Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 29;7(Pt 3):x220304. doi: 10.1107/S2414314622003042

1,2-Bis(pyridin-4-yl)ethene–4-hy­droxy-3-meth­oxy­benzoic acid (1/1)

Devin J Angevine a, Jason B Benedict a,*
Editor: W T A Harrisonb
PMCID: PMC9462014  PMID: 36339810

A co-crystal consisting of a 1:1 ratio of p-vanillic acid and bi­pyridine ethyl­ene was synthesized. A series of O—H⋯N inter­actions connect the mol­ecules into twisting wires, which are cross-linked through van der Waals inter­actions.

Keywords: crystal structure, organic co-crystal, vanillic acid, bi­pyridine ethyl­ene

Abstract

In the title 1:1 co-crystal [alternatively called bi­pyridine ethyl­ene–p-vanillic acid (1/1)], C12H10N2·C8H8O4, the dihedral angle between the pyridine rings is 59.51 (5)°. In the crystal, the mol­ecules are linked by O—H⋯N hydrogen bonds, generating [401] chains of alternating C12H10N2 and C8H8O4 mol­ecules. graphic file with name x-07-x220304-scheme1-3D1.jpg

Structure description

4-Hy­droxy-3-meth­oxy­benzoic acid, C8H8O4, known commonly as p-vanillic acid, is used as a flavoring agent and naturally found in a variety of fruits and edible plants (Ingole et al., 2021). In addition, p-vanillic acid is currently being investigated for its inflammatory pain-inhibiting properties (Calixto-Campos et al., 2015). Despite the prevalence of the mol­ecule in our foods and its potential medicinal benefits, structural information on vanillic acid is sparse with few crystal structures being reported thus far. As such it is crucial to expand the number of structures containing vanillic acid in order to better understand the non-covalent inter­actions involving this mol­ecule. Bi­pyridine ethyl­ene (C12H10N2; BPyE) was selected as a suitable coformer for the present study because of its ability to form both simple and complex hydrogen-bonded networks with organic acids (Delori et al., 2013; Bhattacharya et al., 2013).

When p-vanillic acid is combined with BPyE in a 1:1 molar ratio, the resulting 1:1 co-crystal possesses monoclinic (P21/c) symmetry at 90 K. The vanillic acid has two distinct O—H⋯N-type hydrogen-bonding inter­actions (Table 1); one of these involves the carb­oxy­lic acid group and a BPyE N atom acceptor and resulting in a 2.6295 (12) Å distance between heteroatoms (Fig. 1). The other hydrogen bond occurs between the para-position hydroxyl group and the other pyridine N atom of a BPyE mol­ecule resulting in a 2.6868 (13) Å distance between heteroatoms (Fig. 2). The co-crystal structure may be described as dimolecular units made up of one acid plus one coformer, which form Inline graphic (19) chain motifs. These chains propagate in the [401] direction, forming twisting wires (Fig. 3). The wires stack along [010], forming sheets, which subsequently form layers parallel to (10 Inline graphic ), with every other sheet being rotated 180° about [010]. Two weak C—H⋯O contacts are also observed (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.99 (2) 1.65 (2) 2.6295 (12) 169 (2)
O4—H4⋯N2ii 0.92 (2) 1.84 (2) 2.6868 (13) 154 (2)
C4—H4A⋯O2iii 0.95 2.53 3.2341 (14) 132
C9—H9⋯O3iv 0.95 2.45 3.3520 (14) 158

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 1.

Figure 1

A bimolecular unit consisting of p-vanillic acid and BPyE with the hydrogen bond depicted as a blue dashed line. The BPyE mol­ecule illustrated is generated by the symmetry operation x – 1, y, z from the asymmetric mol­ecule.

Figure 2.

Figure 2

Part of a [401] hydrogen-bonded chain of p-vanillic acid and BPyE mol­ecules. The O⋯N distances are shown for each O—H⋯N hydrogen-bonding inter­action.

Figure 3.

Figure 3

plane depicting twisting hydrogen-bonded wires running approximately parallel to (10 Inline graphic ). Hydrogen-bonding inter­actions are depicted as bright-blue dashed lines.

Synthesis and crystallization

A 1:1 molar ratio of bi­pyridine ethyl­ene (182.2 mg, 1 mmol) and p-vanillic acid (168.1 mg, 1 mmol) was added to a 25 ml scintillation vial to which methanol was added until both compounds dissolved (approximately 20 ml). The resulting solution was vortexed for 30 s at 3000 rpm on a VWR Mini Vortexer MV I. The solution was then stored in the dark uncapped to allow for crystal formation while the solvent slowly evaporated.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C12H10N2·C8H8O4
M r 350.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 9.1486 (5), 9.2114 (5), 20.3429 (12)
β (°) 98.416 (1)
V3) 1695.86 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.54 × 0.22 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.648, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33598, 5958, 4683
R int 0.084
(sin θ/λ)max−1) 0.748
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.131, 1.03
No. of reflections 5958
No. of parameters 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.26

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick 2015b ), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003042/hb4402sup1.cif

x-07-x220304-sup1.cif (1,011.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003042/hb4402Isup2.hkl

x-07-x220304-Isup2.hkl (326.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003042/hb4402Isup3.cml

CCDC reference: 2160226

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C12H10N2·C8H8O4 F(000) = 736
Mr = 350.36 Dx = 1.372 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.1486 (5) Å Cell parameters from 5974 reflections
b = 9.2114 (5) Å θ = 2.4–32.1°
c = 20.3429 (12) Å µ = 0.10 mm1
β = 98.416 (1)° T = 90 K
V = 1695.86 (16) Å3 Plate, clear colourless
Z = 4 0.54 × 0.22 × 0.02 mm

Data collection

Bruker APEXII CCD diffractometer 4683 reflections with I > 2σ(I)
φ and ω scans Rint = 0.084
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 32.1°, θmin = 2.0°
Tmin = 0.648, Tmax = 0.746 h = −13→13
33598 measured reflections k = −13→13
5958 independent reflections l = −30→30

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.6347P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.131 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.40 e Å3
5958 reflections Δρmin = −0.26 e Å3
245 parameters Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0070 (15)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The O-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were placed geometrically (C—H = 0.95–0.98 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.43471 (9) 0.32423 (9) 0.77939 (4) 0.01865 (17)
O2 −0.05986 (9) 0.39976 (10) 0.62580 (4) 0.01877 (17)
O4 0.41561 (9) 0.50304 (10) 0.88365 (4) 0.02072 (18)
O1 −0.17538 (9) 0.55862 (10) 0.68391 (4) 0.02055 (18)
N1 0.58124 (10) 0.49305 (11) 0.60383 (5) 0.01647 (18)
N2 −0.30499 (10) 0.09310 (11) 0.39212 (5) 0.0198 (2)
C11 0.30840 (11) 0.38151 (12) 0.54449 (5) 0.01433 (19)
C5 0.30531 (11) 0.49848 (12) 0.83165 (5) 0.01447 (19)
C1 −0.06039 (11) 0.47842 (12) 0.67408 (5) 0.01454 (19)
C2 0.06755 (11) 0.49121 (12) 0.72818 (5) 0.01337 (19)
C3 0.06593 (11) 0.58633 (12) 0.78115 (5) 0.01466 (19)
H3 −0.016259 0.648781 0.782394 0.018*
C7 0.19036 (11) 0.40137 (12) 0.72604 (5) 0.01356 (19)
H7 0.192506 0.337576 0.689504 0.016*
C16 −0.01655 (11) 0.18988 (12) 0.43775 (5) 0.01485 (19)
C12 0.44140 (11) 0.31630 (12) 0.53464 (5) 0.0158 (2)
H12 0.441106 0.232395 0.507463 0.019*
C6 0.30870 (11) 0.40521 (12) 0.77703 (5) 0.01375 (19)
C9 0.45404 (12) 0.55722 (13) 0.61287 (5) 0.0171 (2)
H9 0.458134 0.641952 0.639702 0.021*
C10 0.31694 (11) 0.50520 (12) 0.58473 (5) 0.0154 (2)
H10 0.229348 0.553233 0.592721 0.019*
C13 0.57369 (11) 0.37518 (13) 0.56488 (5) 0.0164 (2)
H13 0.663253 0.329869 0.557653 0.020*
C15 0.13307 (11) 0.24385 (13) 0.46164 (5) 0.0163 (2)
H15 0.210971 0.220751 0.437269 0.020*
C4 0.18456 (11) 0.58996 (12) 0.83222 (5) 0.0158 (2)
H4A 0.183227 0.655853 0.868048 0.019*
C20 −0.06769 (12) 0.17485 (13) 0.36998 (5) 0.0172 (2)
H20 −0.004731 0.196381 0.338053 0.021*
C14 0.16281 (11) 0.32450 (13) 0.51668 (5) 0.0163 (2)
H14 0.082548 0.346774 0.539750 0.020*
C17 −0.11344 (12) 0.15200 (13) 0.48206 (6) 0.0180 (2)
H17 −0.083003 0.159193 0.528642 0.022*
C18 −0.25442 (12) 0.10380 (13) 0.45737 (6) 0.0192 (2)
H18 −0.318447 0.077004 0.488118 0.023*
C19 −0.21164 (12) 0.12807 (13) 0.34974 (6) 0.0199 (2)
H19 −0.245544 0.120512 0.303447 0.024*
C8 0.44161 (13) 0.22430 (14) 0.72620 (6) 0.0221 (2)
H8A 0.430464 0.277176 0.683957 0.033*
H8B 0.361902 0.152884 0.725170 0.033*
H8C 0.537185 0.174302 0.732989 0.033*
H4 0.499 (2) 0.458 (3) 0.8743 (11) 0.055 (6)*
H1 −0.259 (3) 0.528 (3) 0.6504 (12) 0.066 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0149 (3) 0.0218 (4) 0.0183 (4) 0.0073 (3) −0.0006 (3) −0.0023 (3)
O2 0.0165 (4) 0.0236 (4) 0.0156 (4) 0.0004 (3) 0.0004 (3) −0.0028 (3)
O4 0.0136 (4) 0.0285 (5) 0.0181 (4) 0.0034 (3) −0.0043 (3) −0.0043 (3)
O1 0.0116 (3) 0.0257 (4) 0.0226 (4) 0.0033 (3) −0.0031 (3) −0.0063 (3)
N1 0.0135 (4) 0.0191 (5) 0.0156 (4) −0.0005 (3) −0.0016 (3) 0.0012 (3)
N2 0.0141 (4) 0.0209 (5) 0.0229 (5) −0.0007 (3) −0.0020 (3) −0.0022 (4)
C11 0.0129 (4) 0.0171 (5) 0.0125 (4) 0.0002 (4) 0.0003 (3) 0.0012 (4)
C5 0.0123 (4) 0.0158 (5) 0.0148 (4) −0.0010 (3) 0.0006 (3) 0.0010 (4)
C1 0.0119 (4) 0.0158 (5) 0.0157 (4) −0.0006 (3) 0.0012 (3) 0.0016 (4)
C2 0.0107 (4) 0.0147 (5) 0.0144 (4) −0.0004 (3) 0.0005 (3) 0.0009 (3)
C3 0.0118 (4) 0.0152 (5) 0.0167 (4) 0.0017 (3) 0.0010 (3) −0.0003 (4)
C7 0.0131 (4) 0.0142 (5) 0.0134 (4) −0.0001 (3) 0.0021 (3) 0.0002 (3)
C16 0.0125 (4) 0.0154 (5) 0.0159 (4) 0.0013 (3) −0.0004 (3) −0.0015 (4)
C12 0.0138 (4) 0.0172 (5) 0.0156 (4) 0.0015 (4) −0.0004 (3) −0.0020 (4)
C6 0.0115 (4) 0.0142 (5) 0.0154 (4) 0.0018 (3) 0.0015 (3) 0.0016 (4)
C9 0.0164 (5) 0.0181 (5) 0.0158 (5) 0.0005 (4) −0.0010 (4) −0.0012 (4)
C10 0.0126 (4) 0.0189 (5) 0.0145 (4) 0.0015 (4) 0.0008 (3) −0.0011 (4)
C13 0.0120 (4) 0.0199 (5) 0.0166 (5) 0.0021 (4) 0.0000 (3) 0.0009 (4)
C15 0.0119 (4) 0.0201 (5) 0.0164 (5) 0.0002 (4) 0.0008 (3) 0.0002 (4)
C4 0.0135 (4) 0.0176 (5) 0.0160 (4) 0.0002 (4) 0.0015 (3) −0.0030 (4)
C20 0.0161 (5) 0.0187 (5) 0.0164 (5) −0.0001 (4) 0.0010 (4) −0.0027 (4)
C14 0.0117 (4) 0.0197 (5) 0.0169 (5) 0.0002 (4) 0.0008 (3) −0.0007 (4)
C17 0.0146 (4) 0.0222 (5) 0.0165 (5) −0.0008 (4) 0.0001 (4) 0.0001 (4)
C18 0.0135 (5) 0.0221 (5) 0.0218 (5) −0.0008 (4) 0.0018 (4) 0.0000 (4)
C19 0.0174 (5) 0.0226 (6) 0.0180 (5) −0.0005 (4) −0.0029 (4) −0.0035 (4)
C8 0.0230 (5) 0.0235 (6) 0.0198 (5) 0.0101 (4) 0.0031 (4) −0.0025 (4)

Geometric parameters (Å, º)

O3—C6 1.3680 (12) C16—C15 1.4705 (15)
O3—C8 1.4292 (14) C16—C20 1.3963 (15)
O2—C1 1.2211 (13) C16—C17 1.3979 (15)
O4—C5 1.3516 (12) C12—H12 0.9500
O4—H4 0.92 (2) C12—C13 1.3854 (15)
O1—C1 1.3243 (13) C9—H9 0.9500
O1—H1 0.99 (2) C9—C10 1.3858 (15)
N1—C9 1.3417 (14) C10—H10 0.9500
N1—C13 1.3400 (15) C13—H13 0.9500
N2—C18 1.3439 (15) C15—H15 0.9500
N2—C19 1.3386 (16) C15—C14 1.3379 (15)
C11—C12 1.3975 (15) C4—H4A 0.9500
C11—C10 1.3984 (15) C20—H20 0.9500
C11—C14 1.4661 (14) C20—C19 1.3895 (15)
C5—C6 1.4083 (15) C14—H14 0.9500
C5—C4 1.3908 (15) C17—H17 0.9500
C1—C2 1.4892 (14) C17—C18 1.3869 (15)
C2—C3 1.3906 (15) C18—H18 0.9500
C2—C7 1.4012 (14) C19—H19 0.9500
C3—H3 0.9500 C8—H8A 0.9800
C3—C4 1.3886 (14) C8—H8B 0.9800
C7—H7 0.9500 C8—H8C 0.9800
C7—C6 1.3858 (14)
C6—O3—C8 117.07 (9) C10—C9—H9 118.6
C5—O4—H4 112.0 (14) C11—C10—H10 120.2
C1—O1—H1 107.0 (14) C9—C10—C11 119.55 (10)
C13—N1—C9 117.86 (9) C9—C10—H10 120.2
C19—N2—C18 117.30 (10) N1—C13—C12 123.09 (10)
C12—C11—C10 117.32 (10) N1—C13—H13 118.5
C12—C11—C14 123.47 (10) C12—C13—H13 118.5
C10—C11—C14 119.18 (9) C16—C15—H15 119.0
O4—C5—C6 122.43 (9) C14—C15—C16 121.99 (10)
O4—C5—C4 118.53 (10) C14—C15—H15 119.0
C4—C5—C6 119.04 (9) C5—C4—H4A 119.5
O2—C1—O1 123.31 (10) C3—C4—C5 120.93 (10)
O2—C1—C2 123.10 (10) C3—C4—H4A 119.5
O1—C1—C2 113.58 (9) C16—C20—H20 120.4
C3—C2—C1 121.74 (9) C19—C20—C16 119.30 (10)
C3—C2—C7 119.71 (9) C19—C20—H20 120.4
C7—C2—C1 118.52 (9) C11—C14—H14 117.1
C2—C3—H3 120.0 C15—C14—C11 125.72 (10)
C4—C3—C2 119.94 (10) C15—C14—H14 117.1
C4—C3—H3 120.0 C16—C17—H17 120.3
C2—C7—H7 119.9 C18—C17—C16 119.35 (10)
C6—C7—C2 120.26 (10) C18—C17—H17 120.3
C6—C7—H7 119.9 N2—C18—C17 123.28 (11)
C20—C16—C15 121.40 (10) N2—C18—H18 118.4
C20—C16—C17 117.35 (10) C17—C18—H18 118.4
C17—C16—C15 121.24 (10) N2—C19—C20 123.38 (10)
C11—C12—H12 120.3 N2—C19—H19 118.3
C13—C12—C11 119.36 (10) C20—C19—H19 118.3
C13—C12—H12 120.3 O3—C8—H8A 109.5
O3—C6—C5 114.87 (9) O3—C8—H8B 109.5
O3—C6—C7 125.05 (10) O3—C8—H8C 109.5
C7—C6—C5 120.07 (9) H8A—C8—H8B 109.5
N1—C9—H9 118.6 H8A—C8—H8C 109.5
N1—C9—C10 122.81 (10) H8B—C8—H8C 109.5
O2—C1—C2—C3 177.25 (11) C12—C11—C14—C15 −26.50 (18)
O2—C1—C2—C7 −4.63 (16) C6—C5—C4—C3 2.43 (16)
O4—C5—C6—O3 −2.61 (15) C9—N1—C13—C12 −0.93 (16)
O4—C5—C6—C7 177.83 (10) C10—C11—C12—C13 0.39 (16)
O4—C5—C4—C3 −177.84 (10) C10—C11—C14—C15 155.42 (11)
O1—C1—C2—C3 −3.78 (15) C13—N1—C9—C10 1.19 (16)
O1—C1—C2—C7 174.34 (10) C15—C16—C20—C19 −177.84 (11)
N1—C9—C10—C11 −0.66 (17) C15—C16—C17—C18 178.96 (11)
C11—C12—C13—N1 0.15 (17) C4—C5—C6—O3 177.11 (9)
C1—C2—C3—C4 176.90 (10) C4—C5—C6—C7 −2.45 (16)
C1—C2—C7—C6 −177.00 (9) C20—C16—C15—C14 146.38 (12)
C2—C3—C4—C5 −0.61 (17) C20—C16—C17—C18 −0.85 (17)
C2—C7—C6—O3 −178.84 (10) C14—C11—C12—C13 −177.72 (10)
C2—C7—C6—C5 0.68 (16) C14—C11—C10—C9 178.05 (10)
C3—C2—C7—C6 1.15 (16) C17—C16—C15—C14 −33.42 (17)
C7—C2—C3—C4 −1.20 (16) C17—C16—C20—C19 1.97 (17)
C16—C15—C14—C11 179.32 (10) C18—N2—C19—C20 −0.37 (18)
C16—C20—C19—N2 −1.42 (19) C19—N2—C18—C17 1.59 (18)
C16—C17—C18—N2 −0.98 (19) C8—O3—C6—C5 177.99 (10)
C12—C11—C10—C9 −0.15 (16) C8—O3—C6—C7 −2.47 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.99 (2) 1.65 (2) 2.6295 (12) 169 (2)
O4—H4···N2ii 0.92 (2) 1.84 (2) 2.6868 (13) 154 (2)
C4—H4A···O2iii 0.95 2.53 3.2341 (14) 132
C9—H9···O3iv 0.95 2.45 3.3520 (14) 158

Symmetry codes: (i) x−1, y, z; (ii) x+1, −y+1/2, z+1/2; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

References

  1. Bhattacharya, S., Stojaković, J., Saha, B. K. & MacGillivray, L. R. (2013). Org. Lett. 15, 744–747. [DOI] [PubMed]
  2. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Calixto-Campos, C., Carvalho, T. T., Hohmann, M. S. N., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. (2015). J. Nat. Prod. 78, 1799–1808. [DOI] [PubMed]
  4. Delori, A., Eddleston, M. D. & Jones, W. (2013). CrystEngComm, 15, 73–77.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Ingole, A., Kadam, M., Dalu, A., Kute, S., Mange, P., Theng, V., Lahane, R., Nikas, A., Kawal, Y., Nagrik, S. & Patil, P. (2021). J. Drug. Deliv. Ther. 11, 200–204.
  7. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003042/hb4402sup1.cif

x-07-x220304-sup1.cif (1,011.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003042/hb4402Isup2.hkl

x-07-x220304-Isup2.hkl (326.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003042/hb4402Isup3.cml

CCDC reference: 2160226

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES