 (4)
C7—C1—C2—C3 −177.8 (2) C21—C15—C16—C17 −179.0 (2)
C1—C2—C3—C4 −0.6 (4) C15—C16—C17—C18 0.3 (4)
C2—C3—C4—C5 1.2 (4) C16—C17—C18—C19 0.9 (4)
C2—C3—C4—Cl1 −178.4 (2) C16—C17—C18—Cl3 −179.4 (2)
C3—C4—C5—C6 −0.6 (4) C17—C18—C19—C20 −0.6 (4)
Cl1—C4—C5—C6 179.0 (2) Cl3—C18—C19—C20 179.73 (19)
C4—C5—C6—C1 −0.5 (4) C18—C19—C20—C15 −0.9 (4)
C2—C1—C6—C5 1.1 (4) C16—C15—C20—C19 2.0 (3)
C7—C1—C6—C5 178.4 (2) C21—C15—C20—C19 179.3 (2)
C2—C1—C7—C8 −142.3 (2) C20—C15—C21—C22 44.4 (3)
C6—C1—C7—C8 40.5 (3) C16—C15—C21—C22 −138.4 (2)
C2—C1—C7—S1 39.8 (3) C20—C15—C21—S3 −133.8 (2)
C6—C1—C7—S1 −137.4 (2) C16—C15—C21—S3 43.5 (3)
Ni1—S1—C7—C8 −0.78 (19) Ni1—S3—C21—C22 −2.11 (19)
Ni1—S1—C7—C1 177.20 (14) Ni1—S3—C21—C15 176.18 (15)
C1—C7—C8—C9 10.5 (3) C15—C21—C22—C23 6.6 (3)
S1—C7—C8—C9 −171.64 (17) S3—C21—C22—C23 −175.30 (17)
C1—C7—C8—S2 −172.99 (17) C15—C21—C22—S4 −174.10 (17)
S1—C7—C8—S2 4.8 (3) S3—C21—C22—S4 4.0 (3)
Ni1—S2—C8—C7 −6.26 (19) Ni1—S4—C22—C21 −3.77 (19)
Ni1—S2—C8—C9 170.53 (14) Ni1—S4—C22—C23 175.60 (14)
C7—C8—C9—C10 51.3 (3) C21—C22—C23—C24 42.9 (3)
S2—C8—C9—C10 −125.3 (2) S4—C22—C23—C24 −136.43 (19)
C7—C8—C9—C14 −132.1 (2) C21—C22—C23—C28 −137.6 (2)
S2—C8—C9—C14 51.3 (3) S4—C22—C23—C28 43.1 (3)
C14—C9—C10—C11 −0.2 (3) C28—C23—C24—C25 2.5 (3)
C8—C9—C10—C11 176.4 (2) C22—C23—C24—C25 −178.0 (2)
C9—C10—C11—C12 1.3 (4) C23—C24—C25—C26 −0.7 (4)
C10—C11—C12—C13 −1.3 (4) C24—C25—C26—C27 −1.7 (4)
C10—C11—C12—Cl2 178.92 (18) C24—C25—C26—Cl4 178.84 (18)
C11—C12—C13—C14 0.2 (4) C25—C26—C27—C28 2.2 (4)
Cl2—C12—C13—C14 179.98 (18) Cl4—C26—C27—C28 −178.26 (18)
C12—C13—C14—C9 0.9 (3) C26—C27—C28—C23 −0.4 (3)
C10—C9—C14—C13 −0.9 (3) C24—C23—C28—C27 −1.9 (3)
C8—C9—C14—C13 −177.6 (2) C22—C23—C28—C27 178.5 (2)

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1836589).

References

  1. Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283–3288. [DOI] [PubMed]
  2. Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  5. Carey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed., p. 13. New York: Kluwer Academic/Plenum Publishers.
  6. Fu, T. Y., Leibovitch, M., Scheffer, J. R. & Trotter, J. (1997a). Acta Cryst. C53, 1255–1256.
  7. Fu, T. Y., Scheffer, J. R. & Trotter, J. (1997b). Acta Cryst. C53, 1257–1259.
  8. Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 496–497.
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Kuramoto, N. & Asao, K. (1990). Dyes Pigments, 12, 65–76.
  11. Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092–4094.
  12. Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619–627.
  13. Mueller-Westerhoff, U. T., Vance, B. & Yoon, D. I. (1991). Tetrahedron, 47, 909–932.
  14. Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1–9.
  15. Perochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). Dalton Trans. pp. 3052–3061. [DOI] [PubMed]
  16. Rindorf, G. & Carlsen, L. (1979). Acta Cryst. B35, 1179–1182.
  17. Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483–1489.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Tian, Z.-Q., Donahue, J. P. & Holm, R. H. (1995). Inorg. Chem. 34, 5567–5572.
  22. Yu, C.-X., Zhu, Y.-L., Chen, Z.-X., Lu, M.-Z. & Wang, K. (2011). Acta Cryst. E67, o821. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622001481/gg4008sup1.cif

x-07-x220148-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001481/gg4008Isup2.hkl

x-07-x220148-Isup2.hkl (635.9KB, hkl)

CCDC reference: 2150616

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES