Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 31;7(Pt 3):x220332. doi: 10.1107/S2414314622003327

3-(Benzo[d]thia­zol-2-yl)-2H-chromen-2-one

Amira E M Abdallah a, Galal H Elgemeie a, Peter G Jones b,*
Editor: C Masserac
PMCID: PMC9462017  PMID: 36339803

The inter­planar angle is 6.47 (6)°, with an associated intra­molecular S⋯O= C contact. The packing involves various secondary inter­actions.

Keywords: benzo­thia­zol, coumarin, chromene, crystal structure

Abstract

In the title compound, C16H9NO2S, the inter­planar angle is 6.47 (6)°. An intra­molecular S⋯O=C contact of 2.727 (2) Å is observed. The packing is determined by several types of weak inter­action (‘weak’ hydrogen bonds, S⋯S contacts and π–π stacking). graphic file with name x-07-x220332-scheme1-3D1.jpg

Structure description

Coumarin (chromen-2-one) derivatives represent a significant class of organic heterocycles; they can be found in various natural or synthetic drug compounds and display a variety of biological activities (Curini et al., 2006), the most noticeable of which are photobiological properties upon irradiation with UV light. Thus, many coumarin derivatives are effective photosensitizers with valuable applications in medicine (Bansal et al., 2013). Because of these photochemical characteristics, together with their practical stability, ease of synthesis and good solubility, coumarins have been widely explored as solar energy collectors, charge-transfer agents and non-linear optical materials for photonic and electronic applications (Kim et al., 2011). Coumarins are one of the most broadly investigated and commercially important classes of organic fluorescent materials. Coumarin dyes fluoresce in the blue–green spectroscopic region and are commonly used in daylight fluorescent pigments, fluorescent probes, and as tunable dye lasers or organic light-emitting diodes (Christie & Lui, 2000). The emission intensity of coumarin chromophores strongly depends on the nature and position of their substituents (Żamojć et al., 2014).

Benzo­thia­zole derivatives also exhibit strong luminescence in solution and in the solid state. Mol­ecules that incorporate benzo­thia­zoles have attracted considerable research inter­est in the field of organic light-emitting diodes because of their unique electro-optical properties (Wang et al., 2010). Recently, we have synthesized some benzo­thia­zoles (Azzam et al., 2017a ,b , 2020a ,b ,c , 2021; Elgemeie et al., 2000a ,b ) and coumarin derivatives (Elgemeie, 1989; Elgemeie & Elghandour, 1990; Elgemeie et al., 2015).

As a continuation of our research inter­est in exploiting new coumarin and benzo­thia­zole derivatives for light-emitting materials, we describe here the synthesis and characterization of a benzo­thia­zole-based coumarin compound. The reaction of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide (1) with salicylaldehde (2) was investigated. This gave a product whose mass spectrum was not consistent with the proposed structure N-(3-(benzo[d]thia­zol-2-yl)-2-oxoquinolin-1(2H)-yl)benzamide (5). Therefore the X-ray crystal structure was determined, revealing that 3-(benzo[d]thia­zol-2-yl)-2H-chromen-2-one (4) is the sole product in the solid state (Fig. 1). The formation of (4) is assumed to proceed via initial formation of adduct (3) and elimination of benzohydrazide rather than water.

Figure 1.

Figure 1

Reaction scheme.

The structure of 4 is shown in Fig. 2. Mol­ecular dimensions may be regarded as normal; a brief selection is presented in Table 1. The ring systems are essentially planar, with r.m.s. deviations of 0.012 Å for the benzo­thia­zole and 0.006 Å for the chromene (including the exocyclic oxygen atom); the inter­planar angle is 6.47 (6)°. The intra­molecular contact distance S1⋯O2 is 2.727 (2) Å.

Figure 2.

Figure 2

The mol­ecule of 4 in the crystal. Ellipsoids represent 50% probability levels.

Table 1. Selected geometric parameters (Å, °).

S1—C7A 1.733 (2) C8—C16 1.357 (3)
S1—C2 1.758 (2) C8—C9 1.470 (3)
C2—N3 1.308 (3) C9—O1 1.365 (3)
N3—C3A 1.380 (3) C10—O1 1.379 (2)
C3A—C7A 1.411 (3) C15—C16 1.434 (3)
       
C7A—S1—C2 88.87 (10) N3—C3A—C7A 115.15 (19)
N3—C2—S1 115.63 (16) C3A—C7A—S1 109.57 (16)
C2—N3—C3A 110.75 (18)    

There are three short inter­molecular H⋯O/H⋯N contacts (Table 2), the shortest of which could reasonably be regarded as a ‘weak’ hydrogen bond. Together with an S1⋯S1 contact [3.626 (1) Å, operator −x, 1 − y, 1 − z], this links the mol­ecules to form corrugated sheets lying parallel to the bc plane (Fig. 3). However, this is only one way of considering the packing. The rings also display short contacts between their centroids via x-axis translation [thia­zole⋯(benzo­thia­zole benzo) 3.6187 (13) Å, thia­zole⋯(coumarin heterocycle) 3.5344 (12) Å, (coumarin heterocycle)⋯(coumarin benzo) 3.4148 (12) Å], although the stacking is somewhat offset. Viewed parallel to the c axis, the rings are seen edge-on in a herringbone pattern.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.95 2.46 3.383 (3) 163
C11—H11⋯N3ii 0.95 2.63 3.523 (3) 156
C13—H13⋯O2iii 0.95 2.65 3.314 (3) 127

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Crystal packing of 4 viewed parallel to the short a axis. Dashed lines indicate ‘weak’ hydrogen bonds or S⋯S contacts. Hydrogen atoms not involved in hydrogen bonding are omitted.

A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016) for purely organic coumarin derivatives gave 1030 hits with 1299 individual mol­ecules. The mean bond lengths of the coumarin heterocycle (referred to the numbering of 4) are: C15—C16 = 1.442 (15), C16—C8 =1.356 (19), C8—C9 =1.448 (18), C9—O1 =1.375 (14) and O1—C10 =1.378 (11) Å, and the values in 4 (Table 1) are consistent with these mean values. A more specialized search revealed four compounds with simple coumarin derivatives linked to benzo[d]thia­zol in the same way as in 4: DARPIX (Ezeh & Harrop, 2012), VIVWEF and VIWDOX (Shi et al., 2019), WINZAU (Jasinski & Paight, 1995). The first three have been used as fluorescent probes, for the detection of bio­thiols and the evaluation of anti-cancer agents, respectively.

Synthesis and crystallization

A mixture of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzo­hydra­zide 1 (3.11 g, 0.01 mol), salicyl­aldehyde 2 (1.22 g, 0.01 mol) and ammonium acetate (0.77 g, 0.01 mol) in ethanol (10 mL) was refluxed for 3 h. The precipitate was filtered off and recrystallized from ethanol solution to give pale-yellow crystals in 95% yield, m.p. 501–503 K; IR (KBr, cm−1): υ 3048, 3028 (CH-aromatic), 1715 (C=O), 1557 (C=N) and 1602, 1479 (C=C). 1H NMR (400 MHz DMSO-d 6) δ: 7.46–8.21 (m, 8H, 2C6H4), 9.26 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6 ) δ: 116.7, 119.2, 119.8, 122.7, 123.0, 125.7, 125.9, 127.2, 130.7, 134.2, 136.4, 142.5, 152.4, 153.8 (aromatic carbons), 159.9 (C=N), 160.1 (C=O). MS (EI): m/z (%) 281 [M ++2] (0.44), 280 [M ++1] (0.96), 279 [M +] (4.06), 278 [M +−1] (0.12), 277 [M +−2] (0.17), 105 (100.00), 77 [C6H5]+ (58.06). Analysis: calculated for C16H9NO2S (279.31): C 68.80; H 3.25; N 5.01; S 11.48%. Found: C 68.70; H 3.33; N 5.12; S 11.60%.

The sample consisted of a mass of long, extremely fine needles with an overall matt appearance. Careful separation and cutting provided a single crystal, which proved to be measurable using a high-intensity X-ray source.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula C16H9NO2S
M r 279.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.60717 (11), 20.7275 (5), 12.6444 (3)
β (°) 91.911 (2)
V3) 1206.81 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.39
Crystal size (mm) 0.04 × 0.01 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.696, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 49602, 2547, 2528
R int 0.068
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.120, 1.25
No. of reflections 2547
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.43

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015b ), SHELXL2018/3 (Sheldrick, 2015a ) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622003327/xi4003sup1.cif

x-07-x220332-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003327/xi4003Isup2.hkl

x-07-x220332-Isup2.hkl (204KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003327/xi4003Isup3.cml

CCDC reference: 2161632

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

full crystallographic data

Crystal data

C16H9NO2S F(000) = 576
Mr = 279.30 Dx = 1.537 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 4.60717 (11) Å Cell parameters from 20622 reflections
b = 20.7275 (5) Å θ = 4.1–76.8°
c = 12.6444 (3) Å µ = 2.38 mm1
β = 91.911 (2)° T = 100 K
V = 1206.81 (5) Å3 Needle, pale yellow
Z = 4 0.04 × 0.01 × 0.01 mm

Data collection

XtaLAB Synergy diffractometer 2547 independent reflections
Radiation source: micro-focus sealed X-ray tube 2528 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.068
ω scans θmax = 77.9°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −5→5
Tmin = 0.696, Tmax = 1.000 k = −24→26
49602 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0479P)2 + 1.2289P] where P = (Fo2 + 2Fc2)/3
S = 1.25 (Δ/σ)max = 0.001
2547 reflections Δρmax = 0.45 e Å3
181 parameters Δρmin = −0.43 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 3.3898 (0.0014) x + 13.7552 (0.0080) y + 2.0177 (0.0070) z = 8.9676 (0.0037) * 0.0227 (0.0011) S1 * 0.0005 (0.0015) C2 * -0.0077 (0.0015) N3 * -0.0083 (0.0019) C3A * 0.0016 (0.0017) C4 * 0.0176 (0.0017) C5 * 0.0019 (0.0017) C6 * -0.0169 (0.0016) C7 * -0.0115 (0.0018) C7A Rms deviation of fitted atoms = 0.0124 - 3.2516 (0.0012) x + 14.6654 (0.0053) y + 0.7477 (0.0068) z = 9.1325 (0.0065) Angle to previous plane (with approximate esd) = 6.467 ( 0.060 ) * -0.0054 (0.0017) C8 * -0.0016 (0.0018) C9 * 0.0001 (0.0019) C10 * -0.0072 (0.0017) C11 * 0.0011 (0.0017) C12 * -0.0035 (0.0017) C13 * -0.0017 (0.0017) C14 * 0.0079 (0.0019) C15 * 0.0022 (0.0016) C16 * 0.0136 (0.0014) O1 * -0.0054 (0.0014) O2 Rms deviation of fitted atoms = 0.0059#======================================================================Short contact: 3.6259 (0.0010) S1 - S1_$4 Operator $4: -x, 1-y, 1-z
Refinement. The hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic 0.95 Å). The U(H) values were fixed at 1.2 times the equivalent Uiso value of the parent carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.03347 (11) 0.58024 (2) 0.44385 (4) 0.01871 (16)
C2 0.1290 (5) 0.63202 (10) 0.35289 (16) 0.0179 (4)
N3 0.0429 (4) 0.62471 (9) 0.25396 (14) 0.0190 (4)
C3A −0.1604 (5) 0.57600 (10) 0.24410 (17) 0.0197 (4)
C4 −0.3012 (5) 0.55593 (11) 0.14936 (17) 0.0227 (5)
H4 −0.257833 0.575871 0.084112 0.027*
C5 −0.5025 (5) 0.50703 (11) 0.15244 (18) 0.0238 (5)
H5 −0.600561 0.493791 0.088821 0.029*
C6 −0.5657 (5) 0.47627 (11) 0.24818 (18) 0.0230 (5)
H6 −0.704244 0.442317 0.248094 0.028*
C7 −0.4295 (5) 0.49470 (10) 0.34205 (18) 0.0208 (4)
H7 −0.471183 0.473769 0.406635 0.025*
C7A −0.2284 (5) 0.54501 (10) 0.33950 (16) 0.0189 (4)
C8 0.3479 (4) 0.67984 (10) 0.38551 (16) 0.0174 (4)
C9 0.4134 (5) 0.68882 (10) 0.49914 (16) 0.0186 (4)
C10 0.7662 (5) 0.76940 (10) 0.45552 (16) 0.0174 (4)
C11 0.9720 (5) 0.81249 (10) 0.49547 (16) 0.0200 (4)
H11 1.009311 0.816281 0.569554 0.024*
C12 1.1223 (5) 0.84998 (10) 0.42467 (17) 0.0208 (4)
H12 1.262170 0.880282 0.450509 0.025*
C13 1.0693 (5) 0.84351 (10) 0.31510 (17) 0.0202 (4)
H13 1.174863 0.869054 0.267249 0.024*
C14 0.8647 (5) 0.80021 (10) 0.27695 (16) 0.0191 (4)
H14 0.830301 0.796009 0.202773 0.023*
C15 0.7059 (4) 0.76208 (10) 0.34688 (16) 0.0173 (4)
C16 0.4906 (4) 0.71565 (10) 0.31393 (16) 0.0173 (4)
H16 0.447058 0.709837 0.240584 0.021*
O1 0.6178 (3) 0.73370 (7) 0.52821 (11) 0.0198 (3)
O2 0.2995 (4) 0.65973 (8) 0.56960 (12) 0.0247 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0214 (3) 0.0199 (3) 0.0150 (3) −0.00055 (19) 0.00235 (18) 0.00232 (18)
C2 0.0205 (10) 0.0179 (10) 0.0156 (9) 0.0036 (8) 0.0022 (7) 0.0008 (7)
N3 0.0211 (9) 0.0194 (9) 0.0166 (8) −0.0004 (7) 0.0017 (7) −0.0005 (7)
C3A 0.0209 (10) 0.0180 (10) 0.0203 (10) 0.0004 (8) 0.0033 (8) −0.0002 (8)
C4 0.0265 (11) 0.0241 (11) 0.0175 (10) −0.0013 (9) 0.0009 (8) −0.0015 (8)
C5 0.0268 (11) 0.0234 (11) 0.0213 (11) −0.0010 (9) 0.0017 (8) −0.0048 (8)
C6 0.0212 (11) 0.0182 (10) 0.0300 (12) −0.0016 (8) 0.0042 (9) −0.0026 (9)
C7 0.0212 (10) 0.0180 (10) 0.0237 (11) 0.0006 (8) 0.0059 (8) 0.0014 (8)
C7A 0.0210 (10) 0.0180 (10) 0.0178 (10) 0.0034 (8) 0.0026 (8) 0.0011 (8)
C8 0.0190 (10) 0.0190 (10) 0.0142 (9) 0.0034 (8) 0.0002 (7) −0.0005 (7)
C9 0.0207 (10) 0.0204 (10) 0.0149 (9) 0.0024 (8) 0.0021 (8) −0.0003 (8)
C10 0.0200 (10) 0.0171 (10) 0.0153 (9) 0.0017 (8) 0.0026 (7) 0.0004 (7)
C11 0.0236 (11) 0.0206 (10) 0.0158 (9) 0.0034 (8) −0.0005 (8) −0.0034 (8)
C12 0.0217 (10) 0.0191 (10) 0.0214 (10) 0.0002 (8) −0.0010 (8) −0.0023 (8)
C13 0.0221 (10) 0.0193 (10) 0.0194 (10) 0.0017 (8) 0.0024 (8) 0.0013 (8)
C14 0.0229 (10) 0.0199 (10) 0.0145 (9) 0.0021 (8) 0.0012 (8) 0.0008 (8)
C15 0.0201 (10) 0.0169 (10) 0.0147 (10) 0.0027 (8) −0.0004 (7) 0.0001 (7)
C16 0.0192 (10) 0.0197 (10) 0.0130 (9) 0.0026 (8) 0.0007 (7) −0.0002 (7)
O1 0.0242 (8) 0.0227 (8) 0.0125 (7) −0.0010 (6) 0.0010 (6) 0.0005 (6)
O2 0.0303 (8) 0.0281 (8) 0.0157 (7) −0.0034 (7) 0.0030 (6) 0.0022 (6)

Geometric parameters (Å, º)

S1—C7A 1.733 (2) C10—C11 1.385 (3)
S1—C2 1.758 (2) C10—C15 1.401 (3)
C2—N3 1.308 (3) C11—C12 1.388 (3)
C2—C8 1.464 (3) C12—C13 1.405 (3)
N3—C3A 1.380 (3) C13—C14 1.377 (3)
C3A—C4 1.406 (3) C14—C15 1.409 (3)
C3A—C7A 1.411 (3) C15—C16 1.434 (3)
C4—C5 1.375 (3) C4—H4 0.9500
C5—C6 1.407 (3) C5—H5 0.9500
C6—C7 1.378 (3) C6—H6 0.9500
C7—C7A 1.396 (3) C7—H7 0.9500
C8—C16 1.357 (3) C11—H11 0.9500
C8—C9 1.470 (3) C12—H12 0.9500
C9—O2 1.210 (3) C13—H13 0.9500
C9—O1 1.365 (3) C14—H14 0.9500
C10—O1 1.379 (2) C16—H16 0.9500
C7A—S1—C2 88.87 (10) C14—C13—C12 120.1 (2)
N3—C2—C8 122.13 (19) C13—C14—C15 120.63 (19)
N3—C2—S1 115.63 (16) C10—C15—C14 117.67 (19)
C8—C2—S1 122.24 (15) C10—C15—C16 118.07 (19)
C2—N3—C3A 110.75 (18) C14—C15—C16 124.25 (19)
N3—C3A—C4 125.9 (2) C8—C16—C15 121.26 (19)
N3—C3A—C7A 115.15 (19) C9—O1—C10 122.61 (16)
C4—C3A—C7A 119.0 (2) C5—C4—H4 120.5
C5—C4—C3A 119.1 (2) C3A—C4—H4 120.5
C4—C5—C6 121.2 (2) C4—C5—H5 119.4
C7—C6—C5 120.9 (2) C6—C5—H5 119.4
C6—C7—C7A 118.1 (2) C7—C6—H6 119.5
C7—C7A—C3A 121.7 (2) C5—C6—H6 119.5
C7—C7A—S1 128.67 (17) C6—C7—H7 121.0
C3A—C7A—S1 109.57 (16) C7A—C7—H7 121.0
C16—C8—C2 121.80 (18) C10—C11—H11 120.8
C16—C8—C9 119.64 (19) C12—C11—H11 120.8
C2—C8—C9 118.56 (18) C11—C12—H12 119.7
O2—C9—O1 116.96 (18) C13—C12—H12 119.7
O2—C9—C8 125.2 (2) C14—C13—H13 119.9
O1—C9—C8 117.81 (18) C12—C13—H13 119.9
O1—C10—C11 116.83 (18) C13—C14—H14 119.7
O1—C10—C15 120.59 (19) C15—C14—H14 119.7
C11—C10—C15 122.58 (19) C8—C16—H16 119.4
C10—C11—C12 118.41 (19) C15—C16—H16 119.4
C11—C12—C13 120.6 (2)
C7A—S1—C2—N3 1.07 (17) C16—C8—C9—O2 179.9 (2)
C7A—S1—C2—C8 −178.49 (18) C2—C8—C9—O2 −0.2 (3)
C8—C2—N3—C3A 179.04 (18) C16—C8—C9—O1 0.2 (3)
S1—C2—N3—C3A −0.5 (2) C2—C8—C9—O1 −179.90 (17)
C2—N3—C3A—C4 179.1 (2) O1—C10—C11—C12 −178.97 (18)
C2—N3—C3A—C7A −0.5 (3) C15—C10—C11—C12 0.4 (3)
N3—C3A—C4—C5 −179.1 (2) C10—C11—C12—C13 −0.9 (3)
C7A—C3A—C4—C5 0.5 (3) C11—C12—C13—C14 0.7 (3)
C3A—C4—C5—C6 −1.1 (3) C12—C13—C14—C15 0.1 (3)
C4—C5—C6—C7 0.6 (3) O1—C10—C15—C14 179.76 (18)
C5—C6—C7—C7A 0.4 (3) C11—C10—C15—C14 0.5 (3)
C6—C7—C7A—C3A −1.0 (3) O1—C10—C15—C16 −1.3 (3)
C6—C7—C7A—S1 177.72 (17) C11—C10—C15—C16 179.42 (19)
N3—C3A—C7A—C7 −179.79 (19) C13—C14—C15—C10 −0.7 (3)
C4—C3A—C7A—C7 0.6 (3) C13—C14—C15—C16 −179.6 (2)
N3—C3A—C7A—S1 1.3 (2) C2—C8—C16—C15 −179.62 (19)
C4—C3A—C7A—S1 −178.36 (16) C9—C8—C16—C15 0.3 (3)
C2—S1—C7A—C7 179.9 (2) C10—C15—C16—C8 0.2 (3)
C2—S1—C7A—C3A −1.24 (16) C14—C15—C16—C8 179.1 (2)
N3—C2—C8—C16 −5.4 (3) O2—C9—O1—C10 179.04 (18)
S1—C2—C8—C16 174.10 (16) C8—C9—O1—C10 −1.2 (3)
N3—C2—C8—C9 174.66 (19) C11—C10—O1—C9 −178.83 (18)
S1—C2—C8—C9 −5.8 (3) C15—C10—O1—C9 1.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1i 0.95 2.46 3.383 (3) 163
C11—H11···N3ii 0.95 2.63 3.523 (3) 156
C13—H13···O2iii 0.95 2.65 3.314 (3) 127

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2; (iii) x+1, −y+3/2, z−1/2.

References

  1. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. [DOI] [PMC free article] [PubMed]
  2. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  3. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  4. Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. [DOI] [PMC free article] [PubMed]
  7. Bansal, Y., Sethi, P. & Bansal, G. (2013). Med. Chem. Res. 22, 3049–3060.
  8. Christie, R. M. & Lui, C. H. (2000). Dyes Pigments, 47, 79–89.
  9. Curini, M., Cravotto, G., Epifano, F. & Giannone, G. (2006). Curr. Med. Chem. 13, 199–222. [DOI] [PubMed]
  10. Elgemeie, G. H. (1989). Chem. Ind. 19, 653–654.
  11. Elgemeie, G. H., Ahmed, K. A., Ahmed, E. A., Helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93.
  12. Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232.
  13. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon Relat. Elem. 165, 265–272.
  14. Elgemeie, G. H., Shams, Z., Elkholy, Y. M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–368.
  15. Ezeh, V. C. & Harrop, T. C. (2012). Inorg. Chem. 51, 1213–1215. [DOI] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Jasinski, J. P. & Paight, E. S. (1995). Acta Cryst. C51, 531–533.
  18. Kim, G.-J., Lee, K., Kwon, H. & Kim, H.-J. (2011). Org. Lett. 13, 2799–2801. [DOI] [PubMed]
  19. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  20. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  22. Shi, D., Chen, S., Dong, B., Zhang, Y., Sheng, C., James, T. D. & Guo, Y. (2019). Chem. Sci. 10, 3715–3722. [DOI] [PMC free article] [PubMed]
  23. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  24. Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.
  25. Żamojć, K., Wiczk, W., Zaborowski, B., Jacewicz, D. & Chmurzyński, L. (2014). J. Fluoresc. 24, 713–718. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622003327/xi4003sup1.cif

x-07-x220332-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003327/xi4003Isup2.hkl

x-07-x220332-Isup2.hkl (204KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003327/xi4003Isup3.cml

CCDC reference: 2161632

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES