Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 10;7(Pt 3):x220265. doi: 10.1107/S2414314622002656

1-(Methyl-α-d-gluco­pyran­osid-6-yl)-3-vinyl­imidazolium iodide di­methyl­formamide monosolvate

Sina Lambrecht a, Alexander Villinger b, Stefan Jopp a,*
Editor: L Van Meerveltc
PMCID: PMC9462008  PMID: 36339811

The title compound is a gluco­pyran­oside compound containing a cationic vinyl­imidazolium moiety. The gluco­pyran­oside ring shows a distinctive chair conformation.

Keywords: crystal structure, carbohydrate, imidazolium

Abstract

The title solvated molecular salt, [MeGluVIm]I (MeGluVIm = 1-(methyl-α-d-gluco­pyran­osid-6-yl)-3-vinyl­imidazolium), or C12H19N2O5 +·I·C3H7NO, was synthesized from methyl-α-d-6-iodo­gluco­pyran­oside and vinyl­imidazole in DMF. It crystallizes through precipitation from ethyl acetate solution directly after the reaction procedure. The crystal structure consists of an iodide anion and a [MeGluVIm] cation. Furthermore, the crystal structure contains one mol­ecule of DMF, which accepts two O—H⋯H hydrogen bonds from the OH groups of the gluco­pyran­oside. graphic file with name x-07-x220265-scheme1-3D1.jpg

Structure description

[MeGluVIm]I is part of a sub-category of ionic liquids, called carbohydrate-based ionic liquids (CHILs; Jopp, 2020). These mol­ecules are defined as ionic organic compounds in which either the cation or the anion consists of an intact carbohydrate moiety. Our group has recently discovered a straightforward synthetic strategy for CHILs, in which methyl-α-d-gluco­pyran­oside is transformed into methyl-α-d-6-iodo­gluco­pyran­oside in the first step (Skaanderup et al., 2002) and then in the second step quarternized with an N-substituted imidazole of choice to achieve a carbohydrate-based ionic liquid (Schnegas & Jopp, 2021). The title compound [MeGluVIm]I contains a vinyl­imidazolium ring bound to atom C6 of the gluco­pyran­oside. Fig. 1 shows the asymmetric unit, including one mol­ecule of di­methyl­formamide, which was used as the reaction solvent. The title compound crystallizes in a monoclinic unit cell. The crystal structure contains three classical hydrogen bonds and additional C—H⋯O/I inter­actions (Table 1). One hydrogen bond is formed between O3—H3A of the gluco­pyran­oside and O7 of DMF with an H⋯H length of 2.09 (4) Å. Two additional hydrogen bonds exists between the [MeGluVIm] cation and the iodide anion, which are O4—H4A⋯I1 with 2.71 (5) Å and O5—H5A⋯I1 with 2.75 (5) Å. Fig. 2 gives an alternative view of the cation, indicating the distinctive chair conformation of the gluco­pyran­oside as well as the overall stereochemistry of the compound. The configurations of the stereogenic centres in the chosen cation are S (C1), R (C2), S (C3), S (C4) and R (C5).

Figure 1.

Figure 1

Mol­ecular structure of the title compound. Displacement ellipsoids correspond to 50% probability.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O7 0.72 (4) 2.09 (4) 2.797 (4) 167 (5)
O4—H4A⋯I1i 0.78 (5) 2.71 (5) 3.482 (3) 171 (4)
O5—H5A⋯I1 0.74 (5) 2.75 (5) 3.474 (3) 165 (4)
C6—H6A⋯O5ii 0.99 2.46 3.332 (4) 147
C8—H8⋯O4ii 0.95 2.44 3.252 (4) 143
C8—H8⋯O5ii 0.95 2.53 3.285 (4) 136
C9—H9⋯O3iii 0.95 2.51 3.404 (5) 156
C10—H10⋯O7iii 0.95 2.40 3.159 (5) 137
C11—H11⋯I1iv 0.95 3.02 3.925 (3) 161
C15—H15⋯O4 0.95 2.58 3.297 (5) 132

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

Mol­ecular structure of the title compound. Displacement ellipsoids correspond to 50% probability. The DMF was removed for a clear view of the chair conformation.

Synthesis and crystallization

Methyl-6-iodo-α-d-gluco­pyran­oside (1.824 g; 6 mmol) and 1-vinyl­imidazole (0.821 g; 10 mmol) were dissolved in DMF (10 ml) and stirred at 95°C for 24 h. After cooling down, ethyl acetate (80 ml) was added and the flask was stored in a fridge overnight. The solvent was deca­nted and the precipitated solid was washed with ethyl acetate (3 × 40 ml) and dried under high vacuum to achieve the product as a beige solid (1.752 g; yield 73%). Single crystals of the compound were formed during the precipitation (m.p.: 448–453 K; Td : 509 K).

1H NMR (300 MHz, D2O): δ = 3.21–3.30 (m, 3H, OCH3); 3.58 (dd, 1H, 3 J = 9.77, 3 J = 3.77, H-2); 3.66–3.75 (m, 1H); 3.95 (dd, 1H, 3 J = 6.3, 3 J = 3.72); 4.50 (dd, 1H, 3 J = 14.55, 3 J = 7.38, H-6a); 4.70 (dd, 1H, 3 J = 14.55, 3 J = 2.55, H-6 b); 4.85 (d, 1H, 3 J = 3.77, H-1); 5.49 (dd, 1H, 3 J = 8.68, 3J = 2.84, vinyl-CH); 5.86 (dd, 1H, 3 J = 15.58, 3 J = 2.85, vinyl-CH2 − a); 7.2 (dd, 1H, 3 J = 15.58, 3 J = 8.70, vinyl-CH2 − b); 7.70 (d, 1H, 3J = 2.0, HAr); 7.86 (d, 1H, 3 J = 2.0, HAr); 9.16 (s, 1H).

13C NMR (300 MHz, D2O): δm= 36.9 (NCH); 50.2 (C-6); 55.1 (OCH3); 69.2, 40.5, 71.0, 72.8 (C-2, C-3, C-4, C-5); 99.3 (C-1); 109.8 (CH2); 119.4, 123.8, 128.1 (CHAr).

HRMS (ESI, m/z): calculated for C12H19N2O5 +, 271.1299; measured 271.1306. Calculated for I, 126.9040; measured 126.9045.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal studied was refined as a two-component inversion twin.

Table 2. Experimental details.

Crystal data
Chemical formula C12H19N2O5 +·I·C3H7NO
M r 471.29
Crystal system, space group Monoclinic, P21
Temperature (K) 123
a, b, c (Å) 10.816 (2), 7.0106 (15), 13.169 (3)
β (°) 106.833 (4)
V3) 955.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.29 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17430, 6072, 5626
R int 0.038
(sin θ/λ)max−1) 0.725
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.060, 1.03
No. of reflections 6072
No. of parameters 242
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.42, −0.44
Absolute structure Refined as an inversion twin, 2815 Friedel pairs.
Absolute structure parameter 0.006 (19)

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002656/vm4051sup1.cif

x-07-x220265-sup1.cif (575.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002656/vm4051Isup2.hkl

x-07-x220265-Isup2.hkl (482.7KB, hkl)

CCDC reference: 2157239

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C12H19N2O5+·I·C3H7NO F(000) = 476
Mr = 471.29 Dx = 1.638 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.816 (2) Å Cell parameters from 7185 reflections
b = 7.0106 (15) Å θ = 3.2–31.1°
c = 13.169 (3) Å µ = 1.71 mm1
β = 106.833 (4)° T = 123 K
V = 955.7 (3) Å3 Needle, colourless
Z = 2 0.29 × 0.08 × 0.03 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 6072 independent reflections
Radiation source: sealed tube 5626 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 Rint = 0.038
phi and ω scans θmax = 31.0°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −15→15
Tmin = 0.629, Tmax = 0.746 k = −10→10
17430 measured reflections l = −19→18

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0231P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 1.42 e Å3
6072 reflections Δρmin = −0.44 e Å3
242 parameters Absolute structure: Refined as an inversion twin, 2815 Friedel pairs.
1 restraint Absolute structure parameter: 0.006 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl groups), 0.99Å (methylene groups), 1.00Å (methine groups) or 0.95 Å (aryl CH) and with Uiso(H) = 1.5 times Ueq(C) (methyl groups) or with Uiso(H) = 1.2 times Ueq(C) (methylene groups, aryl CH, methine groups). Torsion angles of all methyl groups were allowed to refine. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1863 (3) 1.0859 (4) 0.3364 (2) 0.0151 (5)
N2 0.1065 (3) 1.1296 (4) 0.1676 (2) 0.0179 (6)
O1 0.3511 (2) 0.8245 (4) 0.4934 (2) 0.0146 (5)
O2 0.3182 (3) 0.5032 (4) 0.4445 (2) 0.0184 (5)
O3 0.4060 (3) 0.3939 (4) 0.6541 (3) 0.0222 (6)
O4 0.2120 (3) 0.5948 (4) 0.7282 (2) 0.0197 (5)
O5 0.0572 (2) 0.8579 (4) 0.5786 (2) 0.0169 (5)
C1 0.3882 (3) 0.6322 (5) 0.5202 (3) 0.0150 (7)
H1 0.4821 0.6180 0.5263 0.018*
C2 0.3673 (3) 0.5847 (5) 0.6269 (3) 0.0156 (6)
H2 0.4240 0.6703 0.6816 0.019*
C3 0.2266 (3) 0.6217 (5) 0.6246 (3) 0.0137 (6)
H3 0.1679 0.5327 0.5733 0.016*
C4 0.1910 (3) 0.8273 (5) 0.5914 (3) 0.0129 (6)
H4 0.2438 0.9163 0.6464 0.015*
C5 0.2174 (3) 0.8639 (4) 0.4853 (3) 0.0123 (6)
H5 0.1607 0.7793 0.4299 0.015*
C6 0.1951 (3) 1.0688 (4) 0.4498 (3) 0.0139 (6)
H6A 0.1141 1.1156 0.4618 0.017*
H6B 0.2671 1.1487 0.4921 0.017*
C7 0.3439 (4) 0.5229 (5) 0.3446 (3) 0.0238 (8)
H7A 0.3086 0.4128 0.2997 0.036*
H7B 0.4374 0.5295 0.3558 0.036*
H7C 0.3033 0.6400 0.3097 0.036*
C8 0.0831 (3) 1.1454 (4) 0.2617 (3) 0.0153 (7)
H8 0.0055 1.1915 0.2729 0.018*
C9 0.2788 (3) 1.0274 (5) 0.2893 (3) 0.0174 (7)
H9 0.3618 0.9775 0.3244 0.021*
C10 0.2286 (4) 1.0547 (5) 0.1843 (3) 0.0200 (7)
H10 0.2698 1.0273 0.1313 0.024*
C11 0.0197 (3) 1.1684 (9) 0.0656 (3) 0.0238 (7)
H11 0.0524 1.1636 0.0060 0.029*
C12 −0.1014 (4) 1.2099 (7) 0.0494 (3) 0.0322 (11)
H12A −0.1368 1.2158 0.1075 0.039*
H12B −0.1547 1.2344 −0.0205 0.039*
H3A 0.426 (4) 0.391 (7) 0.711 (3) 0.014 (12)*
H4A 0.186 (4) 0.495 (7) 0.740 (4) 0.025 (12)*
H5A 0.051 (4) 0.940 (7) 0.612 (4) 0.018 (12)*
I1 0.06251 (2) 1.18116 (3) 0.77975 (2) 0.02003 (6)
N3 0.4772 (3) 0.4326 (5) 1.0319 (3) 0.0235 (7)
O7 0.5214 (3) 0.4185 (5) 0.8731 (2) 0.0306 (7)
C13 0.6115 (5) 0.4439 (8) 1.0952 (4) 0.0328 (10)
H13A 0.6663 0.4637 1.0485 0.049*
H13B 0.6363 0.3249 1.1349 0.049*
H13C 0.6225 0.5508 1.1450 0.049*
C14 0.3817 (4) 0.4304 (7) 1.0890 (4) 0.0341 (10)
H14A 0.3828 0.5529 1.1250 0.051*
H14B 0.4016 0.3275 1.1416 0.051*
H14C 0.2960 0.4092 1.0391 0.051*
C15 0.4445 (5) 0.4205 (6) 0.9273 (4) 0.0241 (8)
H15 0.3550 0.4126 0.8906 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0161 (13) 0.0129 (12) 0.0185 (14) −0.0016 (10) 0.0086 (11) −0.0002 (11)
N2 0.0226 (14) 0.0170 (14) 0.0156 (13) −0.0010 (10) 0.0079 (11) 0.0006 (10)
O1 0.0115 (12) 0.0128 (12) 0.0203 (13) −0.0008 (9) 0.0061 (10) 0.0012 (10)
O2 0.0274 (14) 0.0139 (12) 0.0178 (13) −0.0039 (10) 0.0125 (11) −0.0033 (11)
O3 0.0272 (15) 0.0191 (12) 0.0205 (14) 0.0079 (10) 0.0072 (12) 0.0051 (11)
O4 0.0252 (13) 0.0200 (12) 0.0170 (12) 0.0001 (10) 0.0109 (10) 0.0032 (10)
O5 0.0146 (12) 0.0199 (12) 0.0185 (12) 0.0001 (9) 0.0081 (10) −0.0027 (10)
C1 0.0138 (14) 0.0141 (17) 0.0181 (15) 0.0027 (10) 0.0064 (12) 0.0005 (11)
C2 0.0163 (15) 0.0147 (15) 0.0158 (15) 0.0024 (11) 0.0049 (12) 0.0002 (12)
C3 0.0156 (15) 0.0140 (13) 0.0132 (14) −0.0010 (11) 0.0065 (12) −0.0021 (11)
C4 0.0130 (14) 0.0130 (14) 0.0135 (15) 0.0004 (11) 0.0052 (12) −0.0024 (13)
C5 0.0108 (14) 0.0131 (13) 0.0137 (15) −0.0002 (10) 0.0047 (12) −0.0014 (12)
C6 0.0170 (15) 0.0132 (13) 0.0135 (15) 0.0008 (11) 0.0075 (12) −0.0004 (12)
C7 0.038 (2) 0.0196 (17) 0.0184 (17) −0.0027 (15) 0.0156 (16) −0.0031 (14)
C8 0.0205 (14) 0.011 (2) 0.0169 (14) −0.0008 (10) 0.0085 (11) 0.0021 (11)
C9 0.0175 (16) 0.0153 (15) 0.0237 (18) −0.0017 (12) 0.0129 (14) −0.0021 (13)
C10 0.0234 (17) 0.0175 (15) 0.0241 (18) −0.0043 (13) 0.0149 (15) −0.0032 (14)
C11 0.0362 (17) 0.0203 (18) 0.0148 (13) 0.001 (2) 0.0072 (12) 0.005 (2)
C12 0.042 (2) 0.030 (3) 0.0215 (16) 0.0067 (18) 0.0031 (15) 0.0061 (18)
I1 0.02599 (10) 0.01685 (9) 0.01752 (9) 0.00241 (13) 0.00673 (7) 0.00025 (13)
N3 0.0222 (16) 0.0241 (16) 0.0226 (17) −0.0012 (13) 0.0040 (13) 0.0042 (14)
O7 0.0305 (16) 0.0392 (17) 0.0239 (15) 0.0009 (13) 0.0108 (13) 0.0044 (13)
C13 0.028 (2) 0.041 (2) 0.024 (2) 0.003 (2) −0.0027 (18) 0.0025 (19)
C14 0.033 (2) 0.042 (2) 0.031 (2) −0.0034 (19) 0.0139 (19) 0.005 (2)
C15 0.022 (2) 0.0260 (18) 0.022 (2) −0.0009 (17) 0.0021 (18) 0.0034 (17)

Geometric parameters (Å, º)

N1—C8 1.324 (4) C5—H5 1.0000
N1—C9 1.383 (4) C6—H6A 0.9900
N1—C6 1.472 (4) C6—H6B 0.9900
N2—C8 1.339 (4) C7—H7A 0.9800
N2—C10 1.379 (5) C7—H7B 0.9800
N2—C11 1.424 (4) C7—H7C 0.9800
O1—C1 1.421 (4) C8—H8 0.9500
O1—C5 1.446 (4) C9—C10 1.345 (5)
O2—C1 1.396 (4) C9—H9 0.9500
O2—C7 1.428 (5) C10—H10 0.9500
O3—C2 1.416 (4) C11—C12 1.298 (6)
O3—H3A 0.72 (4) C11—H11 0.9500
O4—C3 1.430 (4) C12—H12A 0.9500
O4—H4A 0.78 (5) C12—H12B 0.9500
O5—C4 1.424 (4) N3—C15 1.322 (6)
O5—H5A 0.74 (5) N3—C14 1.442 (6)
C1—C2 1.523 (5) N3—C13 1.453 (5)
C1—H1 1.0000 O7—C15 1.243 (5)
C2—C3 1.536 (5) C13—H13A 0.9800
C2—H2 1.0000 C13—H13B 0.9800
C3—C4 1.523 (5) C13—H13C 0.9800
C3—H3 1.0000 C14—H14A 0.9800
C4—C5 1.527 (5) C14—H14B 0.9800
C4—H4 1.0000 C14—H14C 0.9800
C5—C6 1.509 (4) C15—H15 0.9500
C8—N1—C9 108.9 (3) C5—C6—H6A 109.6
C8—N1—C6 124.9 (3) N1—C6—H6B 109.6
C9—N1—C6 126.0 (3) C5—C6—H6B 109.6
C8—N2—C10 108.2 (3) H6A—C6—H6B 108.1
C8—N2—C11 127.4 (3) O2—C7—H7A 109.5
C10—N2—C11 124.2 (3) O2—C7—H7B 109.5
C1—O1—C5 113.8 (3) H7A—C7—H7B 109.5
C1—O2—C7 112.6 (3) O2—C7—H7C 109.5
C2—O3—H3A 105 (4) H7A—C7—H7C 109.5
C3—O4—H4A 117 (4) H7B—C7—H7C 109.5
C4—O5—H5A 108 (3) N1—C8—N2 108.5 (3)
O2—C1—O1 112.4 (3) N1—C8—H8 125.8
O2—C1—C2 108.8 (3) N2—C8—H8 125.8
O1—C1—C2 109.3 (3) C10—C9—N1 106.9 (3)
O2—C1—H1 108.8 C10—C9—H9 126.6
O1—C1—H1 108.8 N1—C9—H9 126.6
C2—C1—H1 108.8 C9—C10—N2 107.5 (3)
O3—C2—C1 109.2 (3) C9—C10—H10 126.2
O3—C2—C3 112.5 (3) N2—C10—H10 126.2
C1—C2—C3 110.9 (3) C12—C11—N2 123.8 (3)
O3—C2—H2 108.0 C12—C11—H11 118.1
C1—C2—H2 108.0 N2—C11—H11 118.1
C3—C2—H2 108.0 C11—C12—H12A 120.0
O4—C3—C4 108.1 (3) C11—C12—H12B 120.0
O4—C3—C2 110.0 (3) H12A—C12—H12B 120.0
C4—C3—C2 109.4 (3) C15—N3—C14 121.8 (4)
O4—C3—H3 109.8 C15—N3—C13 121.5 (4)
C4—C3—H3 109.8 C14—N3—C13 116.7 (4)
C2—C3—H3 109.8 N3—C13—H13A 109.5
O5—C4—C3 109.9 (3) N3—C13—H13B 109.5
O5—C4—C5 108.6 (3) H13A—C13—H13B 109.5
C3—C4—C5 108.9 (3) N3—C13—H13C 109.5
O5—C4—H4 109.8 H13A—C13—H13C 109.5
C3—C4—H4 109.8 H13B—C13—H13C 109.5
C5—C4—H4 109.8 N3—C14—H14A 109.5
O1—C5—C6 105.7 (3) N3—C14—H14B 109.5
O1—C5—C4 110.4 (3) H14A—C14—H14B 109.5
C6—C5—C4 112.8 (3) N3—C14—H14C 109.5
O1—C5—H5 109.3 H14A—C14—H14C 109.5
C6—C5—H5 109.3 H14B—C14—H14C 109.5
C4—C5—H5 109.3 O7—C15—N3 125.3 (5)
N1—C6—C5 110.4 (3) O7—C15—H15 117.4
N1—C6—H6A 109.6 N3—C15—H15 117.4
C7—O2—C1—O1 65.7 (4) O5—C4—C5—C6 64.9 (3)
C7—O2—C1—C2 −173.1 (3) C3—C4—C5—C6 −175.4 (3)
C5—O1—C1—O2 61.2 (4) C8—N1—C6—C5 117.5 (3)
C5—O1—C1—C2 −59.7 (3) C9—N1—C6—C5 −56.3 (4)
O2—C1—C2—O3 57.7 (3) O1—C5—C6—N1 74.9 (3)
O1—C1—C2—O3 −179.2 (3) C4—C5—C6—N1 −164.3 (3)
O2—C1—C2—C3 −66.8 (3) C9—N1—C8—N2 −0.8 (4)
O1—C1—C2—C3 56.3 (3) C6—N1—C8—N2 −175.6 (3)
O3—C2—C3—O4 63.2 (4) C10—N2—C8—N1 0.9 (4)
C1—C2—C3—O4 −174.2 (3) C11—N2—C8—N1 176.6 (4)
O3—C2—C3—C4 −178.2 (3) C8—N1—C9—C10 0.5 (4)
C1—C2—C3—C4 −55.6 (3) C6—N1—C9—C10 175.1 (3)
O4—C3—C4—O5 −66.2 (3) N1—C9—C10—N2 0.1 (4)
C2—C3—C4—O5 174.1 (3) C8—N2—C10—C9 −0.6 (4)
O4—C3—C4—C5 175.0 (3) C11—N2—C10—C9 −176.5 (4)
C2—C3—C4—C5 55.3 (3) C8—N2—C11—C12 −6.4 (8)
C1—O1—C5—C6 −176.5 (3) C10—N2—C11—C12 168.6 (5)
C1—O1—C5—C4 61.2 (3) C14—N3—C15—O7 −178.8 (4)
O5—C4—C5—O1 −177.0 (3) C13—N3—C15—O7 −0.4 (7)
C3—C4—C5—O1 −57.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O7 0.72 (4) 2.09 (4) 2.797 (4) 167 (5)
O4—H4A···I1i 0.78 (5) 2.71 (5) 3.482 (3) 171 (4)
O5—H5A···I1 0.74 (5) 2.75 (5) 3.474 (3) 165 (4)
C6—H6A···O5ii 0.99 2.46 3.332 (4) 147
C8—H8···O4ii 0.95 2.44 3.252 (4) 143
C8—H8···O5ii 0.95 2.53 3.285 (4) 136
C9—H9···O3iii 0.95 2.51 3.404 (5) 156
C10—H10···O7iii 0.95 2.40 3.159 (5) 137
C11—H11···I1iv 0.95 3.02 3.925 (3) 161
C15—H15···O4 0.95 2.58 3.297 (5) 132

Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x, y, z−1.

Funding Statement

We acknowledge financial support by the Deutsche Forschungsgemeinschaft and the University of Rostock within the funding programme Open Access Publishing.

References

  1. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Jopp, S. (2020). Eur. J. Org. Chem. pp. 6418–6428.
  4. Schnegas, J. & Jopp, S. (2021). Compounds, 1, 154–163.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  7. Skaanderup, P. R., Poulsen, C. S., Hyldtoft, L., Jørgensen, M. R. & Madsen, R. (2002). Synthesis, pp. 1721–1727.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002656/vm4051sup1.cif

x-07-x220265-sup1.cif (575.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002656/vm4051Isup2.hkl

x-07-x220265-Isup2.hkl (482.7KB, hkl)

CCDC reference: 2157239

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES