Skip to main content
IUCrData logoLink to IUCrData
. 2022 Apr 28;7(Pt 4):x220412. doi: 10.1107/S2414314622004126

4-Amino-5-(4-bromo­benzo­yl)-3-(benzo[d]thia­zol-2-yl)-2-[(2′,3′,4′,6′-tetra-O-acetyl-β-d-galacto­pyran­osyl­)sulfanyl]­thio­phene

Rasha A Azzam a, Galal H Elgemeie a, Nagwa M Gad a, Peter G Jones b,*
Editor: J T Maguec
PMCID: PMC9462023  PMID: 36337688

The benzo­thia­zole and thio­phene rings are almost coplanar. The NH2 group forms intra­molecular hydrogen bonds. The Sgalactose—Cthio­phene bond is short. The mol­ecules are connected by two ‘weak’ hydrogen bonds and a short N⋯S contact.

Keywords: benzo­thia­zole, thio­phene, galactose, crystal structure

Abstract

In the title compound, C32H29BrN2O10S3, the benzo­thia­zole and thio­phene ring systems subtend an inter­planar angle of 7.43 (12)°. The NH2 group forms intra­molecular hydrogen bonds to Nthia­zole and Ocarbon­yl. The Sgalactose—Cthio­phene bond is short [1.759 (2) Å]. The mol­ecules are connected to form ribbons parallel to the b axis by two ‘weak’ hydrogen bonds and a short Namino⋯Sgalactose contact. graphic file with name x-07-x220412-scheme1-3D1.jpg

Structure description

Benzo­thia­zoles are the most widely applied class of heterocyclic compounds in medicinal chemistry, and benzo­thia­zole derivatives have been employed in many pharmaceutical preparations (Bonde et al., 2015), because they offer a variety of pharmacological properties useful in treating many diseases (Wang et al., 2009). As clinical drugs, they often act with high therapeutic efficacy (Huang et al., 2009). The broad pharmacological activities of benzo­thia­zoles suggest that they are also important for developing future drugs (Rana et al., 2008). Recently we have explored various novel synthetic methods to obtain benzo­thia­zole derivatives (Azzam et al. 2017a ,b , 2020a ,b ,c , 2021; Elgemeie et al., 2000a ,b ; 2020a ).

As a part of our current plan directed toward discovering synthetic methodologies for the preparation of S-glycosyl­ated derivatives of heterocyclic nitro­gen bases (Elgemeie et al., 2017a ,b ,c ), we have lately described the synthesis and biological activity of a series of heterocyclic S-glycosides that have promising cytotoxic activity (Abu-Zaied et al., 2011, 2019a ,b , 2020, 2021; Elgemeie et al., 2009, 2018). We found that our reported di­hydro­pyridine S-glycosides have a strong anti-P-glycoprotein effect against human tumor cells (Scala et al., 1997). Consistent with these outcomes and our past research (Elgemeie et al., 2015, 2016, 2019, 2020b ), the purpose of the current study was to design and synthesize benzo­thia­zole-based thio­phene thio­glycosides. The synthesis of our target benzo­thia­zole-2-thio­phene thio­glycoside was carried out by the reaction of benzo­thia­zole 2-thio­phene­thiol derivative 1 with 2,3,4,6-tetra-O-acetyl-β-d-galacto­pyranosyl bromide 2 in the presence of potassium hydroxide to give the corresponding benzo­thia­zole-2-thio­phene S-glycoside 3 in good yield (Fig. 1). It has been suggested that the cis-(α) sugars react via a simple SN2 reaction to give the β-glycoside products such as 3 (Masoud et al., 2017; Hammad et al., 2018). The structure of 3 was confirmed based on the spectroscopic data (13C NMR, 1H NMR, and IR). The 1H NMR spectrum of compound 3 showed the anomeric proton as a doublet at δ = 5.39 p.p.m. with a spin–spin coupling constant (J 1′,2′ = 8.8 Hz) confirming the β-configuration. The other six protons of galactose resonated at δ 4.00–5.30 p.p.m. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here. To the best of our knowledge, this is the first reported X-ray structure of the new compound type benzo­thia­zole-2-thio­phene thio­glycoside.

Figure 1.

Figure 1

Reaction scheme.

The structure of 3 is shown in Fig. 2. The dimensions of the benzo­thia­zole moiety are as expected (a selection of mol­ecular dimensions is presented in Table 1). The benzo­thia­zole and thio­phene ring systems are approximately coplanar [inter­planar angle 7.43 (12)°], a geometry that is reinforced by the two intra­molecular hydrogen bonds from the NH2 group to the thia­zole nitro­gen atom and the C=O group (Table 2), whereas the bromo­phenyl and thio­phene rings subtend an angle of 58.23 (6)°. The intra­molecular S2⋯S3 contact is 3.1416 (8) Å.

Figure 2.

Figure 2

The mol­ecule of 3 in the crystal. Ellipsoids represent 50% probability levels. The dashed lines indicate intra­molecular hydrogen bonds.

Table 1. Selected geometric parameters (Å, °).

S1—C2 1.703 (2) S2—C12 1.733 (2)
S1—C5 1.731 (2) S3—C2 1.759 (2)
S2—C6 1.762 (2) S3—C31 1.819 (2)
       
C2—S1—C5 92.15 (12) N1—C6—S2 115.18 (17)
C12—S2—C6 88.99 (12) N1—C7—C12 114.8 (2)
C2—S3—C31 98.36 (11) C7—C12—S2 109.94 (17)
C6—N1—C7 111.1 (2)    
       
O1—C31—C32—C33 53.1 (2) C32—C33—C34—C35 48.1 (3)
C31—O1—C35—C34 69.4 (2) C33—C34—C35—O1 −57.9 (3)
C31—C32—C33—C34 −45.9 (3) C35—O1—C31—C32 −66.0 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01⋯N1 0.86 (3) 2.12 (3) 2.746 (3) 129 (3)
N2—H02⋯O10 0.86 (3) 2.14 (3) 2.795 (3) 133 (3)
C31—H31⋯O6i 1.00 2.34 3.290 (3) 158
C36—H36B⋯O9ii 0.99 2.33 3.294 (4) 164

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

The β configuration (equatorial position of the sulfur atom) at the anomeric carbon of the sugar (here C31) is confirmed, as is the axial configuration of the substituent at C34, characteristic of galactose. The galactose ring displays a slightly flattened chair conformation, with absolute torsion angles < 50° about C32—C33 and C33—C34. The configurations at C31–C35 are S, R, S, R, R, respectively. The S3—C31 bond is as expected longer than S3—C2, with values of 1.819 (2) and 1.759 (2) Å, respectively; the latter is significantly shorter than the values found for similar compounds in search of the Cambridge Structural Database (Groom et al., 2016; performed using CONQUEST Version 2021.3.0) for purely organic galactose derivatives substituted with a sulfur atom at the anomeric carbon. There were 22 hits, of which two were axially substituted (NODQEC, Khiar et al., 1997; YINFUY, Smith et al., 2013) and the remainder equatorially substituted. The 29 C—S bond lengths for the latter lay in the range 1.788–1.856, average 1.808 (13) Å. Restricting the analysis to the ten hits with an sp 2 carbon atom altered these values only marginally.

The N—H donor groups do not participate in inter­molecular hydrogen bonding, but two short and acceptably linear C—H⋯O contacts between the galactose moieties may be classed as ‘weak’ hydrogen bonds (Table 2). Additionally, a short contact N2⋯S3 of 3.249 (2) Å is observed (operator x, 1 + y, z). The net effect is to form ribbons of mol­ecules parallel to the b axis (Fig. 3).

Figure 3.

Figure 3

Crystal packing of 3 viewed perpendicular to (10 Inline graphic ) in the region x ≃ 0.75, z ≃ 0.25. For clarity, the following atoms/groups have been omitted: Hydrogen atoms not involved in ‘weak’ hydrogen bonding; two acetyl groups; the bromo­phenyl groups (except the ipso carbon atom). Dashed lines indicate hydrogen bonds or N⋯S contacts.

Synthesis and crystallization

Thio­phene thiol derivative 1 (2.23 g, 5 mmol) was dissolved in acetone (10 ml) containing 0.5 ml of aq. KOH (0.25 g, 5 mmol). The mixture was warmed to 50°C for 15 min. After cooling, a solution of 2,3,4,6-tetra-O-acetyl-β-d-galacto­pyranosyl bromide 2 (2.05 g, 5 mmol) in acetone (10 ml) was added dropwise over 30 min. The reaction mixture was stirred at room temperature and monitored by TLC until the reaction was complete (8 h). The residue was washed with distilled water to remove KBr, then dried and crystallized from ethanol to produce compound 3 (Fig. 1).

Yellow solid, yield 65%, m.p. 403–405 K (EtOH); IR (KBr, cm−1): ν 3406–3281 (NH2), 2923 (ArCH), 1748 (4Ac-CO), 1720 (CO); 1H NMR (400 MHz, DMSO-d 6): δ 1.89, 1.91, 1.94, 2.01 (4 s, 12H, 4 × OAc), 4.00–4.02 (m, 2H, H-6′), 4.32 (t, J = 6.0 Hz, 1H, H-5′), 5.15 (t, J = 8.0 Hz, 1H, H-4′), 5.25–5.30 (m, 2H, H-3′, H-2′), 5.39 (d, J = 8.8 Hz, 1H, H-1′), 7.52 (t, J = 7.4 Hz, 1H, benzo­thia­zole-H), 7.61 (t, J = 7.4 Hz, 1H, benzo­thia­zole-H), 7.77–7.79 (m, 4H, Ar—H), 8.14 (d, J = 7.6 Hz, 1H, benzo­thia­zole-H), 8.21 (d, J = 8.0 Hz, 1H, benzo­thia­zole-H), 8.93 (s, br, D2O exch., 2H, NH2); Analysis: calculated for C32H29 BrN2O10S3 (777.68): C, 49.42; H, 3.76; N, 3.60; S, 12.37%. Found: C, 49.39; H, 3.73; N, 3.67; S, 12.40%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula C32H29BrN2O10S3
M r 777.66
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 16.99261 (18), 6.02635 (7), 17.4076 (2)
β (°) 107.8307 (12)
V3) 1696.97 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.89
Crystal size (mm) 0.15 × 0.06 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 107906, 7129, 7052
R int 0.032
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.062, 1.04
No. of reflections 7129
No. of parameters 445
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.72
Absolute structure Flack x determined using 3095 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.019 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), XP (Siemens, 1994) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622004126/mw2186sup1.cif

x-07-x220412-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622004126/mw2186Isup2.hkl

x-07-x220412-Isup2.hkl (566.3KB, hkl)

CCDC reference: 2167334

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

full crystallographic data

Crystal data

C32H29BrN2O10S3 F(000) = 796
Mr = 777.66 Dx = 1.522 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 16.99261 (18) Å Cell parameters from 91570 reflections
b = 6.02635 (7) Å θ = 2.7–77.5°
c = 17.4076 (2) Å µ = 3.89 mm1
β = 107.8307 (12)° T = 100 K
V = 1696.97 (3) Å3 Lath, pale yellow
Z = 2 0.15 × 0.06 × 0.02 mm

Data collection

XtaLAB Synergy diffractometer 7129 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 7052 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.0000 pixels mm-1 θmax = 77.8°, θmin = 2.7°
ω scans h = −21→21
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −7→7
Tmin = 0.781, Tmax = 1.000 l = −22→22
107906 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6757P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062 (Δ/σ)max = 0.003
S = 1.04 Δρmax = 0.37 e Å3
7129 reflections Δρmin = −0.72 e Å3
445 parameters Absolute structure: Flack x determined using 3095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraints Absolute structure parameter: −0.019 (7)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Short contacts: 3.1416 (0.0008) S2 - S3 3.2493 (0.0021) N2 - S3_$2 Operator $2 : x,1+y,z ============================================================================== Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 1.7949 (0.0074) x + 2.7373 (0.0043) y + 15.2223 (0.0070) z = 2.9267 (0.0054) * 0.0402 (0.0013) C2 * -0.0135 (0.0017) N1 * -0.0086 (0.0019) C6 * -0.0308 (0.0020) C7 * -0.0016 (0.0018) C8 * 0.0379 (0.0020) C9 * 0.0338 (0.0019) C10 * -0.0142 (0.0018) C11 * -0.0432 (0.0020) C12 Rms deviation of fitted atoms = 0.0288 - 0.0073 (0.0162) x + 3.1508 (0.0048) y + 14.1284 (0.0110) z = 4.2446 (0.0123) Angle to previous plane (with approximate esd) = 7.434 ( 0.118 ) * 0.0061 (0.0010) S1 * 0.0046 (0.0013) C2 * -0.0152 (0.0014) C3 * 0.0207 (0.0014) C4 * -0.0162 (0.0013) C5 0.0201 (0.0033) S3 0.0387 (0.0033) N2 -0.1146 (0.0038) C13 0.0343 (0.0044) O10 Rms deviation of fitted atoms = 0.0140 5.5692 (0.0163) x + 2.3719 (0.0054) y - 15.9799 (0.0068) z = 5.2155 (0.0164) Angle to previous plane (with approximate esd) = 58.230 ( 0.061 ) * -0.0124 (0.0016) C21 * -0.0049 (0.0017) C22 * 0.0186 (0.0017) C23 * -0.0152 (0.0018) C24 * -0.0023 (0.0018) C25 * 0.0162 (0.0017) C26 -0.0309 (0.0037) C13 0.8520 (0.0040) O10 -0.1298 (0.0035) Br1 Rms deviation of fitted atoms = 0.0130
Refinement. The hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal (SADI). The methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H 0.98 Å and H—C—H 109.5 °. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethylene 0.99, C—Hmethine 1.00 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent Uiso value of the parent carbon atoms for methyl and non-methyl hydrogens respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.17709 (2) 0.30260 (5) 0.13689 (2) 0.03408 (9)
S1 0.81796 (3) 0.50666 (10) 0.18829 (3) 0.01870 (11)
S2 0.51931 (3) 0.50194 (10) 0.15908 (3) 0.01913 (11)
S3 0.69078 (3) 0.27394 (9) 0.24112 (3) 0.01767 (11)
O1 0.76755 (10) 0.4911 (3) 0.37404 (9) 0.0193 (3)
O2 0.56621 (10) 0.2394 (3) 0.34351 (10) 0.0210 (3)
O3 0.64615 (12) 0.2015 (3) 0.51551 (11) 0.0263 (4)
O4 0.80626 (10) 0.3125 (3) 0.53459 (9) 0.0236 (3)
O5 0.85216 (11) 0.8993 (3) 0.41271 (12) 0.0287 (4)
O6 0.57638 (13) −0.1299 (4) 0.33101 (15) 0.0391 (5)
O7 0.55812 (15) 0.4238 (4) 0.55315 (13) 0.0413 (5)
O8 0.86193 (15) 0.5092 (5) 0.64867 (13) 0.0468 (6)
O9 0.98997 (13) 0.9040 (4) 0.46564 (14) 0.0394 (5)
O10 0.85254 (11) 1.0388 (3) 0.07162 (11) 0.0243 (4)
N1 0.54299 (12) 0.8799 (3) 0.09717 (11) 0.0180 (4)
N2 0.69030 (12) 1.0127 (4) 0.07769 (12) 0.0196 (4)
H01 0.6390 (17) 1.048 (6) 0.0665 (18) 0.023 (8)*
H02 0.726 (2) 1.093 (6) 0.065 (2) 0.039 (10)*
C2 0.71837 (13) 0.4982 (4) 0.19001 (13) 0.0177 (4)
C3 0.67073 (14) 0.6741 (4) 0.14936 (13) 0.0167 (4)
C4 0.71933 (13) 0.8253 (4) 0.11822 (12) 0.0171 (4)
C5 0.80082 (14) 0.7495 (4) 0.13255 (13) 0.0188 (5)
C6 0.58211 (14) 0.7040 (4) 0.13374 (13) 0.0166 (4)
C7 0.45902 (14) 0.8671 (4) 0.08844 (13) 0.0174 (4)
C8 0.40068 (14) 1.0310 (4) 0.05402 (13) 0.0204 (5)
H8 0.416201 1.161819 0.031863 0.025*
C9 0.31929 (14) 0.9979 (5) 0.05296 (14) 0.0220 (5)
H9 0.278981 1.108347 0.030320 0.026*
C10 0.29589 (13) 0.8040 (5) 0.08480 (13) 0.0226 (5)
H10 0.240008 0.785287 0.083586 0.027*
C11 0.35290 (15) 0.6397 (4) 0.11791 (14) 0.0215 (5)
H11 0.336876 0.507638 0.138925 0.026*
C12 0.43461 (14) 0.6732 (4) 0.11962 (13) 0.0186 (4)
C13 0.86263 (14) 0.8523 (4) 0.10269 (14) 0.0196 (5)
C21 0.93984 (14) 0.7229 (4) 0.10924 (14) 0.0192 (5)
C22 0.93411 (14) 0.5116 (4) 0.07541 (14) 0.0214 (5)
H22 0.881300 0.450400 0.048610 0.026*
C23 1.00516 (15) 0.3892 (4) 0.08054 (15) 0.0221 (5)
H23 1.001565 0.247432 0.055855 0.026*
C24 1.08128 (14) 0.4797 (5) 0.12261 (15) 0.0241 (5)
C25 1.08860 (15) 0.6910 (5) 0.15573 (16) 0.0248 (5)
H25 1.141475 0.750716 0.183250 0.030*
C26 1.01739 (14) 0.8141 (5) 0.14802 (14) 0.0219 (5)
H26 1.021491 0.960444 0.169162 0.026*
C31 0.68674 (14) 0.4215 (4) 0.33099 (14) 0.0177 (4)
H31 0.649650 0.553540 0.315148 0.021*
C32 0.65357 (13) 0.2649 (4) 0.38322 (13) 0.0189 (5)
H32 0.682566 0.118429 0.390455 0.023*
C33 0.66127 (15) 0.3731 (4) 0.46429 (14) 0.0211 (5)
H33 0.617097 0.488234 0.456146 0.025*
C34 0.74480 (15) 0.4824 (4) 0.50439 (14) 0.0225 (5)
H34 0.740969 0.577656 0.550143 0.027*
C35 0.76617 (15) 0.6258 (4) 0.44166 (14) 0.0221 (5)
H35 0.722698 0.742486 0.422673 0.026*
C36 0.84913 (16) 0.7367 (5) 0.47261 (16) 0.0277 (5)
H36A 0.855276 0.809402 0.525127 0.033*
H36B 0.894073 0.626681 0.479826 0.033*
C37 0.53570 (15) 0.0359 (4) 0.31928 (14) 0.0222 (5)
C38 0.44510 (15) 0.0517 (5) 0.27487 (15) 0.0255 (5)
H38A 0.417097 0.130629 0.308282 0.038*
H38B 0.421897 −0.097856 0.263079 0.038*
H38C 0.437085 0.132674 0.224223 0.038*
C39 0.59276 (16) 0.2497 (5) 0.55765 (15) 0.0279 (6)
C40 0.5876 (2) 0.0572 (6) 0.61001 (17) 0.0354 (7)
H40A 0.578982 −0.079620 0.578079 0.053*
H40B 0.541162 0.079141 0.631549 0.053*
H40C 0.639093 0.045837 0.654741 0.053*
C41 0.86038 (18) 0.3428 (5) 0.60992 (15) 0.0326 (6)
C42 0.9152 (2) 0.1462 (6) 0.63644 (17) 0.0375 (7)
H42A 0.883168 0.022697 0.648177 0.056*
H42B 0.960362 0.183859 0.685145 0.056*
H42C 0.938204 0.102746 0.593438 0.056*
C43 0.92782 (16) 0.9685 (5) 0.41543 (17) 0.0283 (5)
C44 0.92423 (18) 1.1323 (5) 0.3502 (2) 0.0352 (6)
H44A 0.890426 1.072087 0.298245 0.053*
H44B 0.980271 1.161330 0.348046 0.053*
H44C 0.899639 1.270909 0.361338 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01892 (12) 0.02848 (15) 0.05928 (18) 0.00424 (11) 0.01851 (11) 0.00576 (13)
S1 0.0151 (2) 0.0187 (3) 0.0240 (2) 0.0015 (2) 0.00866 (19) 0.0033 (2)
S2 0.0149 (2) 0.0184 (3) 0.0248 (2) −0.0013 (2) 0.00720 (19) 0.0027 (2)
S3 0.0188 (2) 0.0162 (3) 0.0201 (2) 0.0004 (2) 0.00916 (18) 0.0012 (2)
O1 0.0162 (7) 0.0215 (9) 0.0208 (7) −0.0012 (7) 0.0064 (6) −0.0001 (7)
O2 0.0178 (8) 0.0197 (9) 0.0268 (8) −0.0013 (6) 0.0088 (6) −0.0008 (6)
O3 0.0289 (9) 0.0290 (10) 0.0255 (8) −0.0005 (8) 0.0151 (7) 0.0046 (7)
O4 0.0246 (8) 0.0248 (9) 0.0191 (7) 0.0013 (8) 0.0035 (6) −0.0013 (7)
O5 0.0223 (9) 0.0254 (10) 0.0370 (10) −0.0040 (7) 0.0071 (7) 0.0052 (8)
O6 0.0286 (10) 0.0248 (11) 0.0613 (13) 0.0015 (8) 0.0100 (9) −0.0130 (9)
O7 0.0529 (14) 0.0450 (14) 0.0372 (11) 0.0105 (11) 0.0305 (10) 0.0039 (9)
O8 0.0534 (14) 0.0464 (14) 0.0312 (10) 0.0093 (12) −0.0011 (9) −0.0112 (10)
O9 0.0244 (10) 0.0413 (12) 0.0470 (12) −0.0057 (9) 0.0030 (9) 0.0085 (10)
O10 0.0228 (8) 0.0182 (9) 0.0351 (9) −0.0009 (7) 0.0136 (7) 0.0034 (7)
N1 0.0163 (9) 0.0204 (10) 0.0189 (8) 0.0004 (7) 0.0079 (7) −0.0008 (7)
N2 0.0170 (9) 0.0187 (10) 0.0245 (9) 0.0019 (8) 0.0088 (7) 0.0051 (8)
C2 0.0165 (10) 0.0193 (11) 0.0194 (9) −0.0007 (9) 0.0086 (8) −0.0017 (9)
C3 0.0164 (10) 0.0167 (11) 0.0181 (10) −0.0011 (8) 0.0071 (8) −0.0014 (8)
C4 0.0177 (10) 0.0183 (11) 0.0166 (9) −0.0018 (9) 0.0071 (8) −0.0014 (9)
C5 0.0172 (10) 0.0188 (12) 0.0209 (10) 0.0000 (8) 0.0068 (8) −0.0005 (8)
C6 0.0179 (11) 0.0180 (11) 0.0157 (9) −0.0009 (8) 0.0079 (8) −0.0008 (8)
C7 0.0157 (10) 0.0207 (12) 0.0167 (9) −0.0014 (8) 0.0061 (8) −0.0022 (8)
C8 0.0187 (11) 0.0239 (13) 0.0195 (10) 0.0021 (9) 0.0071 (8) 0.0024 (9)
C9 0.0180 (11) 0.0281 (13) 0.0201 (10) 0.0054 (10) 0.0063 (8) 0.0005 (10)
C10 0.0158 (9) 0.0303 (13) 0.0226 (10) −0.0015 (11) 0.0073 (8) −0.0014 (11)
C11 0.0173 (11) 0.0246 (13) 0.0240 (11) −0.0039 (9) 0.0083 (9) 0.0001 (9)
C12 0.0160 (11) 0.0207 (12) 0.0191 (10) −0.0002 (9) 0.0053 (8) −0.0010 (9)
C13 0.0187 (10) 0.0193 (12) 0.0219 (10) −0.0029 (8) 0.0076 (8) −0.0023 (8)
C21 0.0190 (11) 0.0195 (11) 0.0227 (10) −0.0026 (9) 0.0116 (9) 0.0016 (9)
C22 0.0182 (11) 0.0215 (12) 0.0267 (11) −0.0021 (10) 0.0099 (9) 0.0004 (10)
C23 0.0211 (11) 0.0192 (11) 0.0299 (12) −0.0015 (9) 0.0136 (9) 0.0003 (9)
C24 0.0159 (11) 0.0260 (13) 0.0346 (12) 0.0032 (10) 0.0138 (9) 0.0053 (11)
C25 0.0172 (11) 0.0260 (13) 0.0326 (13) −0.0031 (10) 0.0097 (9) −0.0001 (10)
C26 0.0210 (10) 0.0201 (12) 0.0266 (10) −0.0026 (10) 0.0102 (9) 0.0007 (10)
C31 0.0165 (10) 0.0179 (11) 0.0200 (10) −0.0003 (9) 0.0077 (8) 0.0010 (8)
C32 0.0162 (10) 0.0197 (13) 0.0223 (10) −0.0010 (9) 0.0079 (8) 0.0010 (9)
C33 0.0224 (11) 0.0221 (12) 0.0215 (10) −0.0003 (9) 0.0104 (9) 0.0028 (9)
C34 0.0242 (12) 0.0227 (12) 0.0210 (10) 0.0008 (10) 0.0075 (9) −0.0019 (10)
C35 0.0222 (12) 0.0207 (12) 0.0228 (11) −0.0014 (9) 0.0061 (9) −0.0022 (9)
C36 0.0234 (12) 0.0269 (14) 0.0296 (12) −0.0057 (10) 0.0035 (10) 0.0014 (10)
C37 0.0235 (12) 0.0234 (13) 0.0235 (11) −0.0033 (10) 0.0128 (9) −0.0038 (10)
C38 0.0216 (11) 0.0326 (15) 0.0242 (11) −0.0063 (10) 0.0096 (9) −0.0028 (10)
C39 0.0280 (12) 0.0387 (17) 0.0202 (11) −0.0052 (11) 0.0122 (9) −0.0025 (10)
C40 0.0403 (16) 0.0407 (18) 0.0300 (13) −0.0078 (13) 0.0180 (12) 0.0024 (12)
C41 0.0381 (14) 0.0354 (17) 0.0215 (11) 0.0039 (12) 0.0050 (10) −0.0017 (11)
C42 0.0414 (16) 0.0391 (17) 0.0253 (13) 0.0087 (13) 0.0002 (12) −0.0012 (12)
C43 0.0227 (12) 0.0249 (13) 0.0361 (13) −0.0042 (10) 0.0072 (10) −0.0019 (11)
C44 0.0258 (13) 0.0321 (16) 0.0474 (16) −0.0016 (12) 0.0109 (12) 0.0085 (13)

Geometric parameters (Å, º)

Br1—C24 1.898 (2) C24—C25 1.388 (4)
S1—C2 1.703 (2) C25—C26 1.390 (4)
S1—C5 1.731 (2) C31—C32 1.532 (3)
S2—C6 1.762 (2) C32—C33 1.523 (3)
S2—C12 1.733 (2) C33—C34 1.526 (3)
S3—C2 1.759 (2) C34—C35 1.521 (3)
S3—C31 1.819 (2) C35—C36 1.503 (3)
O1—C31 1.412 (3) C37—C38 1.499 (3)
O1—C35 1.436 (3) C39—C40 1.494 (4)
O2—C32 1.441 (3) C41—C42 1.490 (4)
O2—C37 1.348 (3) C43—C44 1.492 (4)
O3—C33 1.439 (3) N2—H01 0.86 (3)
O3—C39 1.361 (3) N2—H02 0.86 (3)
O4—C34 1.442 (3) C8—H8 0.9500
O4—C41 1.364 (3) C9—H9 0.9500
O5—C36 1.443 (3) C10—H10 0.9500
O5—C43 1.338 (3) C11—H11 0.9500
O6—C37 1.196 (3) C22—H22 0.9500
O7—C39 1.194 (4) C23—H23 0.9500
O8—C41 1.205 (4) C25—H25 0.9500
O9—C43 1.210 (3) C26—H26 0.9500
O10—C13 1.237 (3) C31—H31 1.0000
N1—C6 1.308 (3) C32—H32 1.0000
N1—C7 1.390 (3) C33—H33 1.0000
N2—C4 1.343 (3) C34—H34 1.0000
C2—C3 1.389 (3) C35—H35 1.0000
C3—C4 1.442 (3) C36—H36A 0.9900
C3—C6 1.457 (3) C36—H36B 0.9900
C4—C5 1.406 (3) C38—H38A 0.9800
C5—C13 1.446 (3) C38—H38B 0.9800
C7—C8 1.398 (3) C38—H38C 0.9800
C7—C12 1.404 (3) C40—H40A 0.9800
C8—C9 1.392 (3) C40—H40B 0.9800
C9—C10 1.402 (4) C40—H40C 0.9800
C10—C11 1.382 (4) C42—H42A 0.9800
C11—C12 1.394 (3) C42—H42B 0.9800
C13—C21 1.500 (3) C42—H42C 0.9800
C21—C22 1.394 (4) C44—H44A 0.9800
C21—C26 1.396 (3) C44—H44B 0.9800
C22—C23 1.394 (3) C44—H44C 0.9800
C23—C24 1.388 (3)
C2—S1—C5 92.15 (12) O4—C41—C42 111.4 (2)
C12—S2—C6 88.99 (12) O8—C41—O4 122.8 (3)
C2—S3—C31 98.36 (11) O8—C41—C42 125.7 (3)
C31—O1—C35 110.22 (17) O5—C43—C44 111.4 (2)
C37—O2—C32 119.22 (19) O9—C43—O5 122.8 (3)
C39—O3—C33 117.1 (2) O9—C43—C44 125.8 (3)
C41—O4—C34 117.1 (2) C4—N2—H01 121 (2)
C43—O5—C36 115.6 (2) C4—N2—H02 116 (3)
C6—N1—C7 111.1 (2) H01—N2—H02 123 (3)
S1—C2—S3 116.88 (14) C9—C8—H8 120.8
C3—C2—S1 113.32 (18) C7—C8—H8 120.8
C3—C2—S3 129.80 (17) C8—C9—H9 119.5
C2—C3—C4 111.2 (2) C10—C9—H9 119.5
C2—C3—C6 126.7 (2) C11—C10—H10 119.5
C4—C3—C6 122.0 (2) C9—C10—H10 119.5
N2—C4—C3 124.6 (2) C10—C11—H11 120.9
N2—C4—C5 123.3 (2) C12—C11—H11 120.9
C5—C4—C3 112.0 (2) C21—C22—H22 119.7
C4—C5—S1 111.20 (17) C23—C22—H22 119.7
C4—C5—C13 125.6 (2) C24—C23—H23 120.8
C13—C5—S1 123.20 (18) C22—C23—H23 120.8
N1—C6—S2 115.18 (17) C24—C25—H25 120.5
N1—C6—C3 122.2 (2) C26—C25—H25 120.5
C3—C6—S2 122.57 (18) C25—C26—H26 120.0
N1—C7—C8 125.2 (2) C21—C26—H26 120.0
N1—C7—C12 114.8 (2) O1—C31—H31 109.8
C8—C7—C12 120.0 (2) C32—C31—H31 109.8
C9—C8—C7 118.4 (2) S3—C31—H31 109.8
C8—C9—C10 121.0 (2) O2—C32—H32 111.2
C11—C10—C9 121.0 (2) C33—C32—H32 111.2
C10—C11—C12 118.2 (2) C31—C32—H32 111.2
C7—C12—S2 109.94 (17) O3—C33—H33 108.5
C11—C12—S2 128.6 (2) C32—C33—H33 108.5
C11—C12—C7 121.5 (2) C34—C33—H33 108.5
O10—C13—C5 121.9 (2) O4—C34—H34 109.5
O10—C13—C21 120.4 (2) C35—C34—H34 109.5
C5—C13—C21 117.7 (2) C33—C34—H34 109.5
C22—C21—C13 119.8 (2) O1—C35—H35 108.8
C22—C21—C26 119.8 (2) C36—C35—H35 108.8
C26—C21—C13 120.4 (2) C34—C35—H35 108.8
C21—C22—C23 120.6 (2) O5—C36—H36A 110.5
C24—C23—C22 118.4 (2) C35—C36—H36A 110.5
C23—C24—Br1 118.1 (2) O5—C36—H36B 110.5
C23—C24—C25 122.0 (2) C35—C36—H36B 110.5
C25—C24—Br1 119.82 (19) H36A—C36—H36B 108.7
C24—C25—C26 119.0 (2) C37—C38—H38A 109.5
C25—C26—C21 120.1 (2) C37—C38—H38B 109.5
O1—C31—S3 108.36 (15) H38A—C38—H38B 109.5
O1—C31—C32 110.05 (18) C37—C38—H38C 109.5
C32—C31—S3 109.08 (16) H38A—C38—H38C 109.5
O2—C32—C31 107.04 (18) H38B—C38—H38C 109.5
O2—C32—C33 105.88 (18) C39—C40—H40A 109.5
C33—C32—C31 110.08 (19) C39—C40—H40B 109.5
O3—C33—C32 106.6 (2) H40A—C40—H40B 109.5
O3—C33—C34 110.14 (19) C39—C40—H40C 109.5
C32—C33—C34 114.36 (19) H40A—C40—H40C 109.5
O4—C34—C33 109.2 (2) H40B—C40—H40C 109.5
O4—C34—C35 111.1 (2) C41—C42—H42A 109.5
C35—C34—C33 108.05 (19) C41—C42—H42B 109.5
O1—C35—C34 109.6 (2) H42A—C42—H42B 109.5
O1—C35—C36 107.2 (2) C41—C42—H42C 109.5
C36—C35—C34 113.5 (2) H42A—C42—H42C 109.5
O5—C36—C35 106.3 (2) H42B—C42—H42C 109.5
O2—C37—C38 109.8 (2) C43—C44—H44A 109.5
O6—C37—O2 124.0 (2) C43—C44—H44B 109.5
O6—C37—C38 126.1 (2) H44A—C44—H44B 109.5
O3—C39—C40 109.7 (2) C43—C44—H44C 109.5
O7—C39—O3 123.3 (2) H44A—C44—H44C 109.5
O7—C39—C40 127.0 (3) H44B—C44—H44C 109.5
Br1—C24—C25—C26 −176.89 (19) C7—N1—C6—S2 1.4 (2)
S1—C2—C3—C4 −2.1 (2) C7—N1—C6—C3 179.0 (2)
S1—C2—C3—C6 174.13 (19) C7—C8—C9—C10 −0.7 (3)
S1—C5—C13—O10 −171.04 (18) C8—C7—C12—S2 −179.43 (18)
S1—C5—C13—C21 10.0 (3) C8—C7—C12—C11 −0.6 (3)
S3—C2—C3—C4 178.18 (17) C8—C9—C10—C11 −0.2 (4)
S3—C2—C3—C6 −5.6 (4) C9—C10—C11—C12 0.7 (4)
S3—C31—C32—O2 −73.6 (2) C10—C11—C12—S2 178.28 (19)
S3—C31—C32—C33 171.81 (16) C10—C11—C12—C7 −0.3 (4)
O1—C31—C32—O2 167.69 (18) C12—S2—C6—N1 −1.70 (18)
O1—C31—C32—C33 53.1 (2) C12—S2—C6—C3 −179.36 (19)
O1—C35—C36—O5 70.6 (3) C12—C7—C8—C9 1.1 (3)
O2—C32—C33—O3 76.8 (2) C13—C21—C22—C23 179.7 (2)
O2—C32—C33—C34 −161.3 (2) C13—C21—C26—C25 178.3 (2)
O3—C33—C34—O4 47.2 (2) C21—C22—C23—C24 2.3 (4)
O3—C33—C34—C35 168.1 (2) C22—C21—C26—C25 −2.6 (4)
O4—C34—C35—O1 61.9 (2) C22—C23—C24—Br1 174.97 (18)
O4—C34—C35—C36 −58.0 (3) C22—C23—C24—C25 −3.3 (4)
O10—C13—C21—C22 −123.4 (3) C23—C24—C25—C26 1.4 (4)
O10—C13—C21—C26 55.7 (3) C24—C25—C26—C21 1.6 (4)
N1—C7—C8—C9 −177.1 (2) C26—C21—C22—C23 0.6 (3)
N1—C7—C12—S2 −1.1 (2) C31—S3—C2—S1 105.40 (14)
N1—C7—C12—C11 177.7 (2) C31—S3—C2—C3 −74.9 (2)
N2—C4—C5—S1 178.69 (18) C31—O1—C35—C34 69.4 (2)
N2—C4—C5—C13 −3.7 (4) C31—O1—C35—C36 −166.9 (2)
C2—S1—C5—C4 1.97 (18) C31—C32—C33—O3 −167.85 (18)
C2—S1—C5—C13 −175.7 (2) C31—C32—C33—C34 −45.9 (3)
C2—S3—C31—O1 −66.64 (17) C32—O2—C37—O6 2.7 (3)
C2—S3—C31—C32 173.56 (15) C32—O2—C37—C38 −176.21 (19)
C2—C3—C4—N2 −178.6 (2) C32—C33—C34—O4 −72.8 (2)
C2—C3—C4—C5 3.6 (3) C32—C33—C34—C35 48.1 (3)
C2—C3—C6—S2 −4.9 (3) C33—O3—C39—O7 0.9 (4)
C2—C3—C6—N1 177.6 (2) C33—O3—C39—C40 −177.5 (2)
C3—C4—C5—S1 −3.5 (2) C33—C34—C35—O1 −57.9 (3)
C3—C4—C5—C13 174.1 (2) C33—C34—C35—C36 −177.7 (2)
C4—C3—C6—S2 170.96 (17) C34—O4—C41—O8 −5.0 (4)
C4—C3—C6—N1 −6.5 (3) C34—O4—C41—C42 174.8 (2)
C4—C5—C13—O10 11.6 (4) C34—C35—C36—O5 −168.2 (2)
C4—C5—C13—C21 −167.4 (2) C35—O1—C31—S3 174.79 (15)
C5—S1—C2—S3 179.85 (14) C35—O1—C31—C32 −66.0 (2)
C5—S1—C2—C3 0.13 (18) C36—O5—C43—O9 −1.6 (4)
C5—C13—C21—C22 55.6 (3) C36—O5—C43—C44 178.8 (2)
C5—C13—C21—C26 −125.3 (2) C37—O2—C32—C31 119.2 (2)
C6—S2—C12—C7 1.47 (17) C37—O2—C32—C33 −123.3 (2)
C6—S2—C12—C11 −177.2 (2) C39—O3—C33—C32 −132.7 (2)
C6—N1—C7—C8 178.1 (2) C39—O3—C33—C34 102.8 (2)
C6—N1—C7—C12 −0.2 (3) C41—O4—C34—C33 −136.2 (2)
C6—C3—C4—N2 4.9 (3) C41—O4—C34—C35 104.8 (3)
C6—C3—C4—C5 −172.8 (2) C43—O5—C36—C35 −160.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H01···N1 0.86 (3) 2.12 (3) 2.746 (3) 129 (3)
N2—H02···O10 0.86 (3) 2.14 (3) 2.795 (3) 133 (3)
C11—H11···Br1i 0.95 2.97 3.710 (2) 135
C31—H31···O6ii 1.00 2.34 3.290 (3) 158
C35—H35···O6ii 1.00 2.62 3.532 (3) 151
C36—H36B···O9iii 0.99 2.33 3.294 (4) 164

Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) −x+2, y−1/2, −z+1.

References

  1. Abu-Zaied, M. A., Elgemeie, G. H. & Jones, P. G. (2019a). Acta Cryst. E75, 1820–1823. [DOI] [PMC free article] [PubMed]
  2. Abu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235. [DOI] [PubMed]
  3. Abu-Zaied, M. A., Loutfy, S. A., Hassan, A. E. & Elgemeie, G. H. (2019b). Drug. Des. Dev. Ther. 13, 2437–2457. [DOI] [PMC free article] [PubMed] [Retracted]
  4. Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042–20050. [DOI] [PMC free article] [PubMed]
  5. Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2021). Am. Chem. Soc. (Omega), 6, 16890–16904. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. [DOI] [PMC free article] [PubMed]
  7. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  8. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  9. Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. [DOI] [PMC free article] [PubMed]
  10. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. [DOI] [PMC free article] [PubMed]
  11. Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. [DOI] [PMC free article] [PubMed]
  12. Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.
  13. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  14. Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. [DOI] [PubMed]
  15. Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853–5861.
  16. Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. A. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123. [DOI] [PubMed]
  17. Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. [DOI] [PubMed]
  18. Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12–87. [DOI] [PubMed]
  19. Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020a). Inorg. Chim. Acta, 502, 119302.
  20. Elgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443–458.
  21. Elgemeie, G. H., Fathy, N. M., Farag, A. B. & Yahab, A. M. B. (2020b). Nucleosides Nucleotides Nucleic Acids, 39, 1134–1149. [DOI] [PubMed]
  22. Elgemeie, G. H., Fathy, N. M., Zaghary, W. & Farag, A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 198–212. [DOI] [PubMed]
  23. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 139–150. [DOI] [PubMed]
  24. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.
  25. Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.
  26. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  27. Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856. [DOI] [PMC free article] [PubMed]
  28. Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. [DOI] [PubMed]
  29. Khiar, N., Alonso, I., Rodriguez, N., Fernandez-Mayoralas, A., Jimenez-Barbero, J., Nieto, O., Cano, F., Foces-Foces, C. & Martin-Lomas, M. (1997). Tetrahedron Lett. 38, 8267–8270.
  30. Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754. [DOI] [PMC free article] [PubMed]
  31. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  32. Rana, A., Siddiqui, N., Khan, S. A., Haque, E. S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. [DOI] [PubMed]
  33. Rigaku D (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  34. Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033. [DOI] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  37. Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
  38. Smith, R., Zeng, X., Müller-Bunz, H. & Zhu, X. (2013). Tetrahedron Lett. 54, 5348–5350.
  39. Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314622004126/mw2186sup1.cif

x-07-x220412-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622004126/mw2186Isup2.hkl

x-07-x220412-Isup2.hkl (566.3KB, hkl)

CCDC reference: 2167334

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES