Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 29;7(Pt 3):x220283. doi: 10.1107/S2414314622002838

(E)-5-(4-Methyl­benzyl­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H-indazol-4-one

C Selva Meenatchi a, S Athimoolam b, J Suresh a, R Vishnu Priya a, S Raja Rubina c, S R Bhandari d,*
Editor: E R T Tiekinke
PMCID: PMC9462011  PMID: 36339806

The 1,2-diazole ring in the title compound is fused to a non-aromatic six-membered ring and bears an N-bound phenyl ring. In the crystal, weak C—H⋯O, C—H⋯π and π–π inter­actions contribute to the three-dimensional architecture.

Keywords: crystal structure, Hirshfeld surface, indazol-4-one

Abstract

In the title compound, C21H18N2O, the non-aromatic six-membered ring adopts a distorted envelope conformation with one of the methyl­ene-C atoms being the flap atom. The dihedral angle between the phenyl and 4-tolyl rings is 75.3 (1)°. The 1,2-diazole ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the phenyl and 4-tolyl rings, respectively. In the crystal, stabilizing C—H⋯O, C—H⋯π and π–π inter­actions are evident. The calculated Hirshfeld surfaces highlight the prominent role of C—H⋯O inter­actions (8.6%), along with H⋯H (51.7%) and C⋯H/H⋯C (29.2%) surface contacts. graphic file with name x-07-x220283-scheme1-3D1.jpg

Structure description

Heterocyclic compounds have been investigated for a long while in view of their pharmaceutical and biological importance. 1,2-Diazole derivatives are found to possess anti-bacterial, anti-viral, anti-inflammatory, anti-depressant and anti-cancer activities (Popat et al., 2003; Faisal et al., 2019) because of their conformational freedom and exhibit inter­molecular inter­actions of biological relevance. Owing to its medicinal inter­est and in a continuation of previous work, the crystal and mol­ecular structures of another indazole derivative, namely, (E)-5-(4-methyl­benzyl­idene)-1-phenyl-4,5,6,7-tetra­hydro-1H-ind­azol-4-one, (I), is reported here.

The mol­ecule of (I) and the recently reported 4-chloro­benzyl­idene derivative (II) (Meenatchi et al., 2021) are isomorphous. The shorter b-axis lengths differ slightly between the isomorphous crystal structures, i.e. 8.7177 (5) Å for (I) and 8.6604 (5) Å for (II). In (I), the non-aromatic six-membered ring adopts a distorted envelope conformation with the methyl­ene-C9 atom being the flap atom, Fig. 1. The heterocyclic five-membered ring forms dihedral angles of 41.9 (1) and 65.5 (1)° with the pendent N-bound phenyl and 4-tolyl rings, respectively. A weak intra­molecular C6—H12⋯O1 inter­action (Table 1) stabilizes the mol­ecular structure.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing 50% probability displacement ellipsoids

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H12⋯O1 0.93 2.43 2.806 (2) 104
C12—H4⋯O1i 0.93 2.52 3.312 (2) 143
C17—H5⋯O1ii 0.93 2.60 3.5081 (19) 164
C18—H8⋯O1iii 0.93 2.46 3.325 (2) 155

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

The mol­ecular packing features C—H⋯O, C—H⋯π and π–π inter­actions (Fig. 2). The C—H⋯O inter­molecular inter­actions, viz., C12—H4⋯O1i and C17—H5⋯O1ii, lead, respectively, to two centrosymmetric ring Inline graphic (16) and Inline graphic (10) motifs (Bernstein et al., 1995) (Fig. 3); see Table 1 for symmetry operations. These centrosymmetric dimers are connected through another C—H⋯O inter­action, namely, C18—H8⋯O1iii, leading to a chain C(8) motif along the c-axis direction of the unit cell (Fig. 4).

Figure 2.

Figure 2

The mol­ecular packing of (I), viewed down the b axis.

Figure 3.

Figure 3

C—H⋯O inter­actions shown as dashed lines forming ring (a) Inline graphic (16) and (b) Inline graphic (10) motifs.

Figure 4.

Figure 4

C—H⋯O inter­actions shown as dashed lines forming chain C(8) motif along b axis of the unit cell

As a qu­anti­tative approach to analyse the inter­molecular inter­actions, the Hirshfeld surfaces and two-dimensional (2-D) fingerprint plots were generated by employing the Crystal Explorer software (Wolff et al., 2012). The Hirshfeld surface is colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The different types of inter­molecular inter­actions can be identified by colour coding the distances from the surface to the nearest atom exterior (d e) or inter­ior (d i) plots to the surface. The 2-D fingerprint plots from the surface analysis and the d norm surface were analysed for (I) to further explore the packing modes and inter­molecular inter­actions. The 3-D Hirshfeld surfaces and 2-D fingerprint plots with percentage contributions are shown in Fig. 5. C⋯H/H⋯C contacts (with a pair of spikes in the fingerprint plot, 29.2%) and O⋯H/H⋯O inter­actions (sharp spikes, 8.6%) make a significant contribution to the overall contacts; the latter incorporate the notable C—H⋯O inter­actions. The H⋯H inter­actions contribute 51.7% with widely scattered points of high density showing a large proportion of hydrogen atoms in the mol­ecular structure, indicating the importance of van der Waals contacts in the mol­ecular packing. The N⋯H/H⋯N inter­molecular contacts are identified as making a notable contribution to the total Hirshfeld surface comprising about 6.9%. However, the C—H⋯N inter­molecular inter­actions are not prominent in the packing as the separations are greater than the van der Waals radii.

Figure 5.

Figure 5

3-D Hirshfeld surfaces (showing d norm, d i and de) and 2-D fingerprint plots.

Synthesis and crystallization

A mixture of 1-phenyl-1,5,6,7-tetra­hydro-4H-indazol-4-one (1 mmol) and 4-methyl­benzaldehyde (1 mmol) was dissolved in ethanol followed by the addition of alcoholic NaOH. The mixture was stirred at room temperature for 1 h to afford (E)-5-(4-methyl­benzyl­idene)-1-phenyl-1,5,6,7-tetra­hydro-4H-ind­a­z­ol-4-ones as a precipitate, which was filtered, dried and recrystallized from ethanol: yield: 99%, m.p. 172–175°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C21H18N2O
M r 314.37
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 30.3989 (15), 8.7177 (5), 14.0581 (7)
β (°) 115.367 (2)
V3) 3366.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 22457, 2948, 2557
R int 0.048
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.126, 1.07
No. of reflections 2948
No. of parameters 219
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.18

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002838/tk4075sup1.cif

x-07-x220283-sup1.cif (689.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002838/tk4075Isup2.hkl

x-07-x220283-Isup2.hkl (236KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622002838/tk4075Isup3.cml

CCDC reference: 2158365

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RV thank the management of The Madura College for their constant support and encouragement. The authors’ contributions are as follows: Conceptualization, CSM; methodology, CSM, SA; investigation, CSM, RVP; synthesis, X-ray, analysis and validation, SA; writing (original draft), CSM; writing (review and editing of the manuscript), SRB; visualization, JS; resources, RVP, SRR; supervision, JS; project administration, SRB.

full crystallographic data

Crystal data

C21H18N2O F(000) = 1328
Mr = 314.37 Dx = 1.241 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 30.3989 (15) Å Cell parameters from 3243 reflections
b = 8.7177 (5) Å θ = 28.7–1.8°
c = 14.0581 (7) Å µ = 0.08 mm1
β = 115.367 (2)° T = 293 K
V = 3366.3 (3) Å3 Block, colourless
Z = 8 0.20 × 0.20 × 0.18 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2557 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.048
Graphite monochromator θmax = 25.0°, θmin = 2.9°
ω and φ scans h = −36→36
22457 measured reflections k = −10→10
2948 independent reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.8343P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2948 reflections Δρmax = 0.16 e Å3
219 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.075 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.67927 (8) 0.0162 (3) 1.06046 (15) 0.0789 (6)
H1 0.6816 −0.0935 1.0667 0.118*
H9 0.6614 0.0543 1.0977 0.118*
H10 0.7114 0.0599 1.0900 0.118*
C2 0.65323 (6) 0.0598 (2) 0.94602 (13) 0.0543 (4)
C3 0.66930 (6) 0.1813 (2) 0.90557 (14) 0.0586 (5)
H11 0.6970 0.2352 0.9496 0.070*
C4 0.64503 (6) 0.2237 (2) 0.80118 (14) 0.0550 (4)
H6 0.6572 0.3038 0.7758 0.066*
C5 0.60276 (5) 0.14887 (18) 0.73320 (12) 0.0450 (4)
C6 0.57687 (6) 0.20157 (19) 0.62334 (12) 0.0487 (4)
H12 0.5965 0.2260 0.5899 0.058*
C7 0.52919 (6) 0.21900 (18) 0.56538 (11) 0.0445 (4)
C8 0.48996 (6) 0.1884 (2) 0.60232 (12) 0.0516 (4)
H13 0.5052 0.1753 0.6781 0.062*
H14 0.4736 0.0931 0.5713 0.062*
C9 0.45177 (5) 0.3169 (2) 0.57388 (11) 0.0462 (4)
H15 0.4246 0.2838 0.5876 0.055*
H16 0.4660 0.4074 0.6160 0.055*
C10 0.43483 (5) 0.35272 (17) 0.45978 (11) 0.0416 (4)
C11 0.34983 (5) 0.45572 (19) 0.40541 (12) 0.0487 (4)
C12 0.35632 (6) 0.5344 (2) 0.49555 (13) 0.0541 (4)
H4 0.3875 0.5536 0.5471 0.065*
C13 0.31616 (7) 0.5847 (2) 0.50901 (16) 0.0657 (5)
H3 0.3205 0.6369 0.5701 0.079*
C14 0.27001 (7) 0.5582 (3) 0.43271 (17) 0.0761 (6)
H2 0.2431 0.5928 0.4417 0.091*
C15 0.51236 (6) 0.27563 (18) 0.45440 (11) 0.0449 (4)
C16 0.46258 (6) 0.32941 (18) 0.40502 (11) 0.0440 (4)
C17 0.43202 (6) 0.3710 (2) 0.30018 (12) 0.0518 (4)
H5 0.4413 0.3674 0.2453 0.062*
C18 0.61226 (6) −0.01863 (19) 0.87812 (13) 0.0545 (4)
H8 0.6013 −0.1025 0.9029 0.065*
C19 0.58722 (6) 0.02523 (18) 0.77400 (13) 0.0509 (4)
H7 0.5595 −0.0287 0.7304 0.061*
C20 0.30333 (6) 0.4275 (3) 0.32794 (14) 0.0679 (5)
H18 0.2989 0.3743 0.2671 0.081*
C21 0.26374 (7) 0.4799 (3) 0.34264 (17) 0.0825 (7)
H17 0.2324 0.4620 0.2910 0.099*
N1 0.39101 (4) 0.40554 (15) 0.38972 (9) 0.0463 (3)
N2 0.38894 (5) 0.41551 (17) 0.28944 (10) 0.0550 (4)
O1 0.53899 (4) 0.27719 (16) 0.40893 (9) 0.0624 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0871 (14) 0.0832 (14) 0.0504 (11) 0.0112 (11) 0.0142 (10) 0.0108 (10)
C2 0.0548 (9) 0.0552 (10) 0.0472 (9) 0.0125 (7) 0.0163 (7) 0.0056 (7)
C3 0.0443 (8) 0.0577 (10) 0.0587 (10) 0.0017 (7) 0.0079 (7) 0.0034 (8)
C4 0.0442 (8) 0.0548 (10) 0.0624 (10) 0.0039 (7) 0.0192 (7) 0.0142 (8)
C5 0.0442 (8) 0.0470 (9) 0.0442 (8) 0.0097 (6) 0.0194 (6) 0.0042 (6)
C6 0.0527 (9) 0.0532 (9) 0.0453 (8) 0.0075 (7) 0.0259 (7) 0.0052 (7)
C7 0.0510 (8) 0.0484 (8) 0.0371 (7) 0.0075 (6) 0.0218 (6) 0.0038 (6)
C8 0.0522 (9) 0.0645 (10) 0.0409 (8) 0.0091 (7) 0.0226 (7) 0.0154 (7)
C9 0.0449 (8) 0.0614 (9) 0.0339 (7) 0.0044 (7) 0.0183 (6) 0.0071 (6)
C10 0.0443 (7) 0.0444 (8) 0.0329 (7) −0.0007 (6) 0.0134 (6) 0.0012 (6)
C11 0.0432 (8) 0.0558 (9) 0.0430 (8) 0.0023 (7) 0.0146 (6) 0.0117 (7)
C12 0.0455 (8) 0.0617 (10) 0.0509 (9) 0.0024 (7) 0.0168 (7) 0.0010 (8)
C13 0.0602 (10) 0.0758 (13) 0.0659 (11) 0.0090 (9) 0.0317 (9) 0.0046 (9)
C14 0.0502 (10) 0.1054 (17) 0.0754 (14) 0.0144 (10) 0.0296 (10) 0.0224 (12)
C15 0.0550 (9) 0.0479 (9) 0.0366 (7) 0.0026 (7) 0.0244 (7) −0.0001 (6)
C16 0.0547 (8) 0.0465 (8) 0.0313 (7) 0.0011 (6) 0.0191 (6) 0.0003 (6)
C17 0.0654 (10) 0.0582 (10) 0.0324 (8) 0.0072 (8) 0.0214 (7) 0.0027 (7)
C18 0.0589 (9) 0.0478 (9) 0.0540 (9) 0.0043 (7) 0.0217 (8) 0.0100 (7)
C19 0.0505 (9) 0.0457 (9) 0.0493 (9) 0.0013 (7) 0.0145 (7) 0.0004 (7)
C20 0.0513 (10) 0.0972 (15) 0.0440 (9) −0.0042 (9) 0.0097 (7) 0.0053 (9)
C21 0.0429 (10) 0.128 (2) 0.0619 (12) −0.0002 (11) 0.0088 (8) 0.0193 (13)
N1 0.0480 (7) 0.0545 (8) 0.0324 (6) 0.0029 (6) 0.0134 (5) 0.0035 (5)
N2 0.0639 (9) 0.0638 (9) 0.0313 (7) 0.0062 (7) 0.0146 (6) 0.0044 (6)
O1 0.0667 (8) 0.0851 (9) 0.0476 (7) 0.0143 (6) 0.0361 (6) 0.0098 (6)

Geometric parameters (Å, º)

C1—C2 1.506 (2) C10—C16 1.379 (2)
C1—H1 0.9600 C11—C12 1.379 (2)
C1—H9 0.9600 C11—C20 1.388 (2)
C1—H10 0.9600 C11—N1 1.430 (2)
C2—C18 1.382 (2) C12—C13 1.384 (2)
C2—C3 1.386 (3) C12—H4 0.9300
C3—C4 1.381 (2) C13—C14 1.372 (3)
C3—H11 0.9300 C13—H3 0.9300
C4—C5 1.392 (2) C14—C21 1.378 (3)
C4—H6 0.9300 C14—H2 0.9300
C5—C19 1.395 (2) C15—O1 1.2279 (18)
C5—C6 1.474 (2) C15—C16 1.446 (2)
C6—C7 1.333 (2) C16—C17 1.412 (2)
C6—H12 0.9300 C17—N2 1.311 (2)
C7—C15 1.502 (2) C17—H5 0.9300
C7—C8 1.514 (2) C18—C19 1.383 (2)
C8—C9 1.538 (2) C18—H8 0.9300
C8—H13 0.9700 C19—H7 0.9300
C8—H14 0.9700 C20—C21 1.383 (3)
C9—C10 1.4925 (19) C20—H18 0.9300
C9—H15 0.9700 C21—H17 0.9300
C9—H16 0.9700 N1—N2 1.3867 (17)
C10—N1 1.3535 (18)
C2—C1—H1 109.5 C16—C10—C9 123.85 (13)
C2—C1—H9 109.5 C12—C11—C20 120.41 (16)
H1—C1—H9 109.5 C12—C11—N1 120.27 (13)
C2—C1—H10 109.5 C20—C11—N1 119.30 (15)
H1—C1—H10 109.5 C11—C12—C13 119.73 (16)
H9—C1—H10 109.5 C11—C12—H4 120.1
C18—C2—C3 117.79 (15) C13—C12—H4 120.1
C18—C2—C1 121.21 (17) C14—C13—C12 120.38 (19)
C3—C2—C1 120.99 (17) C14—C13—H3 119.8
C4—C3—C2 121.26 (16) C12—C13—H3 119.8
C4—C3—H11 119.4 C13—C14—C21 119.64 (18)
C2—C3—H11 119.4 C13—C14—H2 120.2
C3—C4—C5 121.32 (16) C21—C14—H2 120.2
C3—C4—H6 119.3 O1—C15—C16 122.29 (13)
C5—C4—H6 119.3 O1—C15—C7 122.50 (14)
C4—C5—C19 117.09 (14) C16—C15—C7 115.20 (12)
C4—C5—C6 119.64 (14) C10—C16—C17 104.99 (13)
C19—C5—C6 123.27 (14) C10—C16—C15 122.98 (13)
C7—C6—C5 128.94 (14) C17—C16—C15 132.02 (14)
C7—C6—H12 115.5 N2—C17—C16 111.97 (14)
C5—C6—H12 115.5 N2—C17—H5 124.0
C6—C7—C15 118.02 (14) C16—C17—H5 124.0
C6—C7—C8 125.46 (13) C2—C18—C19 121.22 (16)
C15—C7—C8 116.51 (13) C2—C18—H8 119.4
C7—C8—C9 113.58 (13) C19—C18—H8 119.4
C7—C8—H13 108.8 C18—C19—C5 121.25 (15)
C9—C8—H13 108.8 C18—C19—H7 119.4
C7—C8—H14 108.8 C5—C19—H7 119.4
C9—C8—H14 108.8 C21—C20—C11 118.89 (19)
H13—C8—H14 107.7 C21—C20—H18 120.6
C10—C9—C8 107.83 (12) C11—C20—H18 120.6
C10—C9—H15 110.1 C14—C21—C20 120.94 (18)
C8—C9—H15 110.1 C14—C21—H17 119.5
C10—C9—H16 110.1 C20—C21—H17 119.5
C8—C9—H16 110.1 C10—N1—N2 111.28 (12)
H15—C9—H16 108.5 C10—N1—C11 130.21 (12)
N1—C10—C16 106.89 (12) N2—N1—C11 118.44 (12)
N1—C10—C9 129.20 (13) C17—N2—N1 104.86 (12)
C18—C2—C3—C4 0.6 (3) O1—C15—C16—C10 −168.78 (15)
C1—C2—C3—C4 −178.75 (18) C7—C15—C16—C10 10.8 (2)
C2—C3—C4—C5 1.8 (3) O1—C15—C16—C17 10.0 (3)
C3—C4—C5—C19 −2.7 (2) C7—C15—C16—C17 −170.40 (16)
C3—C4—C5—C6 177.62 (15) C10—C16—C17—N2 −0.38 (19)
C4—C5—C6—C7 −137.43 (18) C15—C16—C17—N2 −179.36 (16)
C19—C5—C6—C7 42.9 (3) C3—C2—C18—C19 −1.9 (3)
C5—C6—C7—C15 179.80 (15) C1—C2—C18—C19 177.42 (17)
C5—C6—C7—C8 0.7 (3) C2—C18—C19—C5 0.9 (3)
C6—C7—C8—C9 133.31 (17) C4—C5—C19—C18 1.3 (2)
C15—C7—C8—C9 −45.8 (2) C6—C5—C19—C18 −178.96 (15)
C7—C8—C9—C10 49.38 (18) C12—C11—C20—C21 0.1 (3)
C8—C9—C10—N1 150.39 (16) N1—C11—C20—C21 −178.39 (18)
C8—C9—C10—C16 −26.6 (2) C13—C14—C21—C20 0.0 (4)
C20—C11—C12—C13 0.4 (3) C11—C20—C21—C14 −0.3 (3)
N1—C11—C12—C13 178.88 (16) C16—C10—N1—N2 0.89 (17)
C11—C12—C13—C14 −0.7 (3) C9—C10—N1—N2 −176.49 (15)
C12—C13—C14—C21 0.5 (3) C16—C10—N1—C11 −176.18 (15)
C6—C7—C15—O1 14.8 (2) C9—C10—N1—C11 6.4 (3)
C8—C7—C15—O1 −166.01 (16) C12—C11—N1—C10 36.0 (2)
C6—C7—C15—C16 −164.78 (15) C20—C11—N1—C10 −145.48 (17)
C8—C7—C15—C16 14.4 (2) C12—C11—N1—N2 −140.90 (16)
N1—C10—C16—C17 −0.32 (17) C20—C11—N1—N2 37.6 (2)
C9—C10—C16—C17 177.24 (15) C16—C17—N2—N1 0.89 (19)
N1—C10—C16—C15 178.78 (14) C10—N1—N2—C17 −1.10 (18)
C9—C10—C16—C15 −3.7 (2) C11—N1—N2—C17 176.35 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H12···O1 0.93 2.43 2.806 (2) 104
C12—H4···O1i 0.93 2.52 3.312 (2) 143
C17—H5···O1ii 0.93 2.60 3.5081 (19) 164
C18—H8···O1iii 0.93 2.46 3.325 (2) 155

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2; (iii) x, −y, z+1/2.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Faisal, M., Saeed, A., Hussain, S., Dar, P. & Larik, F. A. (2019). J. Chem. Sci. 131, article No. 70. https://doi.org/10.1007/s12039-019-1646-1
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  6. Meenatchi, C. S., Athimoolam, S., Suresh, J., Rubina, S. R., Kumar, R. R. & Bhandari, S. R. (2021). IUCrData, 6, x211195. [DOI] [PMC free article] [PubMed]
  7. Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.
  8. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  11. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002838/tk4075sup1.cif

x-07-x220283-sup1.cif (689.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002838/tk4075Isup2.hkl

x-07-x220283-Isup2.hkl (236KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622002838/tk4075Isup3.cml

CCDC reference: 2158365

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES