Skip to main content
IUCrData logoLink to IUCrData
. 2022 Feb 1;7(Pt 2):x220077. doi: 10.1107/S2414314622000773

Poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato)­disilver(I)] 5.2-hydrate]

Jessica Pacifico a, Helen Stoeckli-Evans b,*
Editor: W Imhofc
PMCID: PMC9462006  PMID: 36340876

The reaction of AgNO3 with the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid, in the presence of a potassium acetate buffer, lead to the formation of a silver(I)–potassium–organic framework.

Keywords: crystal structure, pyrazine, carboxyl­ate, tetra­kis­, silver–potassium–organic framework

Abstract

The reaction of AgNO3 with the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid in the presence of a potassium acetate buffer lead to the formation of a silver(I)–potassium–organic framework, poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato)­disilver(I)] 5.2-hydrate], {K2[Ag2(C16H16N2O8S4)]·5.2H2O} n , (I). The asymmetric unit is composed of half a binuclear silver complex located about a center of symmetry, a potassium cation and 2.6 disordered water mol­ecules. The whole binuclear silver complex is generated by inversion symmetry with the pyrazine ring being located about an inversion centre. The ligand coordinates in a bis-tetra­dentate manner. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds, forming a network lying parallel to the bc plane. The networks are linked by Ocarboxyl­ateK +⋯Ocarboxyl­ate bridging bonds to form a framework. The disordered water mol­ecules are present near to the K+ cations. graphic file with name x-07-x220077-scheme1-3D1.jpg

Structure description

The title ligand, tetra­kis-substituted pyrazine carb­oxy­lic acid, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), is one of a series of tetra­kis-substituted pyrazine ligands containing N x S4 and N2S4O8 donor atoms (Pacifico, 2003).

H4L1 is the tetra­acetic acid analogue of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L2), for which two triclinic polymorphs and two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021b ). Reaction of H4L1 with NiCl2 lead to the formation of a binuclear complex, {[(H2O)2Ni2(C16H20N2O8S4)]·7(H2O)}, whose crystal structure has been reported (Pacifico & Stoeckli-Evans, 2021b ).

The reaction of H4L1 (Pacifico & Stoeckli-Evans, 2021a ) with AgNO3 in the presence of a potassium acetate buffer resulted in deprotonation of the ligand and the formation of a heterobimetallic silver(I)–potassium–organic framework (I).

The asymmetric unit of I consists of half a binuclear silver complex, with the ligand coordinating in a bis-tetra­dentate manner (Fig. 1), a potassium cation and 2.6 disordered water mol­ecules. Selected bond lengths and bond angles involving atom Ag1 are given in Table 1. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds to form a network lying parallel to the bc plane (Fig. 2). The silver ion has a sixfold AgS3O2N coordination sphere. The bond lengths involving Ag1 fall within the limits observed for the various type of bond when searching the Cambridge Structural Database (CSD, last update September 2021; Groom et al., 2016). For example, there were over 600 hits for the Ag—Npyrazine bond length that varies from 2.02 to 2.739 Å [mean value 2.321 (89) Å, median 2.304 Å and a skew of 0.866]. In I this value is 2.550 (5) Å. For Ag—Ocarboxyl­ate there were over 2,800 hits with the bond lengths varying from 1.967 to 3.089 Å [mean value 2.377 (147) Å, median 2.352 Å and a skew value of 0.532]. In I the Ag—Ocarboxyl­ate bond lengths are almost equal; 2.470 (5) and 2.466 (6) Å. Finally for the Ag—S(CH2)2— bond-length type there were over 1,000 hits with the bond length varying from 2.361 to 3.583 Å [mean value 2.596 (98) Å, median 2.565 Å and a skew value of 1.645]. In I the Ag—S(CH2)2– bond lengths vary from 2.604 (2) to 2.926 (2) Å, both values involve the bridging atom S1, while distance Ag1—S2ii is 2.824 (2) Å (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the silver complex dianion of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the potassium cation and the disordered water mol­ecules have been omitted. [Symmetry codes: (i) −x, y +  Inline graphic , −z +  Inline graphic ; (ii) −x, −y + 1, −z + 1; (iii) −x, y −  Inline graphic , −z +  Inline graphic .]

Table 1. Selected geometric parameters (Å, °).

Ag1—N1 2.550 (5) K1—O1 3.289 (6)
Ag1—O1i 2.470 (5) K1—O2 2.729 (6)
Ag1—O4ii 2.466 (6) K1—O3iv 2.724 (6)
Ag1—S1 2.926 (2) K1—O3v 2.751 (6)
Ag1—S1iii 2.604 (2) K1—O4vi 2.608 (6)
Ag1—S2ii 2.824 (2)    
       
O4ii—Ag1—O1i 90.01 (19) S1iii—Ag1—S1 87.60 (4)
O4ii—Ag1—N1 110.25 (18) S2ii—Ag1—S1 122.15 (6)
O1i—Ag1—N1 84.78 (17) Ag1i—S1—Ag1 129.26 (7)
O4ii—Ag1—S1iii 96.08 (14) O4vi—K1—O3iv 94.50 (18)
O1i—Ag1—S1iii 108.15 (12) O4vi—K1—O2 89.60 (19)
N1—Ag1—S1iii 150.87 (13) O3iv—K1—O2 170.9 (2)
O4ii—Ag1—S2ii 69.66 (14) O4vi—K1—O3v 116.0 (2)
O1i—Ag1—S2ii 138.52 (12) O3iv—K1—O3v 86.76 (14)
N1—Ag1—S2ii 70.23 (12) O2—K1—O3v 98.72 (18)
S1iii—Ag1—S2ii 109.63 (5) O4vi—K1—O1 71.53 (16)
O4ii—Ag1—S1 165.62 (14) O3iv—K1—O1 146.36 (18)
O1i—Ag1—S1 75.65 (14) O2—K1—O1 42.72 (15)
N1—Ag1—S1 70.04 (12) O3v—K1—O1 73.37 (15)
       
N1—C1—C3—S1 −61.4 (7) S2—C7—C8—O4 1.5 (10)
N1ii—C2—C6—S2 −70.4 (7)    

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

A view along the a-axis of the network of the silver complex dianions in compound I. The silver atoms are shown as silver balls. For clarity, the potassium ions, the disordered water mol­ecules, and the C-bound H atoms have been omitted.

The three chelate rings are far from flat, as indicated by the torsion angles given in Table 1. This is also shown by the mean planes of the chelate rings calculated using PLATON (Spek, 2020): ring Ag1/N1/C2/C3/S1 is twisted on bond S1—C3, ring Ag1/N1/C2ii/C6ii/S2ii has an envelope conformation with atom S2ii as the flap, and ring Agii/S2/C7/C8/O4 has an envelope conformation with atom Ag1ii as the flap [symmetry code: (ii) −x, −y + 1, −z + 1].

Selected bond lengths and bond angles involving atom K1 are also given in Table 1. The strongest K +⋯Ocarboxyl­ate bonds lengths vary from 2.608 (6) to 2.751 (6) Å, and there is one weak contact K1⋯O1 at 3.289 (6) Å (Fig. 3). A search of the CSD for carboxyl­ato–potassium complexes revealed that in the potassium–organic frameworks catena-[(μ4-3,5,6-tri­carb­oxy­pyrazine-2-carboxyl­ato)potassium] (CSD refcode UBUPAK; Masci et al., 2010), and catena-[(μ-6-carb­oxy­pyridine-2-carboxyl­ato)potassium] (MUMPIW; Li et al., 2020), the K+⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å in UBUPAK and from 2.8197 (14) to 3.0449 (15) Å in MUMPIW. In UBUPAK the K+ cation has a coordination number of 8 (KO8) and a distorted dodeca­hedral geometry, while in MUMPIW the K+ ion has a coordination number of 7 (KO6N) and has an edge-sharing penta­gonal anti­prism geometry. In I, the stronger K⋯O bond lengths are shorter and, owing to the presence of the disordered water mol­ecules, it is not clear what the K+ ion coordination number or geometry are.

Figure 3.

Figure 3

A view of the environment of the potassium cation in compound I. [X(red) regions of disordered water mol­ecules; symmetry codes: (iii) −x, y −  Inline graphic , −z +  Inline graphic ; (iv) −x + 1, −y + 1, −z + 1; (v) x, −y +  Inline graphic , z −  Inline graphic ; (vi) x, −y +  Inline graphic , z −  Inline graphic .]

In the crystal of I, the networks of the binuclear silver complex anions are linked by the bridging Ocarboxyl­ateK +⋯Ocarboxyl­ate bonds to form a framework (Fig. 4; Table 1). The disordered water mol­ecules are present near to the K+ cations.

Figure 4.

Figure 4

A view along the b-axis of the crystal packing of compound I. The silver atoms are shown as small silver balls and the potassium ions as large purple balls. The blue ellipse indicates the region occupied by the disordered water mol­ecules. For clarity, the C-bound H atoms have been omitted.

Synthesis and crystallization

The synthesis of the ligand H4L1 has been described (Pacifico & Stoeckli-Evans, 2021a ).

Synthesis of poly{( μ -2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)] tetra­kis­(sulfanedi­yl)}tetra­acetato)}-bis­[silver(I)]-bis­[potassium] 5.2(hydrate)} (I):

AgNO3 (20.5 mg, 0.121 mmol, 2 eq) and H4L1 (30 mg, 0.060 mmol, 1 eq) were mixed in 20 ml of a 1M potassium acetate buffer solution. The mixture was left at 323 K under stirring and nitro­gen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks, yielding yellow rod-like crystals of compound I (m.p. 553 K decomposition).

Analysis for C16H16Ag2N2O8S4, K2, 5.2(H2O), M w = 880.175 g mol−1: Calculated (%): C 21.88, H 2.99, N 3.18. Found (%): C 23.03, H 2.91, N 3.03. The small deviation is probably due to the loss of water mol­ecules of crystallization.

ESI–MS: unstable under mass spectroscopy experimental conditions.

IR (KBr disc, cm−1) ν: 3401(s), 2938(m), 1599(s), 1385(s), 1223(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The occupancy factors for the disordered water mol­ecules were initially freely refined and then fixed at rounded values; the final total is 5.2(H2O). It was not possible to locate the H atoms of the disordered water mol­ecules of crystallization. The residual electron density peaks of 1.14 and −1.10 eÅ3 are at distances of 0.96 and 0.91 Å, respectively, from atom Ag1.

Table 2. Experimental details.

Crystal data
Chemical formula K2[Ag2(C16H16N2O8S4)]5.2H2O
M r 880.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 13.386 (3), 6.0085 (7), 17.843 (3)
β (°) 108.657 (15)
V3) 1359.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.24 × 0.13 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Multi-scan (MULABS; Spek, 2020)
T min, T max 0.611, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9305, 2316, 2088
R int 0.043
(sin θ/λ)max−1) 0.591
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.114, 1.17
No. of reflections 2316
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −1.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2414314622000773/im4015sup1.cif

x-07-x220077-sup1.cif (310.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000773/im4015Isup2.hkl

x-07-x220077-Isup2.hkl (185.7KB, hkl)

CCDC reference: 2143798

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the University of Neuchâtel for their support over the years.

full crystallographic data

Crystal data

K2[Ag2(C16H16N2O8S4)]5.2H2O F(000) = 852
Mr = 880.17 Dx = 2.097 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.386 (3) Å Cell parameters from 17882 reflections
b = 6.0085 (7) Å θ = 1.6–24.9°
c = 17.843 (3) Å µ = 2.12 mm1
β = 108.657 (15)° T = 153 K
V = 1359.7 (4) Å3 Rod, yellow
Z = 2 0.24 × 0.13 × 0.05 mm

Data collection

Stoe IPDS 2 diffractometer 2316 independent reflections
Radiation source: fine-focus sealed tube 2088 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.043
φ + ω scans θmax = 24.8°, θmin = 2.4°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −15→15
Tmin = 0.611, Tmax = 1.000 k = −7→6
9305 measured reflections l = −20→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0335P)2 + 8.3123P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max < 0.001
2316 reflections Δρmax = 1.14 e Å3
218 parameters Δρmin = −1.10 e Å3
0 restraints Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0058 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 −0.11736 (5) 0.22235 (9) 0.29645 (3) 0.0422 (2)
K1 0.42397 (15) −0.0830 (3) 0.31383 (13) 0.0662 (6)
S1 0.07736 (14) 0.4594 (3) 0.30640 (9) 0.0383 (4)
S2 0.13892 (15) 1.0313 (3) 0.57635 (11) 0.0456 (5)
O1 0.1777 (5) 0.0832 (8) 0.2686 (3) 0.0534 (13)
O2 0.2813 (5) −0.0081 (9) 0.3913 (3) 0.0602 (15)
O3 0.4123 (4) 1.1764 (10) 0.7406 (4) 0.0625 (15)
O4 0.3022 (5) 0.8947 (10) 0.7311 (3) 0.0617 (15)
N1 −0.0564 (4) 0.4506 (9) 0.4235 (3) 0.0363 (13)
C1 0.0288 (5) 0.5773 (10) 0.4399 (3) 0.0335 (14)
C2 0.0881 (5) 0.6285 (10) 0.5180 (4) 0.0367 (15)
C3 0.0533 (6) 0.6731 (11) 0.3695 (4) 0.0392 (15)
H3A 0.116280 0.769845 0.388415 0.047*
H3B −0.006596 0.766385 0.338485 0.047*
C4 0.1990 (6) 0.3419 (12) 0.3732 (4) 0.0486 (18)
H4A 0.258373 0.444967 0.377860 0.058*
H4B 0.192240 0.321755 0.426414 0.058*
C5 0.2207 (6) 0.1200 (12) 0.3415 (5) 0.0478 (18)
C6 0.1824 (6) 0.7758 (11) 0.5427 (4) 0.0397 (15)
H6A 0.208510 0.805366 0.497629 0.048*
H6B 0.239747 0.706121 0.585903 0.048*
C7 0.2611 (6) 1.1711 (12) 0.6282 (5) 0.0508 (18)
H7A 0.303971 1.179423 0.592207 0.061*
H7B 0.244080 1.325716 0.638995 0.061*
C8 0.3293 (6) 1.0693 (13) 0.7059 (5) 0.052 (2)
O1W 0.479 (2) 0.483 (5) 0.3773 (16) 0.072 (7) 0.3
O2W 0.4522 (18) 0.660 (4) 0.0890 (13) 0.071 (6) 0.3
O3W 0.4365 (15) 0.538 (4) 0.0344 (9) 0.123 (7) 0.5
O4W 0.4421 (18) 0.285 (3) 0.0195 (13) 0.105 (7) 0.4
O5W 0.4629 (16) 0.844 (4) 0.0802 (13) 0.057 (5) 0.3
O6W 0.451 (3) 0.951 (7) 0.115 (2) 0.198 (17) 0.5
O7W 0.556 (4) 0.047 (9) 0.009 (3) 0.23 (3) 0.3

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0620 (4) 0.0363 (3) 0.0386 (3) −0.0055 (2) 0.0305 (3) −0.0060 (2)
K1 0.0607 (11) 0.0602 (12) 0.0891 (14) 0.0039 (9) 0.0400 (10) 0.0048 (10)
S1 0.0579 (11) 0.0325 (8) 0.0332 (8) −0.0005 (7) 0.0266 (8) −0.0006 (7)
S2 0.0552 (11) 0.0347 (9) 0.0531 (11) −0.0041 (8) 0.0261 (9) −0.0089 (8)
O1 0.082 (4) 0.037 (3) 0.050 (3) 0.003 (3) 0.034 (3) −0.002 (2)
O2 0.069 (4) 0.053 (3) 0.067 (3) 0.011 (3) 0.033 (3) 0.015 (3)
O3 0.059 (4) 0.059 (4) 0.075 (4) −0.012 (3) 0.030 (3) −0.018 (3)
O4 0.070 (4) 0.057 (3) 0.064 (4) −0.007 (3) 0.030 (3) 0.005 (3)
N1 0.057 (4) 0.031 (3) 0.028 (3) −0.002 (3) 0.024 (2) −0.001 (2)
C1 0.050 (4) 0.028 (3) 0.030 (3) 0.000 (3) 0.025 (3) −0.004 (3)
C2 0.055 (4) 0.027 (3) 0.039 (3) 0.001 (3) 0.031 (3) −0.001 (3)
C3 0.064 (4) 0.032 (3) 0.030 (3) −0.003 (3) 0.028 (3) −0.001 (3)
C4 0.063 (5) 0.045 (4) 0.045 (4) 0.002 (4) 0.028 (4) 0.004 (3)
C5 0.059 (5) 0.034 (4) 0.065 (5) 0.003 (3) 0.040 (4) 0.010 (4)
C6 0.059 (4) 0.032 (3) 0.039 (3) −0.005 (3) 0.030 (3) −0.007 (3)
C7 0.065 (5) 0.036 (4) 0.058 (5) −0.010 (3) 0.030 (4) −0.005 (3)
C8 0.057 (5) 0.045 (4) 0.069 (5) −0.013 (4) 0.039 (4) −0.019 (4)
O1W 0.081 (17) 0.052 (12) 0.066 (14) 0.000 (13) 0.000 (13) 0.017 (11)
O2W 0.084 (15) 0.055 (14) 0.060 (13) −0.001 (11) 0.003 (11) −0.004 (11)
O3W 0.123 (15) 0.18 (2) 0.065 (10) 0.040 (14) 0.024 (9) −0.005 (12)
O4W 0.113 (17) 0.077 (13) 0.111 (16) 0.001 (12) 0.016 (13) 0.011 (12)
O5W 0.044 (11) 0.043 (12) 0.062 (13) 0.006 (9) −0.015 (9) 0.000 (10)
O6W 0.22 (4) 0.16 (3) 0.21 (3) 0.05 (3) 0.06 (3) −0.01 (3)
O7W 0.21 (5) 0.21 (5) 0.16 (4) 0.08 (5) −0.09 (4) −0.02 (4)

Geometric parameters (Å, º)

Ag1—N1 2.550 (5) O4—C8 1.241 (9)
Ag1—O1i 2.470 (5) N1—C1 1.324 (8)
Ag1—O4ii 2.466 (6) N1—C2ii 1.334 (8)
Ag1—S1 2.926 (2) C1—C2 1.399 (9)
Ag1—S1iii 2.604 (2) C1—C3 1.509 (8)
Ag1—S2ii 2.824 (2) C2—C6 1.489 (10)
Ag1—K1i 4.113 (2) C3—H3A 0.9900
K1—O2Wiv 2.46 (2) C3—H3B 0.9900
K1—O1 3.289 (6) C4—C5 1.512 (10)
K1—O2 2.729 (6) C4—H4A 0.9900
K1—O3v 2.724 (6) C4—H4B 0.9900
K1—O3vi 2.751 (6) C6—H6A 0.9900
K1—O4vii 2.608 (6) C6—H6B 0.9900
K1—O1Wviii 2.84 (3) C7—C8 1.523 (12)
K1—O3Wiv 2.848 (17) C7—H7A 0.9900
K1—O4Wiv 3.05 (2) C7—H7B 0.9900
K1—C5 3.162 (7) O1W—O6Wiv 0.93 (4)
K1—O5Wiv 3.26 (2) O1W—O5Wiv 1.22 (4)
K1—O6Wix 3.30 (4) O2W—O5W 1.13 (3)
S1—C3 1.803 (6) O2W—O3W 1.19 (3)
S1—C4 1.824 (8) O2W—O6W 1.81 (4)
S2—C7 1.808 (8) O3W—O4W 1.55 (3)
S2—C6 1.811 (7) O5W—O6W 0.94 (4)
O1—C5 1.263 (9) O5W—O7Wx 1.66 (6)
O2—C5 1.256 (9) O7W—O7Wxi 1.53 (11)
O3—C8 1.262 (9)
O4ii—Ag1—O1i 90.01 (19) C7—S2—C6 103.3 (4)
O4ii—Ag1—N1 110.25 (18) C7—S2—Ag1ii 98.5 (3)
O1i—Ag1—N1 84.78 (17) C6—S2—Ag1ii 86.3 (2)
O4ii—Ag1—S1iii 96.08 (14) C5—O1—Ag1iii 127.6 (5)
O1i—Ag1—S1iii 108.15 (12) C5—O1—K1 73.1 (4)
N1—Ag1—S1iii 150.87 (13) Ag1iii—O1—K1 90.02 (15)
O4ii—Ag1—S2ii 69.66 (14) C5—O2—K1 98.2 (4)
O1i—Ag1—S2ii 138.52 (12) C8—O3—K1v 113.7 (5)
N1—Ag1—S2ii 70.23 (12) C8—O3—K1xii 126.4 (5)
S1iii—Ag1—S2ii 109.63 (5) K1v—O3—K1xii 115.0 (2)
O4ii—Ag1—S1 165.62 (14) C8—O4—Ag1ii 124.0 (6)
O1i—Ag1—S1 75.65 (14) C8—O4—K1xiii 127.6 (5)
N1—Ag1—S1 70.04 (12) Ag1ii—O4—K1xiii 108.3 (2)
S1iii—Ag1—S1 87.60 (4) C1—N1—C2ii 119.9 (6)
S2ii—Ag1—S1 122.15 (6) C1—N1—Ag1 120.9 (4)
O4ii—Ag1—K1i 37.02 (14) C2ii—N1—Ag1 114.4 (4)
O1i—Ag1—K1i 53.08 (13) N1—C1—C2 121.4 (5)
N1—Ag1—K1i 105.00 (13) N1—C1—C3 115.9 (6)
S1iii—Ag1—K1i 103.54 (5) C2—C1—C3 122.7 (6)
S2ii—Ag1—K1i 101.25 (5) N1ii—C2—C1 118.7 (6)
S1—Ag1—K1i 128.60 (5) N1ii—C2—C6 115.6 (6)
Ag1i—S1—Ag1 129.26 (7) C1—C2—C6 125.6 (5)
O2Wiv—K1—O4vii 169.6 (6) C1—C3—S1 112.2 (4)
O2Wiv—K1—O3v 86.3 (6) C1—C3—H3A 109.2
O4vii—K1—O3v 94.50 (18) S1—C3—H3A 109.2
O2Wiv—K1—O2 88.2 (6) C1—C3—H3B 109.2
O4vii—K1—O2 89.60 (19) S1—C3—H3B 109.2
O3v—K1—O2 170.9 (2) H3A—C3—H3B 107.9
O2Wiv—K1—O3vi 74.4 (6) C5—C4—S1 109.6 (5)
O4vii—K1—O3vi 116.0 (2) C5—C4—H4A 109.7
O3v—K1—O3vi 86.76 (14) S1—C4—H4A 109.7
O2—K1—O3vi 98.72 (18) C5—C4—H4B 109.7
O2Wiv—K1—O1Wviii 103.5 (8) S1—C4—H4B 109.7
O4vii—K1—O1Wviii 66.6 (6) H4A—C4—H4B 108.2
O3v—K1—O1Wviii 79.4 (6) O2—C5—O1 126.8 (7)
O2—K1—O1Wviii 94.8 (6) O2—C5—C4 115.7 (7)
O3vi—K1—O1Wviii 166.2 (6) O1—C5—C4 117.4 (7)
O2Wiv—K1—O3Wiv 24.4 (6) O2—C5—K1 58.7 (4)
O4vii—K1—O3Wiv 145.2 (5) O1—C5—K1 84.4 (4)
O3v—K1—O3Wiv 91.9 (4) C4—C5—K1 132.6 (5)
O2—K1—O3Wiv 80.2 (4) C2—C6—S2 105.7 (5)
O3vi—K1—O3Wiv 98.4 (5) C2—C6—H6A 110.6
O1Wviii—K1—O3Wiv 81.2 (8) S2—C6—H6A 110.6
O2Wiv—K1—O4Wiv 54.0 (7) C2—C6—H6B 110.6
O4vii—K1—O4Wiv 115.6 (4) S2—C6—H6B 110.6
O3v—K1—O4Wiv 90.3 (5) H6A—C6—H6B 108.7
O2—K1—O4Wiv 80.6 (5) C8—C7—S2 117.4 (5)
O3vi—K1—O4Wiv 128.4 (4) C8—C7—H7A 108.0
O1Wviii—K1—O4Wiv 51.4 (7) S2—C7—H7A 108.0
O3Wiv—K1—O4Wiv 30.2 (6) C8—C7—H7B 108.0
O2Wiv—K1—C5 94.6 (6) S2—C7—H7B 108.0
O4vii—K1—C5 87.3 (2) H7A—C7—H7B 107.2
O3v—K1—C5 165.0 (2) O4—C8—O3 124.6 (9)
O2—K1—C5 23.16 (17) O4—C8—C7 120.7 (7)
O3vi—K1—C5 79.11 (18) O3—C8—C7 114.8 (7)
O1Wviii—K1—C5 114.7 (6) O4—C8—K1v 117.4 (5)
O3Wiv—K1—C5 95.1 (5) O3—C8—K1v 46.6 (4)
O4Wiv—K1—C5 102.4 (5) C7—C8—K1v 102.3 (4)
O2Wiv—K1—O5Wiv 16.3 (6) O4—C8—K1xiii 36.1 (4)
O4vii—K1—O5Wiv 169.7 (4) O3—C8—K1xiii 92.8 (5)
O3v—K1—O5Wiv 95.3 (4) C7—C8—K1xiii 147.2 (5)
O2—K1—O5Wiv 81.2 (5) K1v—C8—K1xiii 83.44 (19)
O3vi—K1—O5Wiv 61.4 (4) O6Wiv—O1W—O5Wiv 50 (3)
O1Wviii—K1—O5Wiv 118.5 (7) O6Wiv—O1W—K1xiv 112 (4)
O3Wiv—K1—O5Wiv 37.5 (6) O5Wiv—O1W—K1xiv 155 (2)
O4Wiv—K1—O5Wiv 67.6 (5) O5W—O2W—O3W 119 (3)
C5—K1—O5Wiv 82.5 (4) O5W—O2W—O6W 27 (2)
O2Wiv—K1—O1 112.9 (6) O3W—O2W—O6W 143 (2)
O4vii—K1—O1 71.53 (16) O5W—O2W—K1xv 126.2 (17)
O3v—K1—O1 146.36 (18) O3W—O2W—K1xv 96.4 (16)
O2—K1—O1 42.72 (15) O6W—O2W—K1xv 117.0 (16)
O3vi—K1—O1 73.37 (15) O2W—O3W—O4W 138 (2)
O1Wviii—K1—O1 119.2 (6) O2W—O3W—K1xv 59.1 (13)
O3Wiv—K1—O1 117.2 (5) O4W—O3W—K1xv 82.0 (11)
O4Wiv—K1—O1 123.3 (5) O3W—O4W—K1xv 67.8 (10)
C5—K1—O1 22.47 (17) O6W—O5W—O2W 121 (4)
O5Wiv—K1—O1 98.4 (4) O6W—O5W—O1Wxv 49 (3)
O2Wiv—K1—O6Wix 95.0 (8) O2W—O5W—O1Wxv 131 (2)
O4vii—K1—O6Wix 76.0 (7) O6W—O5W—O7Wx 111 (4)
O3v—K1—O6Wix 66.1 (7) O2W—O5W—O7Wx 122 (3)
O2—K1—O6Wix 107.3 (7) O1Wxv—O5W—O7Wx 101 (3)
O3vi—K1—O6Wix 151.6 (7) O6W—O5W—K1xv 107 (3)
O1Wviii—K1—O6Wix 15.1 (8) O2W—O5W—K1xv 37.5 (13)
O3Wiv—K1—O6Wix 75.6 (9) O1Wxv—O5W—K1xv 95.3 (16)
O4Wiv—K1—O6Wix 48.4 (8) O7Wx—O5W—K1xv 140 (2)
C5—K1—O6Wix 128.6 (7) O1Wxv—O6W—O5W 82 (4)
O5Wiv—K1—O6Wix 111.1 (7) O1Wxv—O6W—O2W 98 (4)
O1—K1—O6Wix 134.3 (7) O5W—O6W—O2W 32 (2)
C3—S1—C4 99.7 (3) O1Wxv—O6W—K1xvi 53 (3)
C3—S1—Ag1i 97.3 (2) O5W—O6W—K1xvi 131 (4)
C4—S1—Ag1i 110.7 (2) O2W—O6W—K1xvi 151 (2)
C3—S1—Ag1 92.9 (2) O7Wxi—O7W—O5Wx 96 (3)
C4—S1—Ag1 116.3 (3)
C2ii—N1—C1—C2 0.9 (10) K1xii—O3—C8—C7 70.3 (8)
Ag1—N1—C1—C2 −153.3 (5) K1xii—O3—C8—K1v 153.8 (8)
C2ii—N1—C1—C3 −175.4 (6) K1v—O3—C8—K1xiii 78.2 (4)
Ag1—N1—C1—C3 30.4 (7) K1xii—O3—C8—K1xiii −128.0 (4)
N1—C1—C2—N1ii −0.9 (10) S2—C7—C8—O4 1.5 (10)
C3—C1—C2—N1ii 175.2 (6) S2—C7—C8—O3 −178.3 (5)
N1—C1—C2—C6 −177.5 (6) S2—C7—C8—K1v 134.0 (4)
C3—C1—C2—C6 −1.4 (10) S2—C7—C8—K1xiii 37.0 (11)
N1—C1—C3—S1 −61.4 (7) O5W—O2W—O3W—O4W 162 (3)
C2—C1—C3—S1 122.3 (6) O6W—O2W—O3W—O4W 179 (3)
C4—S1—C3—C1 −66.2 (6) K1xv—O2W—O3W—O4W 24 (3)
Ag1i—S1—C3—C1 −178.7 (5) O5W—O2W—O3W—K1xv 138 (3)
Ag1—S1—C3—C1 51.1 (5) O6W—O2W—O3W—K1xv 155 (4)
C3—S1—C4—C5 165.4 (5) O2W—O3W—O4W—K1xv −21 (3)
Ag1i—S1—C4—C5 −93.0 (5) O3W—O2W—O5W—O6W 157 (4)
Ag1—S1—C4—C5 67.3 (5) K1xv—O2W—O5W—O6W −78 (4)
K1—O2—C5—O1 53.3 (8) O3W—O2W—O5W—O1Wxv −143 (3)
K1—O2—C5—C4 −125.8 (5) O6W—O2W—O5W—O1Wxv 60 (4)
Ag1iii—O1—C5—O2 33.0 (11) K1xv—O2W—O5W—O1Wxv −18 (5)
K1—O1—C5—O2 −43.5 (7) O3W—O2W—O5W—O7Wx 7 (4)
Ag1iii—O1—C5—C4 −147.9 (5) O6W—O2W—O5W—O7Wx −150 (6)
K1—O1—C5—C4 135.6 (6) K1xv—O2W—O5W—O7Wx 132 (3)
Ag1iii—O1—C5—K1 76.5 (5) O3W—O2W—O5W—K1xv −125 (4)
S1—C4—C5—O2 −159.1 (5) O6W—O2W—O5W—K1xv 78 (4)
S1—C4—C5—O1 21.6 (8) O2W—O5W—O6W—O1Wxv 120 (4)
S1—C4—C5—K1 130.8 (5) O7Wx—O5W—O6W—O1Wxv −87 (4)
N1ii—C2—C6—S2 −70.4 (7) K1xv—O5W—O6W—O1Wxv 81 (4)
C1—C2—C6—S2 106.2 (6) O1Wxv—O5W—O6W—O2W −120 (4)
C7—S2—C6—C2 165.8 (5) O7Wx—O5W—O6W—O2W 153 (5)
Ag1ii—S2—C6—C2 68.0 (4) K1xv—O5W—O6W—O2W −39 (2)
C6—S2—C7—C8 −69.2 (6) O2W—O5W—O6W—K1xvi 142 (3)
Ag1ii—S2—C7—C8 18.9 (6) O1Wxv—O5W—O6W—K1xvi 22 (2)
Ag1ii—O4—C8—O3 150.8 (6) O7Wx—O5W—O6W—K1xvi −65 (5)
K1xiii—O4—C8—O3 −32.5 (10) K1xv—O5W—O6W—K1xvi 103 (4)
Ag1ii—O4—C8—C7 −29.0 (9) O5W—O2W—O6W—O1Wxv −60 (5)
K1xiii—O4—C8—C7 147.7 (6) O3W—O2W—O6W—O1Wxv −94 (5)
Ag1ii—O4—C8—K1v −154.8 (3) K1xv—O2W—O6W—O1Wxv 58 (5)
K1xiii—O4—C8—K1v 21.9 (8) O3W—O2W—O6W—O5W −34 (6)
Ag1ii—O4—C8—K1xiii −176.7 (9) K1xv—O2W—O6W—O5W 118 (4)
K1v—O3—C8—O4 96.7 (8) O5W—O2W—O6W—K1xvi −72 (5)
K1xii—O3—C8—O4 −109.5 (8) O3W—O2W—O6W—K1xvi −106 (5)
K1v—O3—C8—C7 −83.5 (7) K1xv—O2W—O6W—K1xvi 45 (5)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z−1/2; (viii) x, y−1, z; (ix) −x+1, y−3/2, −z+1/2; (x) −x+1, −y+1, −z; (xi) −x+1, −y, −z; (xii) x, −y+3/2, z+1/2; (xiii) x, −y+1/2, z+1/2; (xiv) x, y+1, z; (xv) −x+1, y+1/2, −z+1/2; (xvi) −x+1, y+3/2, −z+1/2.

Funding Statement

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchatel.

References

  1. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  2. Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870–7874. [DOI] [PubMed]
  3. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  4. Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010.
  5. Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.
  6. Pacifico, J. & Stoeckli-Evans, H. (2021a). Acta Cryst. E77, 480–490. [DOI] [PMC free article] [PubMed]
  7. Pacifico, J. & Stoeckli-Evans, H. (2021b). IUCrData, x211295. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2414314622000773/im4015sup1.cif

x-07-x220077-sup1.cif (310.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000773/im4015Isup2.hkl

x-07-x220077-Isup2.hkl (185.7KB, hkl)

CCDC reference: 2143798

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES