Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 3;7(Pt 3):x220191. doi: 10.1107/S2414314622001912

Bis(2-amino-3,5-di­chloro­pyridinium) hexa­chlorido­stannate(IV) dihydrate

Rochdi Ghallab a,*, Hassiba Bougueria a, Hocine Merazig a
Editor: S Bernèsb
PMCID: PMC9462013  PMID: 36339801

The crystal structure of a hybrid material containing 2-amino-3,5-di­chloro­pyridinium cations, a hexa­chlorido­stannate(IV) anion and water mol­ecules is described.

Keywords: crystal structure, hexa­chlorido­stannate(IV), pyridinium, X-ray diffraction

Abstract

The title hybrid compound, (C5H5N2Cl2)2[SnCl6]·2H2O, was synthesized and its structure was identified by single-crystal X-ray diffraction. The structure is non-polymeric (0D) in terms of containing isolated [SnCl6]2− polyhedra. The special position (0,0,0) of the SnIV atom in the crystal structure gives rise to a stacking structure with alternating cationic and anionic layers parallel to (001). The water mol­ecules are inter­calated between these layers, which are linked by cation–anion hydrogen bonds and dominant non-covalent inter­actions. The stability of the three-dimensional network for this compound is also discussed. graphic file with name x-07-x220191-scheme1-3D1.jpg

Structure description

Bis(2-amino-3,5-di­chloro­pyridinium) hexa­chlorido­stannate(IV) dihydrate, (C5H5N2Cl2)2[SnCl6]·2H2O, crystallizes in the triclinic space group P Inline graphic (Fig. 1). The tin(IV) atom is hexa­coordinated by chlorine atoms, generating a weakly distorted octa­hedron. The Sn—Cl bond lengths range from 2.4162 (5) to 2.4389 (5) Å while the Cl—Sn—Cl angles have a deviation of about ±1° [89.277 (19)–90.723 (19)°], see Table 1. These values are comparable to those of the same anion associated with other types of cations (Bouchene et al., 2018). The absence of larger distortions can probably be attributed to the fact that the hexa­chlorido­stannate(IV) anions are free, i.e. none of the chloride ions are bridging, although they do accept N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 2).

Figure 1.

Figure 1

The molecular components in the crystal structure of the title compound, showing displacement ellipsoids at the 30% probability level [symmetry code: (i) −x + 2, −y, −z].

Table 1. Selected geometric parameters (Å, °).

Sn1—Cl1 2.4162 (5) C1—N2 1.315 (3)
Sn1—Cl2 2.4389 (5) C2—C3 1.356 (3)
Sn1—Cl3 2.4253 (5) C2—Cl4 1.713 (2)
N1—C1 1.345 (3) C3—C4 1.393 (3)
N1—C5 1.350 (3) C4—C5 1.348 (3)
C1—C2 1.417 (3) C4—Cl5 1.726 (2)
       
Cl1—Sn1—Cl2 90.722 (19) N2—C1—N1 119.49 (18)
Cl1i—Sn1—Cl2 89.278 (19) N2—C1—C2 124.50 (19)
Cl1—Sn1—Cl2i 89.277 (19) C1—C2—Cl4 117.52 (16)
Cl1—Sn1—Cl3 89.906 (19) C3—C2—C1 120.82 (18)
Cl1—Sn1—Cl3i 90.093 (19) C3—C2—Cl4 121.66 (15)
Cl1i—Sn1—Cl3 90.093 (19) C2—C3—C4 119.71 (18)
Cl3i—Sn1—Cl2 89.81 (2) C3—C4—Cl5 120.22 (16)
Cl3—Sn1—Cl2 90.19 (2) C5—C4—C3 119.70 (19)
Cl3—Sn1—Cl2i 89.81 (2) C5—C4—Cl5 120.08 (18)
C1—N1—C5 124.32 (17) C4—C5—N1 119.4 (2)
N1—C1—C2 116.00 (18)    

Symmetry code: (i) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 1.86 2.685 (2) 160
O1W—H1WA⋯Cl1ii 0.85 2.67 3.296 (2) 131
O1W—H1WB⋯Cl2 0.85 2.47 3.301 (2) 168
N2—H2A⋯Cl3iii 0.86 2.78 3.381 (2) 129
N2—H2A⋯O1W 0.86 2.38 3.065 (3) 137
N2—H2B⋯Cl2iv 0.86 2.67 3.435 (2) 149
C3—H3⋯Cl3v 0.93 2.77 3.695 (2) 177
C5—H5⋯Cl2ii 0.93 2.80 3.615 (2) 147

Symmetry codes: (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

In the cation, we note an increase in C1—C2 and C2—Cl4 bond lengths and a decrease in C1—N2 bond lengths (Table 1). This phenomenon is due to resonance-assisted hydrogen bonding, commonly observed for this kind of mol­ecule (Bertolasi et al., 1998). The C—N—C angle is 124.32 (17)°. This large angle can be attributed to the protonation of the N atom. These values are comparable with those of the same cation associated with other types of anions (Ghallab et al., 2020). The inter­molecular inter­actions in the title compound were analysed using PLATON (Spek, 2020), which shows that the structural cohesion in the crystal structure is ensured by N—H⋯O, N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonds (Fig. 2 a, Table 2). We also note the presence of Cl⋯Cl halogen bonds (Fig. 2 a), and of π-stacking inter­actions between centrosymmetrically related aromatic rings of the cations as well as Y—XCg inter­actions (Fig. 2 b).

Figure 2.

Figure 2

(a) Hydrogen bonds [yellow, purple and violet dashed lines; symmetry codes: (ii) −x + 1, −y, −z; (iii) x, y + 1, z; (iv) −x + 2, −y + 1, −z; (v) x, y + 1, z + 1] and halogen bonds (red dashed lines) in the title compound. (b) A view of the π-stacking inter­actions [blue dashed lines; symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z] and C—Cl⋯Cg [green dashed lines; symmetry operations: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z] inter­actions.

Synthesis and crystallization

Tin(II) chloride dihydrate (2.25 mmol) was mixed with 2-amino-3,5-di­chloro­pyridine (3.3 mmol) in 1:2 molar ratio and a few drops of hydro­chloric acid in an aliquot of distilled water were added. After stirring, the mixture was refluxed for one h at 343 K. After two weeks of slow solvent evaporation, single crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula (C5H5Cl2N2)2[SnCl6]·2H2O
M r 695.44
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 7.4624 (2), 8.4715 (2), 10.1324 (2)
α, β, γ (°) 101.434 (1), 90.043 (1), 107.554 (1)
V3) 597.34 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.20
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.716, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 13446, 3617, 3320
R int 0.017
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.057, 1.02
No. of reflections 3617
No. of parameters 125
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.55

Computer programs: APEX2 and SAINT (Bruker, 2016), olex2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001912/bh4066sup1.cif

x-07-x220191-sup1.cif (406.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001912/bh4066Isup2.hkl

x-07-x220191-Isup2.hkl (288.5KB, hkl)

CCDC reference: 2152891

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Thanks are due to DRSDT–Algeria for support.

full crystallographic data

Crystal data

(C5H5Cl2N2)2[SnCl6]·2H2O Z = 1
Mr = 695.44 F(000) = 338
Triclinic, P1 Dx = 1.933 Mg m3
a = 7.4624 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.4715 (2) Å Cell parameters from 8759 reflections
c = 10.1324 (2) Å θ = 2.9–30.9°
α = 101.434 (1)° µ = 2.20 mm1
β = 90.043 (1)° T = 296 K
γ = 107.554 (1)° Block, clear light white
V = 597.34 (2) Å3 0.17 × 0.13 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 3320 reflections with I > 2σ(I)
φ and ω scans Rint = 0.017
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 30.5°, θmin = 3.6°
Tmin = 0.716, Tmax = 0.785 h = −10→10
13446 measured reflections k = −11→12
3617 independent reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.2999P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3617 reflections Δρmax = 0.43 e Å3
125 parameters Δρmin = −0.55 e Å3
0 restraints Extinction correction: SHELXL (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: iterative Extinction coefficient: 0.0164 (12)

Special details

Refinement. Approximate positions for all H atoms were first obtained from difference Fourier maps. H atoms were then placed in idealized positions and refined using the riding-atom approximation: C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). H atoms of the water molecule were located in a difference Fourier map and the water molecule geometry was eventually idealized, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 1.000000 0.000000 0.000000 0.03672 (7)
Cl1 0.75548 (7) −0.01363 (7) 0.15744 (5) 0.05267 (13)
Cl2 0.79968 (8) 0.04433 (7) −0.17040 (5) 0.05363 (13)
Cl3 0.87570 (9) −0.30370 (6) −0.08206 (5) 0.05831 (15)
O1W 0.6070 (3) 0.3039 (2) 0.02149 (16) 0.0668 (5)
H1WA 0.488075 0.275909 0.008232 0.100*
H1WB 0.646535 0.225509 −0.021598 0.100*
N1 0.6643 (3) 0.3678 (2) 0.29104 (16) 0.0475 (4)
H1 0.636615 0.323122 0.206756 0.057*
C1 0.7864 (3) 0.5252 (2) 0.32410 (19) 0.0423 (4)
C2 0.8268 (3) 0.5946 (2) 0.4640 (2) 0.0440 (4)
C3 0.7460 (3) 0.5045 (3) 0.55683 (19) 0.0500 (5)
H3 0.773367 0.551264 0.648414 0.060*
C4 0.6218 (3) 0.3417 (3) 0.5144 (2) 0.0485 (5)
C5 0.5824 (3) 0.2753 (3) 0.3814 (2) 0.0504 (5)
H5 0.499435 0.166763 0.352231 0.061*
N2 0.8609 (3) 0.6033 (3) 0.2280 (2) 0.0635 (5)
H2A 0.831417 0.553756 0.144754 0.076*
H2B 0.939027 0.703933 0.248386 0.076*
Cl4 0.97856 (10) 0.79620 (8) 0.51057 (8) 0.0752 (2)
Cl5 0.51633 (12) 0.22629 (11) 0.63144 (8) 0.0814 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.04012 (10) 0.03823 (10) 0.02500 (8) 0.00279 (7) 0.00185 (6) 0.00539 (6)
Cl1 0.0505 (3) 0.0630 (3) 0.0385 (2) 0.0095 (2) 0.0146 (2) 0.0090 (2)
Cl2 0.0537 (3) 0.0674 (3) 0.0377 (2) 0.0142 (2) −0.0065 (2) 0.0131 (2)
Cl3 0.0850 (4) 0.0373 (2) 0.0378 (2) 0.0008 (2) 0.0014 (2) 0.00182 (18)
O1W 0.0687 (10) 0.0721 (11) 0.0450 (8) 0.0080 (8) −0.0052 (7) 0.0001 (8)
N1 0.0607 (10) 0.0453 (9) 0.0327 (7) 0.0142 (8) 0.0013 (7) 0.0026 (6)
C1 0.0504 (10) 0.0414 (9) 0.0383 (9) 0.0185 (8) 0.0079 (8) 0.0083 (7)
C2 0.0461 (10) 0.0422 (9) 0.0421 (9) 0.0178 (8) −0.0021 (8) −0.0014 (8)
C3 0.0571 (12) 0.0667 (13) 0.0328 (8) 0.0331 (10) −0.0002 (8) 0.0038 (8)
C4 0.0546 (12) 0.0595 (12) 0.0439 (10) 0.0288 (10) 0.0119 (9) 0.0216 (9)
C5 0.0538 (12) 0.0443 (10) 0.0524 (11) 0.0132 (9) 0.0055 (9) 0.0112 (9)
N2 0.0852 (14) 0.0542 (11) 0.0511 (10) 0.0171 (10) 0.0201 (10) 0.0175 (9)
Cl4 0.0688 (4) 0.0496 (3) 0.0897 (5) 0.0096 (3) −0.0104 (3) −0.0128 (3)
Cl5 0.0971 (5) 0.1009 (5) 0.0742 (4) 0.0474 (4) 0.0359 (4) 0.0562 (4)

Geometric parameters (Å, º)

Sn1—Cl1 2.4162 (5) C1—C2 1.417 (3)
Sn1—Cl1i 2.4162 (5) C1—N2 1.315 (3)
Sn1—Cl2 2.4389 (5) C2—C3 1.356 (3)
Sn1—Cl2i 2.4389 (5) C2—Cl4 1.713 (2)
Sn1—Cl3 2.4253 (5) C3—H3 0.9300
Sn1—Cl3i 2.4253 (5) C3—C4 1.393 (3)
O1W—H1WA 0.8499 C4—C5 1.348 (3)
O1W—H1WB 0.8496 C4—Cl5 1.726 (2)
N1—H1 0.8600 C5—H5 0.9300
N1—C1 1.345 (3) N2—H2A 0.8600
N1—C5 1.350 (3) N2—H2B 0.8600
Cl1—Sn1—Cl1i 180.0 N1—C1—C2 116.00 (18)
Cl1—Sn1—Cl2 90.722 (19) N2—C1—N1 119.49 (18)
Cl1i—Sn1—Cl2 89.278 (19) N2—C1—C2 124.50 (19)
Cl1—Sn1—Cl2i 89.277 (19) C1—C2—Cl4 117.52 (16)
Cl1i—Sn1—Cl2i 90.723 (19) C3—C2—C1 120.82 (18)
Cl1—Sn1—Cl3 89.906 (19) C3—C2—Cl4 121.66 (15)
Cl1—Sn1—Cl3i 90.093 (19) C2—C3—H3 120.1
Cl1i—Sn1—Cl3i 89.907 (19) C2—C3—C4 119.71 (18)
Cl1i—Sn1—Cl3 90.093 (19) C4—C3—H3 120.1
Cl2i—Sn1—Cl2 180.0 C3—C4—Cl5 120.22 (16)
Cl3i—Sn1—Cl2 89.81 (2) C5—C4—C3 119.70 (19)
Cl3i—Sn1—Cl2i 90.19 (2) C5—C4—Cl5 120.08 (18)
Cl3—Sn1—Cl2 90.19 (2) N1—C5—H5 120.3
Cl3—Sn1—Cl2i 89.81 (2) C4—C5—N1 119.4 (2)
Cl3—Sn1—Cl3i 180.0 C4—C5—H5 120.3
H1WA—O1W—H1WB 109.5 C1—N2—H2A 120.0
C1—N1—H1 117.8 C1—N2—H2B 120.0
C1—N1—C5 124.32 (17) H2A—N2—H2B 120.0
C5—N1—H1 117.8
N1—C1—C2—C3 0.4 (3) C5—N1—C1—C2 −0.6 (3)
N1—C1—C2—Cl4 −178.93 (15) C5—N1—C1—N2 178.8 (2)
C1—N1—C5—C4 0.3 (3) N2—C1—C2—C3 −179.0 (2)
C1—C2—C3—C4 0.0 (3) N2—C1—C2—Cl4 1.7 (3)
C2—C3—C4—C5 −0.3 (3) Cl4—C2—C3—C4 179.31 (16)
C2—C3—C4—Cl5 −179.42 (16) Cl5—C4—C5—N1 179.25 (16)
C3—C4—C5—N1 0.1 (3)

Symmetry code: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1W 0.86 1.86 2.685 (2) 160
O1W—H1WA···Cl1ii 0.85 2.67 3.296 (2) 131
O1W—H1WB···Cl2 0.85 2.47 3.301 (2) 168
N2—H2A···Cl3iii 0.86 2.78 3.381 (2) 129
N2—H2A···O1W 0.86 2.38 3.065 (3) 137
N2—H2B···Cl4 0.86 2.61 2.986 (2) 108
N2—H2B···Cl2iv 0.86 2.67 3.435 (2) 149
C3—H3···Cl3v 0.93 2.77 3.695 (2) 177
C5—H5···Cl2ii 0.93 2.80 3.615 (2) 147

Symmetry codes: (ii) −x+1, −y, −z; (iii) x, y+1, z; (iv) −x+2, −y+1, −z; (v) x, y+1, z+1.

Funding Statement

Funding for this research was provided by: Unité de recherche de chimie de l’environnement, moléculaire et structurale 113 UR.CHEMS; Direction Générale de la Recherche Scientifique et du Développement Technologique DGRSDT Algérie.

References

  1. Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1998). Acta Cryst. B54, 50–65.
  2. Bouchene, R., Lecheheb, Z., Belhouas, R. & Bouacida, S. (2018). Acta Cryst. E74, 206–211. [DOI] [PMC free article] [PubMed]
  3. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  4. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Ghallab, R., Boutebdja, M., Dénès, G. & Merazig, H. (2020). Acta Cryst. E76, 1279–1283. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622001912/bh4066sup1.cif

x-07-x220191-sup1.cif (406.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622001912/bh4066Isup2.hkl

x-07-x220191-Isup2.hkl (288.5KB, hkl)

CCDC reference: 2152891

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES