Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 22;7(Pt 3):x220295. doi: 10.1107/S2414314622002954

{N′-[(E)-1-(5-Chloro-2-oxidophen­yl)ethyl­idene]-4-meth­oxy­benzohydrazidato-κ3 O,N′,O′}(1H-imidazole-κN 3)nickel(II)

Jian-Guo Chang a,*
Editor: E R T Tiekinkb
PMCID: PMC9462012  PMID: 36339807

The title complex displays a slightly distorted square-planar coordination geometry. The crystal features 41-helical chains stabilized by N—H⋯O hydrogen bonding.

Keywords: crystal structure, acyl­hydrazone, hydrogen bonding, imidazole, nickel complex

Abstract

In the title complex, [Ni(C16H13ClN2O3)(C3H4N2)], the NiII ion is coordinated by two O atoms and one N atom derived from the dianionic N′-[(1E)-1-(5-chloro-2-hy­droxy­phen­yl)ethyl­idene]-4-meth­oxy­benzohydrazide ligand and one N atom from the imidazole mol­ecule. The N2O2 donor set defines an approximate square-planar geometry. The dihedral angles between the imidazole ring and the fused six-membered and meth­oxy­benzene rings are 17.78 (14) and 13.23 (16)°, respectively; the dihedral angle between the C6 rings is 6.63 (12)°. The most prominent feature of the mol­ecular packing is the formation of 41-helical chains (along the c axis) mediated by imidazole-N—H⋯O(phenoxide) hydrogen bonding; these are linked by methyl-C—H⋯Cl inter­actions. graphic file with name x-07-x220295-scheme1-3D1.jpg

Structure description

Acyl­hydrazones, as a special kind of Schiff base, have been widely investigated because of their strong coordination ability (Singh et al., 1982; Salem, 1998; Yu et al., 2010) and flexible coordination modes involving the N and O donor atoms (Liu et al., 2005; Chang, 2011; Zheng et al., 2011). As has been widely reported in the literature, acyl­hydrazone complexes display various biological activities such as anti-microbial (Yang et al., 2020), anti-tubercular (Peng, 2011), anti-cancer (Morgan et al., 2003) and anti-oxidant (Chang et al., 2015). As an extension of work into the structural characterization of aroylhydrazone complexes, the title complex, [Ni(C16H13ClN2O3)(C3H4N2)], has been synthesized and its crystal structure determined.

The NiII ion in the title compound is coordinated by two O atoms and one N atom from the dianionic N′-[(1E)-1-(5-chloro-2-hy­droxy­phen­yl)ethyl­idene]-4-meth­oxy­benzo­hy­dra­zide ligand and one N atom from the imidazole mol­ecule. In this complex, the Ni atom is located in a slightly distorted square-planar environment (Fig. 1 and Table 1). The Ni—O bond lengths are systematically shorter than the Ni—N bonds, and the maximum deviation from the ideal square-planar geometry in terms of angles is found for O1—Ni1—N2 = 82.18 (7)°. The two benzene rings, C1–C6 (A) and C10–C15 (B), and the imidazole ring (C) make dihedral angles of 6.63 (12)° (A/B), 17.78 (14)° (A/C) and 13.23 (16)° (B/C).

Figure 1.

Figure 1

The mol­ecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

Ni1—O1 1.8995 (15) Ni1—N2 1.9344 (17)
Ni1—O2 1.8820 (15) Ni1—N3 1.9664 (18)
       
O1—Ni1—N2 82.18 (7) O2—Ni1—N2 94.33 (7)
O1—Ni1—N3 90.33 (7) O2—Ni1—N3 93.16 (7)
O2—Ni1—O1 173.63 (7) N2—Ni1—N3 172.50 (8)

The mol­ecular packing is consolidated by imidazole-N—H⋯O(phenoxide) hydrogen bonding (Table 2) along the c axis, which leads to a 41 helical chain. The chains are connected by C—H⋯Cl inter­actions (Table 2) into a three-dimensional architecture; a view of the unit-cell contents is given in Fig. 2.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2i 0.92 (4) 1.93 (4) 2.818 (3) 161 (3)
C8—H8A⋯Cl1ii 0.96 2.86 3.700 (3) 147

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

A view in projection down the c axis of the unit-cell contents.

Synthesis and crystallization

The Schiff base ligand, N′-[(1E)-1-(5-chloro-2-hy­droxyphen­yl)ethyl­idene]-4-meth­oxy­benzohydrazide (0.100 mmol, 0.0319 g), 1H-imidazole (0.100 mmol, 0.0068 g), Ni(NO3)2·6H2O (0.100 mmol, 0.0292 g), methanol (10 ml) and distilled water (5 ml) were mixed in a 50 ml flask. The mixture was stirred at room temperature for 1 h, the pH was adjusted with saturated sodium carbonate solution to about 8 followed by filtration. Red rectangular block-shaped crystals were obtained after about one month by evaporating the filtrate in air (yield 31%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C16H13ClN2O3)(C3H4N2)]
M r 443.52
Crystal system, space group Tetragonal, I41/a
Temperature (K) 295
a, c (Å) 30.879 (4), 8.0750 (16)
V3) 7700 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.35 × 0.25 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.735, 0.860
No. of measured, independent and observed [I > 2σ(I)] reflections 23938, 4924, 3431
R int 0.038
(sin θ/λ)max−1) 0.678
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.106, 1.00
No. of reflections 4924
No. of parameters 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002954/tk4076sup1.cif

x-07-x220295-sup1.cif (741.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002954/tk4076Isup2.hkl

x-07-x220295-Isup2.hkl (393KB, hkl)

CCDC reference: 2159183

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Ni(C16H13ClN2O3)(C3H4N2)] Dx = 1.530 Mg m3
Mr = 443.52 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/a Cell parameters from 5154 reflections
a = 30.879 (4) Å θ = 2.6–25.1°
c = 8.0750 (16) Å µ = 1.18 mm1
V = 7700 (3) Å3 T = 295 K
Z = 16 Block, brown
F(000) = 3648 0.35 × 0.25 × 0.16 mm

Data collection

Bruker APEXII CCD area detector diffractometer 3431 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
phi and ω scans θmax = 28.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −28→40
Tmin = 0.735, Tmax = 0.860 k = −41→39
23938 measured reflections l = −10→10
4924 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0616P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
4924 reflections Δρmax = 0.79 e Å3
259 parameters Δρmin = −0.20 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.67356 (2) 0.70309 (2) 0.69948 (3) 0.03734 (10)
Cl1 0.68036 (2) 0.49257 (2) 1.08616 (9) 0.06233 (19)
O1 0.71130 (5) 0.74129 (5) 0.5847 (2) 0.0506 (4)
O2 0.63727 (4) 0.66083 (5) 0.7940 (2) 0.0468 (4)
O3 0.86943 (7) 0.82096 (6) 0.1939 (3) 0.0818 (6)
N1 0.75900 (5) 0.68423 (6) 0.6093 (2) 0.0444 (4)
N2 0.72374 (5) 0.66565 (5) 0.6917 (2) 0.0407 (4)
N3 0.62734 (6) 0.74687 (6) 0.6931 (2) 0.0469 (4)
N4 0.59505 (7) 0.80650 (7) 0.6168 (3) 0.0573 (5)
H4 0.5865 (10) 0.8318 (11) 0.566 (4) 0.100 (11)*
C1 0.69302 (6) 0.60618 (6) 0.8443 (3) 0.0395 (5)
C2 0.70039 (8) 0.56518 (7) 0.9178 (3) 0.0468 (5)
H2 0.728018 0.553255 0.912614 0.056*
C3 0.66852 (8) 0.54265 (7) 0.9955 (3) 0.0471 (5)
C4 0.62689 (8) 0.55887 (7) 1.0092 (3) 0.0494 (5)
H4A 0.605335 0.543496 1.064097 0.059*
C5 0.61852 (7) 0.59863 (7) 0.9385 (3) 0.0478 (5)
H5 0.590670 0.609875 0.946780 0.057*
C6 0.64995 (7) 0.62290 (7) 0.8548 (3) 0.0406 (5)
C7 0.72926 (7) 0.62824 (7) 0.7636 (3) 0.0418 (5)
C8 0.77365 (8) 0.60794 (9) 0.7632 (4) 0.0637 (7)
H8A 0.772858 0.581362 0.701572 0.095*
H8B 0.782430 0.602062 0.875021 0.095*
H8C 0.793945 0.627451 0.712772 0.095*
C9 0.74864 (7) 0.72329 (7) 0.5599 (3) 0.0430 (5)
C10 0.78074 (7) 0.74904 (7) 0.4658 (3) 0.0436 (5)
C11 0.82214 (7) 0.73375 (8) 0.4304 (3) 0.0512 (6)
H11 0.830661 0.706668 0.468830 0.061*
C12 0.85065 (8) 0.75850 (8) 0.3386 (3) 0.0585 (6)
H12 0.878025 0.747719 0.313970 0.070*
C13 0.83883 (8) 0.79913 (8) 0.2832 (3) 0.0544 (6)
C14 0.79796 (8) 0.81495 (8) 0.3173 (3) 0.0531 (6)
H14 0.789633 0.842107 0.279077 0.064*
C15 0.76968 (7) 0.79008 (7) 0.4085 (3) 0.0487 (5)
H15 0.742350 0.801047 0.432655 0.058*
C16 0.85944 (10) 0.86421 (8) 0.1450 (4) 0.0709 (8)
H16A 0.836204 0.863811 0.066026 0.106*
H16B 0.884538 0.877267 0.095671 0.106*
H16C 0.850860 0.880669 0.240361 0.106*
C17 0.58978 (7) 0.75137 (7) 0.7827 (3) 0.0517 (6)
H17 0.579704 0.732134 0.862486 0.062*
C18 0.56989 (8) 0.78836 (8) 0.7357 (4) 0.0587 (6)
H18 0.543965 0.799272 0.776902 0.070*
C19 0.62897 (8) 0.78101 (7) 0.5950 (3) 0.0527 (6)
H19 0.651171 0.786450 0.519968 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.03354 (15) 0.03200 (15) 0.04649 (18) 0.00236 (10) −0.00014 (11) −0.00031 (11)
Cl1 0.0762 (4) 0.0409 (3) 0.0699 (4) 0.0076 (3) −0.0036 (3) 0.0093 (3)
O1 0.0434 (8) 0.0419 (8) 0.0666 (11) 0.0041 (7) 0.0079 (7) 0.0037 (7)
O2 0.0370 (8) 0.0403 (8) 0.0633 (10) 0.0022 (6) −0.0021 (7) 0.0089 (7)
O3 0.0736 (13) 0.0594 (11) 0.1126 (18) −0.0087 (10) 0.0426 (12) 0.0024 (11)
N1 0.0367 (9) 0.0453 (10) 0.0512 (11) −0.0002 (8) −0.0009 (8) −0.0029 (8)
N2 0.0367 (9) 0.0404 (9) 0.0451 (10) −0.0002 (7) −0.0013 (7) −0.0040 (8)
N3 0.0440 (10) 0.0410 (10) 0.0557 (12) 0.0050 (8) 0.0017 (8) 0.0010 (8)
N4 0.0515 (12) 0.0400 (11) 0.0804 (16) 0.0071 (9) 0.0033 (11) 0.0071 (10)
C1 0.0424 (11) 0.0376 (11) 0.0387 (11) 0.0045 (9) −0.0046 (9) −0.0029 (9)
C2 0.0489 (12) 0.0433 (12) 0.0484 (13) 0.0082 (10) −0.0056 (10) −0.0024 (10)
C3 0.0566 (13) 0.0373 (11) 0.0473 (12) 0.0045 (10) −0.0057 (10) −0.0007 (9)
C4 0.0540 (13) 0.0441 (12) 0.0502 (13) −0.0020 (10) −0.0010 (11) 0.0026 (10)
C5 0.0412 (12) 0.0456 (12) 0.0565 (15) 0.0023 (9) −0.0021 (10) 0.0009 (10)
C6 0.0405 (11) 0.0393 (11) 0.0420 (12) 0.0018 (9) −0.0058 (9) −0.0013 (9)
C7 0.0400 (11) 0.0418 (11) 0.0435 (12) 0.0069 (9) −0.0056 (9) −0.0027 (9)
C8 0.0442 (13) 0.0688 (16) 0.0781 (19) 0.0146 (12) 0.0061 (12) 0.0174 (14)
C9 0.0408 (11) 0.0439 (12) 0.0445 (13) −0.0017 (9) −0.0017 (9) −0.0078 (9)
C10 0.0429 (12) 0.0463 (12) 0.0417 (12) −0.0041 (9) −0.0024 (9) −0.0076 (9)
C11 0.0454 (12) 0.0461 (13) 0.0620 (15) −0.0011 (10) 0.0004 (11) −0.0066 (11)
C12 0.0408 (12) 0.0607 (15) 0.0741 (18) 0.0006 (11) 0.0106 (12) −0.0041 (13)
C13 0.0504 (13) 0.0525 (14) 0.0602 (16) −0.0101 (10) 0.0098 (11) −0.0101 (11)
C14 0.0566 (14) 0.0463 (13) 0.0566 (15) −0.0028 (11) 0.0043 (11) −0.0021 (11)
C15 0.0422 (12) 0.0495 (13) 0.0545 (14) 0.0021 (10) 0.0060 (10) −0.0012 (10)
C16 0.0801 (19) 0.0578 (16) 0.0749 (19) −0.0166 (14) 0.0204 (15) −0.0005 (14)
C17 0.0507 (13) 0.0438 (12) 0.0604 (15) 0.0005 (10) 0.0077 (11) 0.0029 (11)
C18 0.0496 (14) 0.0459 (13) 0.0805 (18) 0.0100 (11) 0.0115 (13) −0.0003 (12)
C19 0.0485 (13) 0.0432 (12) 0.0665 (16) 0.0074 (10) 0.0089 (11) 0.0090 (11)

Geometric parameters (Å, º)

Ni1—O1 1.8995 (15) C5—H5 0.9300
Ni1—O2 1.8820 (15) C5—C6 1.400 (3)
Ni1—N2 1.9344 (17) C7—C8 1.507 (3)
Ni1—N3 1.9664 (18) C8—H8A 0.9600
Cl1—C3 1.750 (2) C8—H8B 0.9600
O1—C9 1.296 (2) C8—H8C 0.9600
O2—C6 1.329 (2) C9—C10 1.481 (3)
O3—C13 1.367 (3) C10—C11 1.392 (3)
O3—C16 1.426 (3) C10—C15 1.392 (3)
N1—N2 1.399 (2) C11—H11 0.9300
N1—C9 1.310 (3) C11—C12 1.381 (3)
N2—C7 1.304 (3) C12—H12 0.9300
N3—C17 1.374 (3) C12—C13 1.381 (3)
N3—C19 1.320 (3) C13—C14 1.381 (3)
N4—H4 0.92 (4) C14—H14 0.9300
N4—C18 1.356 (3) C14—C15 1.376 (3)
N4—C19 1.322 (3) C15—H15 0.9300
C1—C2 1.417 (3) C16—H16A 0.9600
C1—C6 1.429 (3) C16—H16B 0.9600
C1—C7 1.463 (3) C16—H16C 0.9600
C2—H2 0.9300 C17—H17 0.9300
C2—C3 1.359 (3) C17—C18 1.351 (3)
C3—C4 1.384 (3) C18—H18 0.9300
C4—H4A 0.9300 C19—H19 0.9300
C4—C5 1.378 (3)
O1—Ni1—N2 82.18 (7) C7—C8—H8B 109.5
O1—Ni1—N3 90.33 (7) C7—C8—H8C 109.5
O2—Ni1—O1 173.63 (7) H8A—C8—H8B 109.5
O2—Ni1—N2 94.33 (7) H8A—C8—H8C 109.5
O2—Ni1—N3 93.16 (7) H8B—C8—H8C 109.5
N2—Ni1—N3 172.50 (8) O1—C9—N1 124.4 (2)
C9—O1—Ni1 110.80 (13) O1—C9—C10 116.41 (19)
C6—O2—Ni1 125.85 (13) N1—C9—C10 119.18 (19)
C13—O3—C16 117.3 (2) C11—C10—C9 122.5 (2)
C9—N1—N2 109.43 (17) C15—C10—C9 119.69 (19)
N1—N2—Ni1 113.18 (12) C15—C10—C11 117.8 (2)
C7—N2—Ni1 128.30 (15) C10—C11—H11 119.7
C7—N2—N1 118.25 (17) C12—C11—C10 120.5 (2)
C17—N3—Ni1 131.96 (16) C12—C11—H11 119.7
C19—N3—Ni1 122.48 (16) C11—C12—H12 119.7
C19—N3—C17 105.51 (18) C13—C12—C11 120.5 (2)
C18—N4—H4 120 (2) C13—C12—H12 119.7
C19—N4—H4 132 (2) O3—C13—C12 115.9 (2)
C19—N4—C18 107.6 (2) O3—C13—C14 124.3 (2)
C2—C1—C6 116.57 (19) C14—C13—C12 119.9 (2)
C2—C1—C7 118.67 (18) C13—C14—H14 120.4
C6—C1—C7 124.76 (18) C15—C14—C13 119.3 (2)
C1—C2—H2 118.8 C15—C14—H14 120.4
C3—C2—C1 122.3 (2) C10—C15—H15 119.0
C3—C2—H2 118.8 C14—C15—C10 122.0 (2)
C2—C3—Cl1 119.64 (17) C14—C15—H15 119.0
C2—C3—C4 121.6 (2) O3—C16—H16A 109.5
C4—C3—Cl1 118.72 (18) O3—C16—H16B 109.5
C3—C4—H4A 121.2 O3—C16—H16C 109.5
C5—C4—C3 117.6 (2) H16A—C16—H16B 109.5
C5—C4—H4A 121.2 H16A—C16—H16C 109.5
C4—C5—H5 118.4 H16B—C16—H16C 109.5
C4—C5—C6 123.1 (2) N3—C17—H17 125.6
C6—C5—H5 118.4 C18—C17—N3 108.8 (2)
O2—C6—C1 124.79 (19) C18—C17—H17 125.6
O2—C6—C5 116.47 (18) N4—C18—H18 126.6
C5—C6—C1 118.72 (19) C17—C18—N4 106.7 (2)
N2—C7—C1 120.71 (18) C17—C18—H18 126.6
N2—C7—C8 119.1 (2) N3—C19—N4 111.4 (2)
C1—C7—C8 120.19 (19) N3—C19—H19 124.3
C7—C8—H8A 109.5 N4—C19—H19 124.3
Ni1—O1—C9—N1 −0.8 (3) C2—C1—C7—C8 −1.5 (3)
Ni1—O1—C9—C10 177.82 (14) C2—C3—C4—C5 1.0 (3)
Ni1—O2—C6—C1 −6.1 (3) C3—C4—C5—C6 0.0 (3)
Ni1—O2—C6—C5 172.09 (15) C4—C5—C6—O2 −179.5 (2)
Ni1—N2—C7—C1 9.6 (3) C4—C5—C6—C1 −1.2 (3)
Ni1—N2—C7—C8 −170.21 (18) C6—C1—C2—C3 −0.4 (3)
Ni1—N3—C17—C18 177.28 (18) C6—C1—C7—N2 −1.1 (3)
Ni1—N3—C19—N4 −177.80 (17) C6—C1—C7—C8 178.7 (2)
Cl1—C3—C4—C5 179.21 (18) C7—C1—C2—C3 179.8 (2)
O1—C9—C10—C11 179.9 (2) C7—C1—C6—O2 −0.7 (3)
O1—C9—C10—C15 −0.5 (3) C7—C1—C6—C5 −178.9 (2)
O3—C13—C14—C15 179.9 (2) C9—N1—N2—Ni1 0.9 (2)
N1—N2—C7—C1 −176.82 (18) C9—N1—N2—C7 −173.69 (19)
N1—N2—C7—C8 3.4 (3) C9—C10—C11—C12 178.4 (2)
N1—C9—C10—C11 −1.4 (3) C9—C10—C15—C14 −178.5 (2)
N1—C9—C10—C15 178.2 (2) C10—C11—C12—C13 1.2 (4)
N2—Ni1—O1—C9 0.95 (14) C11—C10—C15—C14 1.1 (3)
N2—Ni1—O2—C6 10.33 (18) C11—C12—C13—O3 179.8 (2)
N2—N1—C9—O1 0.0 (3) C11—C12—C13—C14 −1.0 (4)
N2—N1—C9—C10 −178.63 (17) C12—C13—C14—C15 0.9 (4)
N3—Ni1—O1—C9 −179.41 (15) C13—C14—C15—C10 −1.0 (4)
N3—Ni1—O2—C6 −170.01 (17) C15—C10—C11—C12 −1.2 (3)
N3—C17—C18—N4 0.3 (3) C16—O3—C13—C12 −175.6 (3)
C1—C2—C3—Cl1 −178.99 (17) C16—O3—C13—C14 5.3 (4)
C1—C2—C3—C4 −0.8 (4) C17—N3—C19—N4 −0.1 (3)
C2—C1—C6—O2 179.5 (2) C18—N4—C19—N3 0.3 (3)
C2—C1—C6—C5 1.3 (3) C19—N3—C17—C18 −0.2 (3)
C2—C1—C7—N2 178.7 (2) C19—N4—C18—C17 −0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···O2i 0.92 (4) 1.93 (4) 2.818 (3) 161 (3)
C8—H8A···Cl1ii 0.96 2.86 3.700 (3) 147

Symmetry codes: (i) −y+5/4, x+1/4, −z+5/4; (ii) −x+3/2, −y+1, z−1/2.

Funding Statement

The author would like to thank Taishan University for support of this work.

References

  1. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chang, H.-Q., Jia, L., Xu, J., Wu, W.-N., Zhu, T.-F., Chen, R.-H., Ma, T.-L., Wang, Y. & Xu, Z.-Q. (2015). Transition Met. Chem. 40, 485–491.
  3. Chang, J.-G. (2011). Acta Cryst. E67, m1886. [DOI] [PMC free article] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Liu, M.-L., Dou, J.-M., Wang, D.-Q. & Li, D.-C. (2005). Acta Cryst. E61, m1366–m1367.
  6. Morgan, L. R., Thangaraj, K. & Leblanc, B. (2003). J. Med. Chem. 46, 4552–4563. [DOI] [PubMed]
  7. Peng, S.-J. (2011). J. Chem. Crystallogr. 41, 280–285.
  8. Salem, A. A. (1998). Microchem. J. 60, 51–66.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. [DOI] [PubMed]
  12. Yang, J., Liu, X.-R., Yu, M.-K., Yang, W.-B., Yang, Z. & Zhao, S.-S. (2020). Polyhedron, 187, 114619.
  13. Yu, G.-M., Zhao, L., Guo, Y.-N., Xu, G.-F., Zou, L.-F., Tang, J.-K. & Li, Y.-H. (2010). J. Mol. Struct. 982, 139–144.
  14. Zheng, C.-Z., Wang, L. & Liu, J. (2011). Acta Cryst. E67, m978. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622002954/tk4076sup1.cif

x-07-x220295-sup1.cif (741.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622002954/tk4076Isup2.hkl

x-07-x220295-Isup2.hkl (393KB, hkl)

CCDC reference: 2159183

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES