Skip to main content
IUCrData logoLink to IUCrData
. 2022 Mar 31;7(Pt 3):x220231. doi: 10.1107/S2414314622002310

Bis[μ3-2-(pyridin-3-yl)acetato-κ3 O:O:O′]bis­[μ2-2-(pyridin-3-yl)acetato-κ2 O:O′]bis­[chlorido­(1,10-phenanthroline-κ2 N,N′)dysprosium(III)]

Yan Lin a,*, Jian-Ping Yu a
Editor: L Van Meerveltb
PMCID: PMC9462020  PMID: 36339809

A novel DyIII complex based on 3-pyridyl­acetic acid and 1,10-phenanthroline ligands shows a dinuclear structure.

Keywords: crystal structure

Abstract

The title DyIII complex, [Dy2(C7H6NO2)4Cl2(C12H8N2)2] or [Dy2(μ 3-PAA)4(Cl)2(phen)2] (PAA = 3-pyridyl­acetate, phen = 1,10-phenanthroline), obtained by reaction of Dy(ClO4)3, 3-pyridyl­acetic acid ligands and 1,10-phenanthroline, exhibits a dinuclear structure. Adjacent binuclear dimers are further connected via face-to-face ππ stacking inter­actions resulting in supra­molecular chains along the c-axis direction. graphic file with name x-07-x220231-scheme1-3D1.jpg

Structure description

Coordination complexes composed of metal cations and organic ligands have received much attention because of their diverse structures and intriguing properties such as photoluminescence, magnetism, proton conduction and so on. Lanthanide ions are considered to be excellent metal ions for the construction of such systems because of their unique 4f electrons and can show remarkable photoluminescent, magnetic and catalytic properties. Among numerous ligands, pyridine­carboxyl­ate ligands bearing O and N coordination atoms have attracted considerable inter­est and have proved to be a class of excellent bridging linkers in fabricating metal coordination complexes with appealing structures. The 3-pyridyl­acetate ligand (3-PAA), one of the most simple pyridine­carboxyl­ate ligands, has attracted particular inter­est owing to its strong coordination and varied coordination modes, resulting in diverse structures with excellent properties. So far, coordination complexes constructed by the 3-PAA ligand have focused on transition-metal cations, but lanthanide complexes based on the 3-PAA ligand are still rare. Thus, in this work, we prepared the title compound [Dy2(μ 2-PAA)4(Cl)2(phen)2] (1) (3-PAA = 3-pyridyl­acetate, phen = 1,10-phenanthroline), which displays a dinuclear structure.

The asymmetric unit of 1 (Fig. 1) consists of one crystallographically independent DyIII ion, one Cl anion, two PAA ligands and one phen mol­ecule. The DyIII cation is eight-coordinated by five carboxyl­ate oxygen atoms from four different PAA ligands, one Cl ion, and two nitro­gen atoms from one chelating phen mol­ecule. The Dy—O bond lengths range from 2.3069 (17) to 2.5170 (15) Å, and the Dy—N bond distances are 2.5386 (18) and 2.5516 (17)Å, which are similar to those in the complex [Zn(μ-L)(μ-dicl)Dy(NO3)2]·H2O {L = N,N′-dimethyl-N,N′-bis­(2-hy­droxy-3-formyl-5-bromo­benzyl, dicl = deprotonated diclofenac = 2-[(2,6-di­chloro­phen­yl)amino] benzene acetate; Echenique-Errandonea et al., 2019}. The two PAA ligands exhibit two different coordination modes. One acts as a tridentate ligand with a μ 212 mode, while the other serves as a bidentate ligand with a μ 2O 3O 4 mode. It is worth emphasizing that the N atom of the PAA ligand is noncoordinating in 1. As shown in Fig. 2, two neighboring DyIII ions are linked by four bridging carboxyl groups of four PAA ligands, forming the binuclear structure of 1, in which the nearest Dy⋯Dy separation is 3.8976 (19) Å. These adjacent binuclear dimers are further connected via face-to-face ππ stacking inter­actions involving the phenyl and pyridine rings of the phen ligands, the centroid-to-centroid distance being 3.6116 (10) Å, leading to the formation of supra­molecular chains along the c-axis direction (Fig. 3). For background information on the lanthanide ions and the 3-pyridyl­acetic acid ligand, see: Chakraborty et al. (2021); Xin et al. (2019); Ma et al. (2020); Wang et al. (2011); Teo et al. (2009); Adams et al. (2006).

Figure 1.

Figure 1

The asymmetric unit of 1 with 40% probability displacement ellipsoids. H atoms are omitted for clarity. Symmetry code: (A) 1 − x, 1 − y, 2 − z.

Figure 2.

Figure 2

The dinuclear structure of 1. H atoms are omitted for clarity. Symmetry code: (A) 1 − x, 1 − y, 2 − z.

Figure 3.

Figure 3

The supra­molecular chain along the c-axis direction formed by face-to-face ππ stacking inter­actions.

Synthesis and crystallization

Dy(ClO4)3 (0.2 mmol), 3-pyridyl­acetic acid (3-PAA, 0.25 mmol), 1,10-phenanthroline (0.25 mmol), HCl (0.25mmol) and Et3N were dissolved in 5 mL of aceto­nitrile and then sealed into a 25 mL Teflon-lined stainless steel vessel. The vessel was kept at 433 K for 3 d under autogenous pressure and then cooled to room temperature at a rate of 5.63 K h−1. Colorless block-shaped crystals were obtained by filtration of the resulting solution. Yield based on Dy: 38%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The instruction "delu 0.002 0.001 C11 C12" was used during the refinement to limit the displace­ment parameters of the specified atoms.

Table 1. Experimental details.

Crystal data
Chemical formula [Dy2(C7H6NO2)4Cl2(C12H8N2)2]
M r 1300.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.8922 (1), 21.5425 (3), 12.9887 (1)
β (°) 101.755 (1)
V3) 2435.94 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.22
Crystal size (mm) 0.22 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SAINT CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.626, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16420, 4487, 3954
R int 0.024
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.056, 1.01
No. of reflections 4487
No. of parameters 325
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.34

Computer programs: SMART and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2414314622002310/vm4049sup1.cif

x-07-x220231-sup1.cif (22.2KB, cif)

CCDC reference: 2155088

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Dy2(C7H6NO2)4Cl2(C12H8N2)2] F(000) = 1276
Mr = 1300.82 Dx = 1.773 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.8922 (1) Å Cell parameters from 7687 reflections
b = 21.5425 (3) Å θ = 2.5–27.3°
c = 12.9887 (1) Å µ = 3.22 mm1
β = 101.755 (1)° T = 296 K
V = 2435.94 (5) Å3 Block, yellow
Z = 2 0.22 × 0.20 × 0.19 mm

Data collection

Bruker SAINT CCD area detector diffractometer 4487 independent reflections
Radiation source: fine-focus sealed tube 3954 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
phi and ω scans θmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.626, Tmax = 0.746 k = −26→23
16420 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3
4487 reflections (Δ/σ)max = 0.002
325 parameters Δρmax = 0.59 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were placed in calculated positions with C—H = 0.93 Å in phenyl and pyridine rings while C–H = 0.97 Å in CH2 groups and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Dy1 0.387207 (12) 0.510416 (5) 0.855827 (7) 0.03127 (3)
Cl1 0.13833 (7) 0.58009 (3) 0.81071 (5) 0.05938 (19)
O3 0.57734 (18) 0.58550 (8) 0.90135 (12) 0.0487 (5)
N3 0.4153 (2) 0.55350 (10) 0.67882 (13) 0.0420 (5)
O1 0.57990 (18) 0.44419 (8) 0.80320 (11) 0.0472 (4)
N4 0.2364 (2) 0.45183 (9) 0.69718 (13) 0.0383 (5)
C7 0.6642 (3) 0.43988 (11) 0.89307 (17) 0.0365 (6)
C14 0.6799 (3) 0.60069 (12) 0.97945 (18) 0.0455 (6)
C18 0.3415 (3) 0.54877 (14) 0.48832 (18) 0.0544 (7)
C26 0.3341 (3) 0.52662 (12) 0.58975 (17) 0.0416 (6)
C25 0.2402 (3) 0.47369 (12) 0.59934 (17) 0.0420 (6)
C21 0.1571 (3) 0.44537 (15) 0.50734 (18) 0.0545 (8)
C6 0.8200 (3) 0.41057 (12) 0.90869 (18) 0.0441 (6)
H6A 0.8755 0.4280 0.8585 0.053*
H6B 0.8770 0.4202 0.9788 0.053*
C24 0.1525 (3) 0.40185 (12) 0.7037 (2) 0.0498 (7)
H24A 0.1480 0.3871 0.7702 0.060*
C5 0.8108 (3) 0.34153 (13) 0.8952 (2) 0.0476 (7)
C19 0.2538 (4) 0.51931 (16) 0.3983 (2) 0.0687 (10)
H19A 0.2583 0.5344 0.3319 0.082*
C22 0.0729 (3) 0.39253 (16) 0.5185 (2) 0.0696 (9)
H22A 0.0181 0.3724 0.4592 0.084*
C12 0.7310 (3) 0.69858 (12) 0.8813 (2) 0.0494 (7)
C8 0.7993 (3) 0.70351 (14) 0.7954 (2) 0.0662 (9)
H8A 0.8829 0.6781 0.7929 0.079*
C11 0.6079 (3) 0.73727 (15) 0.8813 (2) 0.0690 (9)
H11A 0.5574 0.7359 0.9374 0.083*
C23 0.0701 (3) 0.36993 (15) 0.6167 (2) 0.0657 (9)
H23A 0.0149 0.3343 0.6252 0.079*
N2 0.7518 (3) 0.74312 (14) 0.7148 (2) 0.0894 (9)
C17 0.4394 (4) 0.59840 (15) 0.4816 (2) 0.0658 (8)
H17A 0.4493 0.6133 0.4161 0.079*
C13 0.7883 (3) 0.65317 (14) 0.9671 (2) 0.0682 (9)
H13A 0.8129 0.6757 1.0331 0.082*
H13B 0.8831 0.6352 0.9547 0.082*
O2 0.61601 (17) 0.46036 (8) 0.97223 (11) 0.0421 (4)
O4 0.70410 (19) 0.57482 (8) 1.06850 (12) 0.0509 (5)
C15 0.5041 (3) 0.60095 (13) 0.6677 (2) 0.0565 (8)
H15A 0.5597 0.6197 0.7281 0.068*
C20 0.1653 (4) 0.47066 (18) 0.4064 (2) 0.0720 (10)
H20A 0.1078 0.4527 0.3458 0.086*
C16 0.5196 (4) 0.62483 (14) 0.5697 (2) 0.0690 (9)
H16A 0.5842 0.6583 0.5659 0.083*
C1 0.7804 (4) 0.30426 (16) 0.9734 (3) 0.0882 (12)
H1A 0.7679 0.3235 1.0352 0.106*
C10 0.5589 (4) 0.77733 (16) 0.8009 (3) 0.0875 (12)
H10A 0.4759 0.8035 0.8011 0.105*
C4 0.8326 (4) 0.31262 (18) 0.8051 (3) 0.0958 (12)
H4A 0.8526 0.3356 0.7487 0.115*
N1 0.7671 (5) 0.24248 (16) 0.9688 (3) 0.1415 (16)
C3 0.8239 (5) 0.2480 (2) 0.8001 (4) 0.1398 (18)
H3A 0.8416 0.2267 0.7413 0.168*
C9 0.6330 (5) 0.77806 (17) 0.7218 (3) 0.0939 (13)
H9A 0.5980 0.8055 0.6668 0.113*
C2 0.7889 (5) 0.2167 (2) 0.8833 (5) 0.140 (2)
H2A 0.7800 0.1738 0.8781 0.168*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Dy1 0.03380 (6) 0.03284 (7) 0.02427 (6) 0.00167 (4) −0.00091 (4) 0.00130 (4)
Cl1 0.0556 (4) 0.0664 (4) 0.0473 (3) 0.0255 (3) −0.0104 (3) −0.0088 (3)
O3 0.0544 (10) 0.0502 (11) 0.0343 (8) −0.0156 (8) −0.0077 (7) 0.0103 (8)
N3 0.0500 (11) 0.0439 (12) 0.0303 (9) 0.0042 (10) 0.0043 (8) 0.0054 (8)
O1 0.0509 (9) 0.0605 (11) 0.0286 (8) 0.0160 (9) 0.0047 (7) −0.0012 (7)
N4 0.0372 (10) 0.0439 (12) 0.0312 (9) 0.0055 (9) 0.0009 (8) −0.0030 (8)
C7 0.0383 (12) 0.0338 (13) 0.0362 (12) 0.0016 (10) 0.0051 (10) 0.0017 (10)
C14 0.0493 (14) 0.0429 (15) 0.0403 (13) −0.0087 (12) −0.0003 (11) 0.0052 (11)
C18 0.0604 (16) 0.0681 (19) 0.0349 (13) 0.0217 (14) 0.0098 (11) 0.0097 (12)
C26 0.0482 (14) 0.0459 (15) 0.0290 (11) 0.0127 (12) 0.0041 (10) 0.0035 (10)
C25 0.0397 (13) 0.0538 (15) 0.0303 (12) 0.0140 (12) 0.0020 (10) −0.0057 (11)
C21 0.0440 (14) 0.080 (2) 0.0353 (13) 0.0073 (14) −0.0017 (11) −0.0138 (13)
C6 0.0365 (12) 0.0509 (16) 0.0445 (13) 0.0049 (11) 0.0071 (10) −0.0035 (11)
C24 0.0494 (14) 0.0535 (17) 0.0448 (14) −0.0060 (13) 0.0053 (11) −0.0079 (12)
C5 0.0319 (12) 0.0499 (16) 0.0566 (15) 0.0096 (11) −0.0013 (11) −0.0084 (12)
C19 0.078 (2) 0.095 (3) 0.0318 (14) 0.0236 (18) 0.0077 (14) 0.0053 (14)
C22 0.0583 (17) 0.097 (2) 0.0471 (15) −0.0097 (18) −0.0034 (13) −0.0313 (16)
C12 0.0444 (13) 0.0429 (15) 0.0568 (15) −0.0134 (10) 0.0005 (12) 0.0090 (12)
C8 0.0567 (17) 0.0577 (19) 0.086 (2) −0.0059 (15) 0.0176 (16) 0.0155 (16)
C11 0.0628 (16) 0.067 (2) 0.078 (2) −0.0037 (13) 0.0156 (16) −0.0113 (17)
C23 0.0564 (16) 0.072 (2) 0.0648 (17) −0.0175 (15) 0.0045 (14) −0.0239 (15)
N2 0.101 (2) 0.090 (2) 0.0763 (17) −0.0263 (18) 0.0171 (16) 0.0270 (16)
C17 0.0842 (19) 0.076 (2) 0.0398 (14) 0.0175 (18) 0.0187 (13) 0.0244 (14)
C13 0.0551 (16) 0.072 (2) 0.0658 (18) −0.0288 (15) −0.0150 (14) 0.0267 (15)
O2 0.0440 (9) 0.0520 (10) 0.0284 (8) 0.0135 (8) 0.0028 (7) −0.0033 (7)
O4 0.0602 (11) 0.0502 (11) 0.0347 (8) −0.0181 (9) −0.0083 (8) 0.0070 (8)
C15 0.0703 (18) 0.0530 (17) 0.0455 (14) −0.0066 (15) 0.0101 (13) 0.0103 (12)
C20 0.072 (2) 0.111 (3) 0.0272 (13) 0.016 (2) −0.0040 (13) −0.0135 (16)
C16 0.094 (2) 0.0609 (19) 0.0574 (17) −0.0034 (17) 0.0266 (15) 0.0194 (14)
C1 0.128 (3) 0.057 (2) 0.065 (2) −0.012 (2) −0.016 (2) 0.0032 (17)
C10 0.069 (2) 0.051 (2) 0.129 (3) 0.0161 (17) −0.011 (2) 0.004 (2)
C4 0.077 (2) 0.103 (3) 0.116 (3) −0.003 (2) 0.041 (2) −0.048 (2)
N1 0.183 (3) 0.057 (2) 0.146 (3) −0.026 (2) −0.057 (3) 0.026 (2)
C3 0.079 (2) 0.124 (3) 0.222 (4) −0.001 (3) 0.044 (3) −0.118 (3)
C9 0.103 (3) 0.060 (2) 0.100 (3) −0.015 (2) −0.025 (2) 0.026 (2)
C2 0.082 (3) 0.062 (3) 0.240 (6) 0.028 (2) −0.052 (3) −0.042 (3)

Geometric parameters (Å, º)

Dy1—O4i 2.3069 (17) C19—C20 1.327 (5)
Dy1—O3 2.3275 (16) C19—H19A 0.9300
Dy1—O2i 2.3261 (14) C22—C23 1.371 (4)
Dy1—O1 2.4323 (16) C22—H22A 0.9300
Dy1—O2 2.5170 (15) C12—C11 1.376 (4)
Dy1—N3 2.5386 (18) C12—C8 1.378 (4)
Dy1—N4 2.5516 (17) C12—C13 1.493 (4)
Dy1—Cl1 2.6392 (6) C8—N2 1.350 (4)
Dy1—C7 2.850 (2) C8—H8A 0.9300
Dy1—Dy1i 3.8976 (2) C11—C10 1.356 (4)
O3—C14 1.261 (3) C11—H11A 0.9300
N3—C15 1.317 (3) C23—H23A 0.9300
N3—C26 1.362 (3) N2—C9 1.315 (5)
O1—C7 1.256 (2) C17—C16 1.346 (4)
N4—C24 1.323 (3) C17—H17A 0.9300
N4—C25 1.362 (3) C13—H13A 0.9700
C7—O2 1.271 (3) C13—H13B 0.9700
C7—C6 1.498 (3) O2—Dy1i 2.3261 (14)
C14—O4 1.262 (3) O4—Dy1i 2.3069 (17)
C14—C13 1.515 (4) C15—C16 1.405 (4)
C18—C19 1.417 (4) C15—H15A 0.9300
C18—C26 1.415 (3) C20—H20A 0.9300
C18—C17 1.393 (4) C16—H16A 0.9300
C26—C25 1.434 (4) C1—N1 1.336 (5)
C25—C21 1.409 (3) C1—H1A 0.9300
C21—C22 1.386 (4) C10—C9 1.329 (5)
C21—C20 1.435 (4) C10—H10A 0.9300
C6—C5 1.498 (4) C4—C3 1.395 (6)
C6—H6A 0.9700 C4—H4A 0.9300
C6—H6B 0.9700 N1—C2 1.291 (7)
C24—C23 1.396 (4) C3—C2 1.362 (7)
C24—H24A 0.9300 C3—H3A 0.9300
C5—C1 1.364 (4) C9—H9A 0.9300
C5—C4 1.374 (4) C2—H2A 0.9300
O4i—Dy1—O3 138.19 (5) C25—C21—C20 119.7 (3)
O4i—Dy1—O2i 74.46 (6) C5—C6—C7 112.05 (19)
O3—Dy1—O2i 73.64 (6) C5—C6—H6A 109.2
O4i—Dy1—O1 88.97 (6) C7—C6—H6A 109.2
O3—Dy1—O1 87.84 (6) C5—C6—H6B 109.2
O2i—Dy1—O1 125.15 (5) C7—C6—H6B 109.2
O4i—Dy1—O2 73.42 (6) H6A—C6—H6B 107.9
O3—Dy1—O2 71.86 (6) N4—C24—C23 124.0 (3)
O2i—Dy1—O2 72.89 (6) N4—C24—H24A 118.0
O1—Dy1—O2 52.27 (5) C23—C24—H24A 118.0
O4i—Dy1—N3 141.73 (6) C1—C5—C4 116.8 (3)
O3—Dy1—N3 77.03 (6) C1—C5—C6 120.8 (3)
O2i—Dy1—N3 142.50 (7) C4—C5—C6 122.4 (3)
O1—Dy1—N3 75.81 (6) C20—C19—C18 121.6 (3)
O2—Dy1—N3 118.94 (6) C20—C19—H19A 119.2
O4i—Dy1—N4 77.16 (6) C18—C19—H19A 119.2
O3—Dy1—N4 141.62 (6) C21—C22—C23 120.1 (3)
O2i—Dy1—N4 143.32 (6) C21—C22—H22A 120.0
O1—Dy1—N4 76.54 (5) C23—C22—H22A 120.0
O2—Dy1—N4 120.04 (6) C11—C12—C8 115.8 (3)
N3—Dy1—N4 65.29 (6) C11—C12—C13 123.2 (3)
O4i—Dy1—Cl1 101.26 (5) C8—C12—C13 121.0 (3)
O3—Dy1—Cl1 101.19 (5) N2—C8—C12 123.8 (3)
O2i—Dy1—Cl1 83.42 (4) N2—C8—H8A 118.1
O1—Dy1—Cl1 151.41 (4) C12—C8—H8A 118.1
O2—Dy1—Cl1 156.30 (4) C12—C11—C10 121.0 (3)
N3—Dy1—Cl1 79.86 (5) C12—C11—H11A 119.5
N4—Dy1—Cl1 79.81 (4) C10—C11—H11A 119.5
O4i—Dy1—C7 82.55 (6) C24—C23—C22 118.2 (3)
O3—Dy1—C7 76.68 (6) C24—C23—H23A 120.9
O2i—Dy1—C7 99.24 (6) C22—C23—H23A 120.9
O1—Dy1—C7 25.99 (5) C9—N2—C8 115.9 (3)
O2—Dy1—C7 26.47 (5) C16—C17—C18 120.1 (3)
N3—Dy1—C7 96.17 (6) C16—C17—H17A 120.0
N4—Dy1—C7 99.62 (6) C18—C17—H17A 120.0
Cl1—Dy1—C7 175.87 (5) C12—C13—C14 116.1 (2)
O4i—Dy1—Dy1i 69.87 (4) C12—C13—H13A 108.3
O3—Dy1—Dy1i 68.34 (4) C14—C13—H13A 108.3
O2i—Dy1—Dy1i 38.11 (4) C12—C13—H13B 108.3
O1—Dy1—Dy1i 87.04 (3) C14—C13—H13B 108.3
O2—Dy1—Dy1i 34.78 (3) H13A—C13—H13B 107.4
N3—Dy1—Dy1i 141.81 (4) C7—O2—Dy1i 160.55 (14)
N4—Dy1—Dy1i 143.32 (4) C7—O2—Dy1 91.55 (12)
Cl1—Dy1—Dy1i 121.533 (15) Dy1i—O2—Dy1 107.11 (6)
C7—Dy1—Dy1i 61.17 (4) C14—O4—Dy1i 137.13 (15)
C14—O3—Dy1 138.89 (15) N3—C15—C16 123.7 (3)
C15—N3—C26 117.5 (2) N3—C15—H15A 118.1
C15—N3—Dy1 123.72 (16) C16—C15—H15A 118.1
C26—N3—Dy1 118.73 (16) C19—C20—C21 120.9 (3)
C7—O1—Dy1 95.93 (14) C19—C20—H20A 119.6
C24—N4—C25 117.5 (2) C21—C20—H20A 119.6
C24—N4—Dy1 124.18 (15) C17—C16—C15 118.9 (3)
C25—N4—Dy1 118.28 (15) C17—C16—H16A 120.6
O1—C7—O2 119.4 (2) C15—C16—H16A 120.6
O1—C7—C6 121.2 (2) N1—C1—C5 125.6 (4)
O2—C7—C6 119.44 (19) N1—C1—H1A 117.2
O1—C7—Dy1 58.08 (12) C5—C1—H1A 117.2
O2—C7—Dy1 61.98 (11) C9—C10—C11 118.1 (3)
C6—C7—Dy1 172.26 (17) C9—C10—H10A 120.9
O4—C14—O3 125.6 (2) C11—C10—H10A 120.9
O4—C14—C13 115.7 (2) C5—C4—C3 118.4 (4)
O3—C14—C13 118.7 (2) C5—C4—H4A 120.8
C19—C18—C26 119.7 (3) C3—C4—H4A 120.8
C19—C18—C17 122.6 (3) C2—N1—C1 116.0 (4)
C26—C18—C17 117.7 (2) C2—C3—C4 118.4 (4)
N3—C26—C18 122.0 (2) C2—C3—H3A 120.8
N3—C26—C25 118.8 (2) C4—C3—H3A 120.8
C18—C26—C25 119.2 (2) N2—C9—C10 125.3 (3)
N4—C25—C21 122.2 (2) N2—C9—H9A 117.4
N4—C25—C26 118.8 (2) C10—C9—H9A 117.4
C21—C25—C26 119.0 (2) N1—C2—C3 124.7 (4)
C22—C21—C25 117.9 (2) N1—C2—H2A 117.6
C22—C21—C20 122.4 (3) C3—C2—H2A 117.6

Symmetry code: (i) −x+1, −y+1, −z+2.

Funding Statement

We acknowledge financial support from the NSF of Jiangxi Provincial Education Department (No. GJJ190756).

References

  1. Adams, C. J., Crawford, P. C., Guy Orpen, A. & Podesta, T. J. (2006). Dalton Trans. pp. 4078–4092. [DOI] [PubMed]
  2. Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. (2021). Chem. Rev. 121, 3751–3891. [DOI] [PubMed]
  4. Echenique-Errandonea, E., Zabala-Lekuona, A., Cepeda, J., Rodríguez-Diéguez, A., Seco, J. M., Oyarzabal, I. & Colacio, E. (2019). Dalton Trans. 48, 190–201. [DOI] [PubMed]
  5. Ma, Y. J., Hu, J. X., Han, S. D., Pan, J., Li, J. H. & Wang, G. M. (2020). J. Am. Chem. Soc. 142, 2682–2689. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Teo, P., Koh, L. L. & Hor, T. S. A. (2009). Dalton Trans. pp. 5637–5646. [DOI] [PubMed]
  8. Wang, L., Yin, X. H., Hao, H. J., Lin, W., Tan, X. H. & Lin, C. W. (2011). Z. Kristallogr. New. Cryst. Struct. pp. 219–220.
  9. Xin, Y., Wang, J. H., Zychowicz, M., Zakrzewski, J. J., Nakabayashi, K., Sieklucka, B., Chorazy, S. & Ohkoshi, S. (2019). J. Am. Chem. Soc. 141, 18211–18220. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2414314622002310/vm4049sup1.cif

x-07-x220231-sup1.cif (22.2KB, cif)

CCDC reference: 2155088

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES