Skip to main content
IUCrData logoLink to IUCrData
. 2022 Feb 22;7(Pt 2):x220172. doi: 10.1107/S2414314622001729

Bis(2-amino­benzimidazolium) sulfate monohydrate

Adrian Peña Hueso a, Adriana Esparza Ruiz b, Angelina Flores Parra a,*
Editor: W T A Harrisonc
PMCID: PMC9462007  PMID: 36340875

The components of the title mol­ecular salt are linked by N—H⋯O and O—H⋯O hydrogen bonds.

Keywords: crystal structure, 2-amino­benzimidazolium, sulfate

Abstract

In the title hydrated mol­ecular salt, 2C7H8N3 +·SO4 2−·H2O, the components are linked by numerous N—H⋯O and O—H⋯O hydrogen bonds. graphic file with name x-07-x220172-scheme1-3D1.jpg

Structure description

2-Amino­benzimidazole has been used for the synthesis of a series of sulfur heterocycles such as 9H-3-thia-1,4a,9-tri­aza-fluorene-2,4-di­thione (1): its potassium thiol­ate salt was used to prepare metal coordination compounds (Peña-Hueso et al., 2008), and is the precursor of the title compound. When compound 1 is dissolved in dimethyl sulfoxide and strong acids are added, instead of producing the protonated derivative, the thia­diazine ring breaks down, producing 2-amino­benzimidazolium sulfate (2): its crystal structural features are the subject of the present paper.

Compound 2 is formed by the transfer of two protons from sulfuric acid to the heterocycle: the crystal has two 2-amino­benzimidazolium cations, one sulfate anion and one water mol­ecule in its asymmetric unit (Fig. 1). There is a small asymmetry in the S—O bond lengths of the SO4 2– ion from 1.4596 (16) to 1.4723 (15) Å, probably caused by the hydrogen bonds around the anion (Gagné & Hawthorne, 2018). Two benzimidazolium cations are stacked in a head-to-tail way, with a distance between C9 of one mol­ecule and C18 of another of 3.441 (3) Å.

Figure 1.

Figure 1

The mol­ecular structure of 2 showing displacement ellipsoids drawn at the 50% probability level

The sulfate ion accepts seven N—H⋯O hydrogen bonds from four adjacent benzimidazolium cations and one O—H⋯O link from a water mol­ecule (Table 1, Fig. 2). The water mol­ecule accepts one N—H⋯O hydrogen bond and forms two O—H⋯O links to two SO4 2– ions (Fig. 3). In the extended structure, the benzimidazolium cations form parallel ribbons propagating in the [010] direction (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O25i 0.81 (4) 2.25 (3) 2.946 (3) 144 (3)
N3—H3⋯O22ii 0.83 (3) 1.93 (3) 2.749 (3) 172 (3)
N11—H11⋯O23 0.85 (4) 1.96 (4) 2.786 (4) 166 (3)
N13—H13⋯O24iii 0.83 (4) 1.91 (4) 2.720 (3) 165 (3)
N10—H101⋯O23i 0.87 (4) 2.03 (4) 2.894 (5) 169 (3)
N10—H102⋯O25ii 0.89 (3) 2.00 (3) 2.890 (3) 175 (3)
N20—H201⋯O26iii 0.84 (3) 2.04 (3) 2.853 (4) 165 (3)
N20—H202⋯O22iii 0.93 (4) 2.09 (4) 2.973 (4) 157 (3)
O26—H261⋯O24iv 0.80 (7) 2.22 (7) 2.983 (4) 160 (7)
O26—H262⋯O24v 0.80 (7) 2.14 (7) 2.860 (4) 150 (6)
C17—H17⋯O22 0.95 2.56 3.272 (3) 132

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 2.

Figure 2

Hydrogen-bond environment around the sulfate anion.

Figure 3.

Figure 3

Network of hydrogen bonds (dashed lines) involving the water mol­ecules and sulfate ions.

Figure 4.

Figure 4

The unit-cell packing showing [010] ribbons of cations linked by sulfate anions.

The first crystal structure of a 2-amino­benzimidazolium salt was reported with the nitrate anion (Bats et al., 1999) and a related structure with hydrogen sulfate as the counter-ion is also known (You et al., 2009).

Synthesis and crystallization

The decomposition of 9H-3-thia-1,4a,9-tri­aza-fluorene-2,4-di­thione with dilute aqueous H2SO4 in DMSO afforded the title compound 2, m.p. 287–289°C. IR (KBr), ν (cm−1): 3285 (N—H), 1682 (C=N), 1520 (C=C), 1478 (C—N). NMR (DMSO-d 6, p.p.m.) δ 1H: 7.27 (H4, H7); 7.09 (H5, H6); 13.18 (N1—H, N3—H); 8.70 (NH2). δ 13C: 152.1 (C2); 111.8 (C4, C7); 123.4 (C5, C6); 130.4 (C8, C9). δ 15N: −257.1 (N1, N3); −312.9 (N10). Analysis calculated (%) for C16H16N6SO5: C, 43.97; H, 4.74; N, 21.98. Found: C, 43.50; H, 4.80; N, 21.80. The chemical shifts of C2 (152.1 p.p.m.), C8 and C9 (130.4 p.p.m.) in the 13C NMR spectrum indicate that the endocyclic nitro­gen atoms are protonated, in agreement with the crystal structure.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula 2C7H8N3 +·SO4 2−·H2O
M r 382.4
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1115 (2), 10.6282 (2), 17.4772 (3)
β (°) 127.723 (1)
V3) 1779.48 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.25 × 0.25 × 0.17
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 3.0σ(I)] reflections 9132, 4563, 2429
R int 0.04
(sin θ/λ)max−1) 0.675
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.050, 1.03
No. of reflections 2429
No. of parameters 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.31

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), CRYSTALS (Betteridge et al., 2003) and CAMERON (Watkin et al., 1996).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001729/hb4397sup1.cif

x-07-x220172-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001729/hb4397Isup2.hkl

x-07-x220172-Isup2.hkl (228.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622001729/hb4397Isup3.cml

CCDC reference: 1810894

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

2C7H8N3+·SO42·H2O F(000) = 800
Mr = 382.4 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4784 reflections
a = 12.1115 (2) Å θ = 1–29°
b = 10.6282 (2) Å µ = 0.22 mm1
c = 17.4772 (3) Å T = 293 K
β = 127.723 (1)° Prism, colourless
V = 1779.48 (6) Å3 0.25 × 0.25 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2429 reflections with I > 3.0σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.04
Graphite monochromator θmax = 28.7°, θmin = 2.1°
Detector resolution: 9 pixels mm-1 h = −15→16
φ & ω scans k = −14→14
9132 measured reflections l = −23→23
4563 independent reflections

Refinement

Refinement on F Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.050 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.914 0.838 0.564 0.170 0.849E-01
2429 reflections (Δ/σ)max = 0.0002
265 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The positions of all NH and OH hydrogen atoms were refined, and all CH were placed at ideal positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.5660 (3) 0.1533 (2) −0.12552 (17) 0.0484
C4 0.5449 (3) 0.1836 (2) 0.0688 (2) 0.0626
C5 0.6271 (4) 0.1200 (3) 0.1556 (2) 0.0725
C6 0.7293 (3) 0.0372 (3) 0.1756 (2) 0.0728
C7 0.7524 (3) 0.0132 (3) 0.1090 (2) 0.0682
C8 0.6705 (3) 0.0761 (2) 0.02241 (18) 0.0503
C9 0.5691 (2) 0.1616 (2) 0.00250 (16) 0.047
C12 0.9604 (2) 0.2887 (2) 0.21087 (16) 0.047
C14 0.8306 (3) 0.3839 (3) −0.0275 (2) 0.0719
C15 0.7199 (4) 0.4642 (3) −0.0859 (2) 0.0819
C16 0.6467 (4) 0.5164 (3) −0.0557 (2) 0.0786
C17 0.6837 (3) 0.4930 (3) 0.03457 (18) 0.0617
C18 0.7951 (2) 0.4131 (2) 0.09334 (16) 0.0479
C19 0.8659 (3) 0.3583 (2) 0.06268 (17) 0.0521
H1 0.700 (3) 0.023 (3) −0.073 (2) 0.0781*
H3 0.440 (3) 0.256 (3) −0.122 (2) 0.0603*
H4 0.476 0.2396 0.0553 0.0818*
H5 0.6134 0.1333 0.2013 0.0945*
H6 0.7819 −0.0041 0.2343 0.0851*
H7 0.82 −0.0425 0.1215 0.0843*
H11 0.830 (3) 0.384 (3) 0.220 (2) 0.0595*
H13 1.021 (3) 0.235 (3) 0.136 (2) 0.0682*
H14 0.8797 0.3482 −0.0463 0.0925*
H15 0.6943 0.4849 −0.1462 0.0986*
H16 0.5679 0.568 −0.0992 0.0857*
H17 0.6367 0.5309 0.0569 0.0697*
H101 0.580 (3) 0.137 (3) −0.227 (2) 0.0811*
H102 0.472 (3) 0.237 (3) −0.247 (2) 0.0806*
H201 1.041 (3) 0.247 (3) 0.339 (2) 0.07*
H202 1.115 (3) 0.183 (3) 0.301 (2) 0.0698*
H261 0.979 (7) 0.918 (6) 0.069 (5) 0.1811*
H262 0.925 (6) 0.838 (6) 0.005 (5) 0.1804*
N1 0.6657 (2) 0.0745 (2) −0.05947 (16) 0.0562
N3 0.5078 (2) 0.20819 (19) −0.08953 (14) 0.0477
N10 0.5301 (3) 0.1737 (2) −0.21296 (17) 0.0601
N11 0.85749 (19) 0.3685 (2) 0.18649 (14) 0.0479
N13 0.9688 (2) 0.2826 (2) 0.13810 (14) 0.0539
N20 1.0417 (2) 0.2263 (2) 0.29315 (16) 0.0582
O22 0.72767 (16) 0.64914 (16) 0.21275 (11) 0.0506
O23 0.72874 (19) 0.44104 (15) 0.26788 (13) 0.0584
O24 0.8960 (2) 0.5933 (2) 0.37860 (12) 0.0746
O25 0.6554 (2) 0.61476 (17) 0.31313 (14) 0.0657
O26 0.9603 (4) 0.8443 (3) 0.06107 (18) 0.1136
S21 0.75054 (6) 0.57563 (5) 0.29273 (4) 0.0431

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0604 (14) 0.0435 (12) 0.0537 (13) 0.0027 (10) 0.0411 (12) −0.0021 (10)
C4 0.0850 (19) 0.0550 (15) 0.0668 (16) 0.0109 (13) 0.0563 (16) 0.0013 (12)
C5 0.109 (2) 0.0657 (17) 0.0641 (17) 0.0001 (17) 0.0640 (18) 0.0001 (14)
C6 0.087 (2) 0.0733 (18) 0.0555 (15) 0.0049 (16) 0.0420 (16) 0.0142 (14)
C7 0.0703 (17) 0.0651 (17) 0.0705 (17) 0.0194 (14) 0.0436 (15) 0.0185 (14)
C8 0.0577 (14) 0.0464 (12) 0.0551 (14) 0.0060 (11) 0.0388 (12) 0.0017 (11)
C9 0.0580 (13) 0.0411 (11) 0.0484 (12) 0.0015 (10) 0.0358 (11) −0.0010 (10)
C12 0.0421 (11) 0.0541 (13) 0.0449 (12) −0.0005 (10) 0.0266 (11) −0.0062 (11)
C14 0.086 (2) 0.087 (2) 0.0555 (16) 0.0163 (16) 0.0498 (16) −0.0027 (14)
C15 0.107 (3) 0.085 (2) 0.0498 (15) 0.0272 (19) 0.0461 (17) 0.0063 (14)
C16 0.090 (2) 0.0757 (19) 0.0485 (15) 0.0291 (17) 0.0315 (15) −0.0001 (14)
C17 0.0615 (15) 0.0649 (16) 0.0475 (14) 0.0171 (13) 0.0277 (12) −0.0065 (12)
C18 0.0467 (12) 0.0520 (13) 0.0425 (12) 0.0014 (10) 0.0261 (11) −0.0085 (10)
C19 0.0542 (14) 0.0561 (14) 0.0480 (13) 0.0051 (11) 0.0322 (12) −0.0054 (11)
N1 0.0716 (14) 0.0522 (12) 0.0658 (13) 0.0182 (11) 0.0527 (12) 0.0089 (10)
N3 0.0555 (11) 0.0470 (10) 0.0480 (11) 0.0102 (9) 0.0356 (10) 0.0018 (9)
N10 0.0807 (16) 0.0608 (13) 0.0583 (13) 0.0140 (11) 0.0525 (13) 0.0042 (10)
N11 0.0440 (10) 0.0592 (12) 0.0450 (10) 0.0050 (9) 0.0296 (9) −0.0045 (9)
N13 0.0522 (12) 0.0660 (13) 0.0499 (11) 0.0139 (10) 0.0345 (10) −0.0004 (10)
N20 0.0551 (12) 0.0685 (14) 0.0502 (12) 0.0098 (11) 0.0318 (11) 0.0020 (11)
O22 0.0481 (9) 0.0669 (10) 0.0421 (8) 0.0040 (7) 0.0302 (8) 0.0120 (7)
O23 0.0752 (12) 0.0507 (9) 0.0791 (12) −0.0031 (8) 0.0624 (11) −0.0046 (8)
O24 0.0619 (11) 0.1028 (15) 0.0410 (9) −0.0251 (11) 0.0223 (9) 0.0111 (9)
O25 0.0948 (14) 0.0562 (10) 0.0907 (13) 0.0093 (9) 0.0796 (12) 0.0092 (9)
O26 0.144 (2) 0.148 (3) 0.0652 (14) −0.069 (2) 0.0725 (17) −0.0286 (16)
S21 0.0483 (3) 0.0508 (3) 0.0396 (3) −0.0046 (3) 0.0317 (3) 0.0008 (2)

Geometric parameters (Å, º)

C2—N1 1.336 (3) C15—H15 0.925
C2—N3 1.333 (3) C16—C17 1.374 (4)
C2—N10 1.326 (3) C16—H16 0.95
C4—C5 1.380 (4) C17—C18 1.379 (3)
C4—C9 1.377 (3) C17—H17 0.955
C4—H4 0.931 C18—C19 1.387 (3)
C5—C6 1.379 (4) C18—N11 1.393 (3)
C5—H5 0.92 C19—N13 1.389 (3)
C6—C7 1.378 (4) H1—N1 0.80 (3)
C6—H6 0.922 H3—N3 0.83 (3)
C7—C8 1.373 (4) H11—N11 0.85 (3)
C7—H7 0.921 H13—N13 0.83 (3)
C8—C9 1.390 (3) H101—N10 0.87 (3)
C8—N1 1.396 (3) H102—N10 0.89 (3)
C9—N3 1.386 (3) H201—N20 0.83 (3)
C12—N11 1.343 (3) H202—N20 0.93 (3)
C12—N13 1.338 (3) H261—O26 0.81 (6)
C12—N20 1.321 (3) H262—O26 0.79 (6)
C14—C15 1.376 (4) O22—S21 1.4723 (15)
C14—C19 1.385 (4) O23—S21 1.4711 (18)
C14—H14 0.919 O24—S21 1.4680 (19)
C15—C16 1.394 (4) O25—S21 1.4596 (16)
N1—C2—N3 109.0 (2) C16—C17—H17 122.5
N1—C2—N10 125.7 (2) C18—C17—H17 120.8
N3—C2—N10 125.2 (2) C17—C18—C19 121.7 (2)
C5—C4—C9 117.5 (2) C17—C18—N11 131.6 (2)
C5—C4—H4 121.5 C19—C18—N11 106.7 (2)
C9—C4—H4 121 C18—C19—C14 121.6 (2)
C4—C5—C6 121.5 (3) C18—C19—N13 106.5 (2)
C4—C5—H5 119.2 C14—C19—N13 131.8 (2)
C6—C5—H5 119.3 C8—N1—C2 109.08 (19)
C5—C6—C7 121.3 (3) C8—N1—H1 127 (2)
C5—C6—H6 119.3 C2—N1—H1 122 (2)
C7—C6—H6 119.4 C9—N3—C2 109.2 (2)
C6—C7—C8 117.2 (3) C9—N3—H3 128.6 (19)
C6—C7—H7 122 C2—N3—H3 121.9 (19)
C8—C7—H7 120.8 H102—N10—C2 117 (2)
C7—C8—C9 121.8 (2) H102—N10—H101 124 (3)
C7—C8—N1 132.3 (2) C2—N10—H101 117 (2)
C9—C8—N1 106.0 (2) C18—N11—C12 108.65 (18)
C8—C9—C4 120.7 (2) C18—N11—H11 125.7 (19)
C8—C9—N3 106.76 (19) C12—N11—H11 125.5 (19)
C4—C9—N3 132.5 (2) C19—N13—C12 109.13 (19)
N11—C12—N13 109.0 (2) C19—N13—H13 125 (2)
N11—C12—N20 126.2 (2) C12—N13—H13 126 (2)
N13—C12—N20 124.8 (2) H202—N20—C12 114.7 (18)
C15—C14—C19 116.6 (2) H202—N20—H201 124 (3)
C15—C14—H14 122.8 C12—N20—H201 118 (2)
C19—C14—H14 120.7 H261—O26—H262 100 (6)
C14—C15—C16 121.6 (3) O22—S21—O23 109.89 (10)
C14—C15—H15 119.2 O22—S21—O24 108.29 (10)
C16—C15—H15 119.3 O23—S21—O24 108.23 (12)
C15—C16—C17 121.7 (3) O22—S21—O25 111.26 (10)
C15—C16—H16 119.2 O23—S21—O25 108.86 (10)
C17—C16—H16 119.1 O24—S21—O25 110.26 (13)
C16—C17—C18 116.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O25i 0.81 (4) 2.25 (3) 2.946 (3) 144 (3)
N3—H3···O22ii 0.83 (3) 1.93 (3) 2.749 (3) 172 (3)
N11—H11···O23 0.85 (4) 1.96 (4) 2.786 (4) 166 (3)
N13—H13···O24iii 0.83 (4) 1.91 (4) 2.720 (3) 165 (3)
N10—H101···O23i 0.87 (4) 2.03 (4) 2.894 (5) 169 (3)
N10—H102···O25ii 0.89 (3) 2.00 (3) 2.890 (3) 175 (3)
N20—H201···O26iii 0.84 (3) 2.04 (3) 2.853 (4) 165 (3)
N20—H202···O22iii 0.93 (4) 2.09 (4) 2.973 (4) 157 (3)
O26—H261···O24iv 0.80 (7) 2.22 (7) 2.983 (4) 160 (7)
O26—H262···O24v 0.80 (7) 2.14 (7) 2.860 (4) 150 (6)
C17—H17···O22 0.95 2.56 3.272 (3) 132

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, y+1/2, −z+1/2; (v) x, −y+3/2, z−1/2.

Funding Statement

The authors thank Cinvestav for financial support.

References

  1. Bats, J. W., Gördes, D. & Schmalz, H.-G. (1999). Acta Cryst. C55, 1325–1328.
  2. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  3. Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96.
  4. Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. https://doi.org/10.1016/S0076-6879(97)76066-X
  6. Peña-Hueso, A., Esparza-Ruiz, A., Ramos-García, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492–504.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, University of Oxford, England.
  9. You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001729/hb4397sup1.cif

x-07-x220172-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001729/hb4397Isup2.hkl

x-07-x220172-Isup2.hkl (228.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622001729/hb4397Isup3.cml

CCDC reference: 1810894

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES