Skip to main content
IUCrData logoLink to IUCrData
. 2022 Apr 7;7(Pt 4):x220364. doi: 10.1107/S2414314622003649

Bis(oxotremorine) fumarate bis­(fumaric acid)

Marilyn Naeem a, Andrew R Chadeayne b, James A Golen a, David R Manke a,*
Editor: M Zellerc
PMCID: PMC9462024  PMID: 36337690

In the title mol­ecular salt, 2C12H19N2O+·C4H2O4 2−·2C4H4O4, the components are held together by N—H⋯O and O—H⋯O hydrogen bonds, forming chains along [001].

Keywords: crystal structure, hydrogen bonding, alkynes, pyrrolidines, fumarates

Abstract

The title compound, bis­(oxotremorine) fumarate bis­(fumaric acid) {systematic name: 1-[4-(2-oxopyrrolidin-1-yl)but-2-yn­yl]pyrrolidinium (2E)-but-2-ene­di­o­ate bis­[(2E)-but-2-enedioic acid]}, 2C12H19N2O+·C4H2O4 2−·2C4H4O4, has a single oxotremorine monocation protonated at the pyrrolidine nitro­gen, one fumaric acid mol­ecule and half of a fumarate dianion in the asymmetric unit. The ions and fumaric acid mol­ecules are held together by N—H⋯O and O–H-⋯O hydrogen bonds in 40-membered rings with graph-set notation R 6 6(40). The fumarate ions join these rings into infinite chains along [001]. graphic file with name x-07-x220364-scheme1-3D1.jpg

Structure description

Oxotremorine is a selective agonist of the muscarinic acetyl­choline receptor, which reproduces many of the symptoms observed in Parkinson’s disease. This property has made it an invaluable tool in studying potential pharmaceuticals for Parkinson’s (Ringdahl & Jenden, 1983). A salt of oxotremorine that is commonly used in biological studies is produced by treating oxotremorine free base with fumaric acid. The resulting salt is reported as the sesquifumarate, indicating that the compound possesses an empirical formula with a 1:1.5 ratio of cation to fumarate dianion. However, the structure reported here shows that in the solid-state, the compound consists of two monocationic, protonated oxotremorines, one doubly deprotonated dianionic fumarate, and two fully protonated fumaric acid mol­ecules. One half of these ions and mol­ecules are present in the asymmetric unit (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. The asymmetric unit contains one half of a fumarate dianion, which is disordered over two positions. The other half of the inversion-generated fumarate dianion is shown. Symmetry code: (i) 2 − x, 1 − y, −z.

The only compound found by searching on ‘sesquifumarate’ in the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016) is that of the anti-arrhythmic agent tedisamil, which also exists as the bis­(cation) bis­(fumaric acid) fumarate and not the technical sesquifumarate (Jones et al., 2004: CSD refcode EYOYUM). There are seven other bis­(cation) bis­(fumaric acid) fumarate salts (Haynes et al., 2006: RESGEC, RESGUS; Provins et al., 2006: SEGSAZ: Li & Zheng, 2005: QARKOK; Lin & Zheng, 2004: DAMYIA; Mohamed et al., 2009: FUTNIS; Fang et al., 2022: CCDC 2092690), and one bis­(cation) bis­(fumarate) fumaric acid salt (Collin et al., 1987: FEMKIR) found in a search of the CSD. Although all of these structures incorporate three equivalents of fumaric acid into their structures relative to two cations, none is a formal sesquifumarate. The only such example in the CSD is that of Λ-cobalt(III) tris­(ethyl­enedi­amine), which shows all three fumaric acid mol­ecules to be fully deprotonated and in a 3:2 ratio with the tricationic cobalt complex ions (Liebig & Ruschewitz, 2012: PEJGAO). In general, there is a lack of precision when characterizing salts of fumaric acid, and diffraction studies are invaluable in distinguishing the different forms.

In the structure of the title compound, the pyrrolidinium N—H of oxotremorine has bifurcated hydrogen bonds to two O atoms of a symmetry-generated fumarate dianion. One fumaric acid O—H hydrogen bonds to the carbonyl oxygen of the oxopyrrolidine of oxotremorine. The other fumaric acid O—H hydrogen bonds to one of the fumarate dianion oxygen atoms (Table 1). These hydrogen bonds connect two oxotremorine cations, two fumaric acid mol­ecules and two fumarate dianions into rings that have graph-set notation Inline graphic (40) (Etter et al., 1990) (Fig. 2). The fumarate ions connect these rings together into infinite one-dimensional chains along [001]. The crystal packing of the title compound is shown in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5i 0.93 2.65 3.498 (2) 152
C3—H3B⋯O1i 0.97 2.43 3.381 (3) 166
C5—H5B⋯O2ii 0.97 2.51 3.434 (2) 159
C8—H8A⋯O4iii 0.97 2.54 3.191 (2) 125
C8—H8A⋯O6iii 0.97 2.53 3.456 (3) 161
C8—H8B⋯O5iv 0.97 2.52 3.480 (2) 173
C9—H9A⋯O6iv 0.97 2.56 3.228 (3) 126
C10—H10A⋯O5v 0.97 2.66 3.624 (3) 175
C11—H11A⋯O4vi 0.97 2.64 3.553 (3) 157
C12—H12B⋯O7vii 0.97 2.68 3.399 (2) 132
C12—H12B⋯O7A vii 0.97 2.37 3.139 (15) 135
O4—H4⋯O6 0.91 (1) 1.58 (1) 2.483 (2) 167 (2)
O3—H3⋯O1 0.90 (1) 1.69 (1) 2.5739 (16) 167 (2)
N2—H2⋯O6iv 0.908 (19) 2.554 (18) 3.172 (3) 125.8 (14)
N2—H2⋯O7iv 0.908 (19) 1.809 (19) 2.705 (2) 168.3 (17)
N2—H2⋯O6A iv 0.908 (19) 2.43 (3) 3.131 (19) 133.6 (15)
N2—H2⋯O7A iv 0.908 (19) 1.61 (2) 2.489 (15) 161.7 (17)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic .

Figure 2.

Figure 2

The hydrogen-bonding network forms chains along [001], which consist of Inline graphic (40) rings that are joined together by the fumarate dianions. The ring structure is shown above. Hydrogen atoms not involved in hydrogen bonds, and the second component of the disordered fumarate dianion are omitted for clarity.

Figure 3.

Figure 3

The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds, and the second component of the disordered fumarate dianion are omitted for clarity.

The fumaric acid and the fumarate dianion are near planar with r.m.s. deviations from planarity of 0.092 and 0.033 Å, respectively. The C—O distances of the fumarate mol­ecules are delocalized with values of 1.270 (3) and 1.243 (2) Å. The C—O distances in the fumaric acid mol­ecules are localized, with the carbonyl distances being 1.209 (2) and 1.203 (2) Å and the carbon–hydroxyl distances being 1.310 (2) and 1.316 (18) Å. The C—O distances and the location of the hydrogen atoms from the difference-Fourier map make the assignment of fumarate and fumaric acid clear.

In the reported structure, the amino­but-2-ynyl­ammonium unit has a near anti conformation, with a N2—C8—C5—N1 torsion angle of 163.17 (13)°. The other known structure of oxotremorine is reported as the sesquioxalate, but is similarly composed of the bis­(oxotremorine) bis­(oxalic acid) oxalate, and shows a torsion angle of 38.35 (3)° for the equivalent nitro­gen and carbon atoms (Clarke et al., 1975: OXTREO). The other two similar structures reported, trimethyl-[4-(2-oxopyrrolidin-1-yl)but-2-yn­yl]-ammonium iodide (Baker & Pauling, 1973: MXPBYA), and a related acetyl­enic imidazole (Moon et al., 1991: KOGCEO) show equivalent torsion angles of 143.50 (3) and 53.3 (4)°, respectively. The significant separation provided by the but-2-ynyl unit makes it so that there is no significant inter­action between the two units, giving no conformational preference.

Synthesis and crystallization

Single crystals suitable for X-ray diffraction studies were grown by dissolving 15 mg of oxotremorine sesquifumarate purchased from Sigma–Aldrich in 5 ml of water. Solvent was allowed to evaporate at ambient temperature and pressure and crystals formed after 12 h.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The fumarate dianion is disordered over two positions (C17, C18, O6, O7 and C17A, C18A, O6A, O7A), which were modeled using a SAME restraint, as well as EADP instructions. The two components showed a 0.855 (4) to 0.145 (4) occupancy ratio.

Table 2. Experimental details.

Crystal data
Chemical formula 2C12H19N2O+·C4H2O4 2−·2C4H4O4
M r 760.78
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 297
a, b, c (Å) 6.0921 (3), 8.5778 (5), 18.7260 (11)
α, β, γ (°) 94.922 (2), 90.428 (2), 98.945 (2)
V3) 962.88 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.717, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27417, 3651, 2975
R int 0.035
(sin θ/λ)max−1) 0.612
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.109, 1.03
No. of reflections 3651
No. of parameters 269
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003649/zl4049sup1.cif

x-07-x220364-sup1.cif (806.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003649/zl4049Isup2.hkl

x-07-x220364-Isup2.hkl (291.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003649/zl4049Isup3.cml

CCDC reference: 2163782

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

full crystallographic data

Crystal data

2C12H19N2O+·C4H2O42·2C4H4O4 Z = 1
Mr = 760.78 F(000) = 404
Triclinic, P1 Dx = 1.312 Mg m3
a = 6.0921 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5778 (5) Å Cell parameters from 9070 reflections
c = 18.7260 (11) Å θ = 2.6–25.7°
α = 94.922 (2)° µ = 0.10 mm1
β = 90.428 (2)° T = 297 K
γ = 98.945 (2)° Block, colourless
V = 962.88 (9) Å3 0.30 × 0.20 × 0.04 mm

Data collection

Bruker D8 Venture CMOS diffractometer 2975 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Bruker, 2018) θmax = 25.8°, θmin = 2.6°
Tmin = 0.717, Tmax = 0.745 h = −7→7
27417 measured reflections k = −10→10
3651 independent reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: mixed
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2757P] where P = (Fo2 + 2Fc2)/3
3651 reflections (Δ/σ)max < 0.001
269 parameters Δρmax = 0.18 e Å3
8 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms H2, H3 and H4 were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with O–H distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitrogen atom and 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions with C–H = 0.93 Å (sp2) or 0.97 Å (sp3). Isotropic displacement parameters were set to 1.2 Ueq of the parent carbon atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2 0.1880 (2) 0.32007 (19) 0.36008 (8) 0.0785 (5)
O3 0.5181 (2) 0.34987 (18) 0.41423 (7) 0.0648 (4)
O4 0.69301 (19) 0.57836 (15) 0.18323 (6) 0.0575 (3)
O5 1.0269 (2) 0.56449 (19) 0.22771 (8) 0.0732 (4)
C15 0.7126 (3) 0.45921 (19) 0.29059 (8) 0.0457 (4)
H15 0.798508 0.415501 0.322444 0.055*
C13 0.3847 (3) 0.36674 (19) 0.36123 (9) 0.0466 (4)
C14 0.4977 (3) 0.44695 (18) 0.30158 (8) 0.0453 (4)
H14 0.411762 0.491313 0.269994 0.054*
C16 0.8265 (3) 0.53832 (18) 0.23060 (8) 0.0445 (4)
O1 0.3504 (2) 0.16999 (17) 0.50962 (7) 0.0673 (4)
N1 0.12900 (19) 0.08762 (16) 0.60010 (6) 0.0421 (3)
N2 0.65707 (19) 0.00872 (15) 0.85784 (6) 0.0380 (3)
C2 0.0229 (3) 0.2911 (2) 0.54231 (10) 0.0578 (5)
H2A −0.043039 0.281057 0.494497 0.069*
H2B 0.094453 0.399740 0.553553 0.069*
C1 0.1861 (2) 0.17907 (19) 0.54731 (8) 0.0445 (4)
C3 −0.1513 (3) 0.2442 (3) 0.59673 (12) 0.0758 (6)
H3A −0.168967 0.334814 0.629641 0.091*
H3B −0.293254 0.203854 0.572933 0.091*
C4 −0.0716 (3) 0.1172 (2) 0.63662 (10) 0.0576 (4)
H4A −0.039682 0.153881 0.686613 0.069*
H4B −0.181912 0.022144 0.633910 0.069*
C5 0.2587 (3) −0.02922 (19) 0.62190 (8) 0.0458 (4)
H5A 0.370750 −0.043844 0.586468 0.055*
H5B 0.162152 −0.129865 0.623917 0.055*
C6 0.3680 (2) 0.01937 (19) 0.69249 (8) 0.0453 (4)
C7 0.4569 (3) 0.0611 (2) 0.74894 (9) 0.0476 (4)
C8 0.5696 (3) 0.1275 (2) 0.81681 (9) 0.0526 (4)
H8A 0.466071 0.177765 0.846459 0.063*
H8B 0.691969 0.208802 0.806785 0.063*
C9 0.8224 (3) −0.0784 (2) 0.82116 (8) 0.0463 (4)
H9A 0.963732 −0.010026 0.817488 0.056*
H9B 0.769788 −0.122425 0.773541 0.056*
C10 0.8423 (3) −0.2081 (3) 0.86974 (11) 0.0690 (5)
H10A 0.867468 −0.304045 0.841843 0.083*
H10B 0.964896 −0.175271 0.903809 0.083*
C11 0.6245 (3) −0.2359 (3) 0.90830 (12) 0.0729 (6)
H11A 0.548597 −0.343053 0.896019 0.087*
H11B 0.649915 −0.220532 0.959802 0.087*
C12 0.4880 (3) −0.1170 (2) 0.88405 (9) 0.0561 (4)
H12A 0.383755 −0.164457 0.845940 0.067*
H12B 0.406420 −0.074741 0.923545 0.067*
H4 0.773 (3) 0.632 (3) 0.1495 (10) 0.089 (7)*
H3 0.440 (4) 0.291 (3) 0.4458 (11) 0.098 (8)*
H2 0.724 (3) 0.068 (2) 0.8967 (10) 0.053 (5)*
O6 0.8934 (4) 0.7598 (3) 0.10050 (12) 0.0504 (5) 0.855 (4)
O7 1.1822 (4) 0.7858 (2) 0.02939 (11) 0.0519 (4) 0.855 (4)
C17 1.0122 (5) 0.7065 (2) 0.05155 (12) 0.0381 (5) 0.855 (4)
C18 0.9417 (3) 0.5389 (2) 0.02174 (10) 0.0442 (5) 0.855 (4)
H18 0.804798 0.487027 0.035288 0.053* 0.855 (4)
O6A 0.939 (3) 0.737 (2) 0.0861 (11) 0.0504 (5) 0.145 (4)
O7A 1.239 (2) 0.8253 (18) 0.0278 (9) 0.0519 (4) 0.145 (4)
C17A 1.096 (3) 0.7175 (18) 0.0433 (9) 0.0381 (5) 0.145 (4)
C18A 1.074 (2) 0.5595 (14) 0.0004 (6) 0.0442 (5) 0.145 (4)
H18A 1.189497 0.548224 −0.030918 0.053* 0.145 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0462 (7) 0.1052 (12) 0.0848 (10) −0.0063 (7) −0.0006 (6) 0.0461 (9)
O3 0.0503 (7) 0.0919 (10) 0.0556 (7) 0.0070 (6) 0.0046 (6) 0.0340 (7)
O4 0.0508 (7) 0.0692 (8) 0.0536 (7) 0.0034 (6) 0.0024 (5) 0.0224 (6)
O5 0.0460 (7) 0.0988 (11) 0.0808 (9) 0.0140 (7) 0.0119 (6) 0.0357 (8)
C15 0.0460 (8) 0.0463 (9) 0.0464 (9) 0.0088 (7) 0.0000 (7) 0.0097 (7)
C13 0.0450 (9) 0.0450 (9) 0.0518 (9) 0.0094 (7) 0.0042 (7) 0.0119 (7)
C14 0.0485 (9) 0.0434 (8) 0.0455 (8) 0.0073 (7) 0.0010 (7) 0.0118 (7)
C16 0.0447 (9) 0.0417 (8) 0.0481 (9) 0.0090 (7) 0.0054 (7) 0.0043 (7)
O1 0.0591 (7) 0.0944 (10) 0.0584 (8) 0.0248 (7) 0.0179 (6) 0.0389 (7)
N1 0.0367 (6) 0.0536 (8) 0.0374 (7) 0.0076 (5) 0.0000 (5) 0.0113 (6)
N2 0.0371 (6) 0.0446 (7) 0.0316 (6) 0.0043 (5) −0.0009 (5) 0.0029 (5)
C2 0.0654 (11) 0.0583 (11) 0.0530 (10) 0.0192 (9) −0.0103 (8) 0.0070 (8)
C1 0.0422 (8) 0.0542 (9) 0.0372 (8) 0.0050 (7) −0.0054 (6) 0.0096 (7)
C3 0.0560 (11) 0.0972 (16) 0.0831 (14) 0.0325 (11) 0.0053 (10) 0.0203 (12)
C4 0.0504 (9) 0.0678 (11) 0.0563 (10) 0.0127 (8) 0.0130 (8) 0.0077 (8)
C5 0.0472 (8) 0.0510 (9) 0.0409 (8) 0.0088 (7) −0.0014 (7) 0.0115 (7)
C6 0.0423 (8) 0.0526 (9) 0.0438 (9) 0.0090 (7) 0.0019 (7) 0.0178 (7)
C7 0.0446 (8) 0.0573 (10) 0.0439 (9) 0.0126 (7) −0.0001 (7) 0.0138 (7)
C8 0.0626 (10) 0.0514 (10) 0.0463 (9) 0.0166 (8) −0.0070 (8) 0.0060 (7)
C9 0.0411 (8) 0.0559 (10) 0.0412 (8) 0.0090 (7) 0.0030 (6) −0.0020 (7)
C10 0.0741 (13) 0.0688 (13) 0.0702 (12) 0.0277 (10) −0.0078 (10) 0.0112 (10)
C11 0.0741 (13) 0.0640 (12) 0.0794 (14) −0.0056 (10) −0.0103 (11) 0.0305 (11)
C12 0.0410 (8) 0.0748 (12) 0.0499 (9) −0.0049 (8) 0.0030 (7) 0.0164 (8)
O6 0.0583 (12) 0.0436 (10) 0.0486 (13) 0.0053 (7) 0.0167 (7) 0.0044 (8)
O7 0.0575 (14) 0.0492 (13) 0.0408 (7) −0.0149 (9) 0.0115 (9) −0.0009 (9)
C17 0.0421 (14) 0.0411 (9) 0.0297 (10) 0.0013 (10) −0.0020 (11) 0.0048 (7)
C18 0.0432 (10) 0.0447 (11) 0.0402 (10) −0.0065 (8) 0.0062 (8) 0.0030 (8)
O6A 0.0583 (12) 0.0436 (10) 0.0486 (13) 0.0053 (7) 0.0167 (7) 0.0044 (8)
O7A 0.0575 (14) 0.0492 (13) 0.0408 (7) −0.0149 (9) 0.0115 (9) −0.0009 (9)
C17A 0.0421 (14) 0.0411 (9) 0.0297 (10) 0.0013 (10) −0.0020 (11) 0.0048 (7)
C18A 0.0432 (10) 0.0447 (11) 0.0402 (10) −0.0065 (8) 0.0062 (8) 0.0030 (8)

Geometric parameters (Å, º)

O2—C13 1.2026 (19) C5—H5A 0.9700
O3—C13 1.310 (2) C5—H5B 0.9700
O3—H3 0.902 (10) C5—C6 1.473 (2)
O4—C16 1.3016 (19) C6—C7 1.185 (2)
O4—H4 0.914 (10) C7—C8 1.467 (2)
O5—C16 1.2092 (19) C8—H8A 0.9700
C15—H15 0.9300 C8—H8B 0.9700
C15—C14 1.316 (2) C9—H9A 0.9700
C15—C16 1.483 (2) C9—H9B 0.9700
C13—C14 1.480 (2) C9—C10 1.515 (3)
C14—H14 0.9300 C10—H10A 0.9700
O1—C1 1.2372 (19) C10—H10B 0.9700
N1—C1 1.3293 (19) C10—C11 1.511 (3)
N1—C4 1.451 (2) C11—H11A 0.9700
N1—C5 1.452 (2) C11—H11B 0.9700
N2—C8 1.486 (2) C11—C12 1.509 (3)
N2—C9 1.4833 (19) C12—H12A 0.9700
N2—C12 1.490 (2) C12—H12B 0.9700
N2—H2 0.908 (19) O6—C17 1.270 (3)
C2—H2A 0.9700 O7—C17 1.243 (2)
C2—H2B 0.9700 C17—C18 1.492 (3)
C2—C1 1.495 (2) C18—C18i 1.295 (4)
C2—C3 1.510 (3) C18—H18 0.9300
C3—H3A 0.9700 O6A—C17A 1.273 (14)
C3—H3B 0.9700 O7A—C17A 1.222 (14)
C3—C4 1.509 (3) C17A—C18A 1.502 (14)
C4—H4A 0.9700 C18A—C18Ai 1.25 (2)
C4—H4B 0.9700 C18A—H18A 0.9300
C13—O3—H3 108.7 (16) H5A—C5—H5B 107.9
C16—O4—H4 110.0 (15) C6—C5—H5A 109.3
C14—C15—H15 117.9 C6—C5—H5B 109.3
C14—C15—C16 124.13 (15) C7—C6—C5 178.83 (17)
C16—C15—H15 117.9 C6—C7—C8 174.81 (17)
O2—C13—O3 123.57 (15) N2—C8—H8A 108.7
O2—C13—C14 122.35 (15) N2—C8—H8B 108.7
O3—C13—C14 114.08 (14) C7—C8—N2 114.07 (14)
C15—C14—C13 123.90 (15) C7—C8—H8A 108.7
C15—C14—H14 118.1 C7—C8—H8B 108.7
C13—C14—H14 118.1 H8A—C8—H8B 107.6
O4—C16—C15 114.39 (13) N2—C9—H9A 111.2
O5—C16—O4 123.90 (15) N2—C9—H9B 111.2
O5—C16—C15 121.70 (15) N2—C9—C10 102.94 (13)
C1—N1—C4 114.58 (13) H9A—C9—H9B 109.1
C1—N1—C5 123.48 (13) C10—C9—H9A 111.2
C4—N1—C5 121.90 (13) C10—C9—H9B 111.2
C8—N2—C12 116.01 (13) C9—C10—H10A 110.5
C8—N2—H2 103.0 (11) C9—C10—H10B 110.5
C9—N2—C8 116.32 (12) H10A—C10—H10B 108.7
C9—N2—C12 104.70 (13) C11—C10—C9 106.06 (15)
C9—N2—H2 108.6 (11) C11—C10—H10A 110.5
C12—N2—H2 107.8 (11) C11—C10—H10B 110.5
H2A—C2—H2B 108.8 C10—C11—H11A 110.5
C1—C2—H2A 110.7 C10—C11—H11B 110.5
C1—C2—H2B 110.7 H11A—C11—H11B 108.7
C1—C2—C3 105.11 (15) C12—C11—C10 106.27 (15)
C3—C2—H2A 110.7 C12—C11—H11A 110.5
C3—C2—H2B 110.7 C12—C11—H11B 110.5
O1—C1—N1 123.90 (15) N2—C12—C11 103.58 (13)
O1—C1—C2 126.98 (15) N2—C12—H12A 111.0
N1—C1—C2 109.11 (14) N2—C12—H12B 111.0
C2—C3—H3A 110.4 C11—C12—H12A 111.0
C2—C3—H3B 110.4 C11—C12—H12B 111.0
H3A—C3—H3B 108.6 H12A—C12—H12B 109.0
C4—C3—C2 106.81 (15) O6—C17—C18 116.8 (2)
C4—C3—H3A 110.4 O7—C17—O6 123.1 (2)
C4—C3—H3B 110.4 O7—C17—C18 120.1 (2)
N1—C4—C3 104.08 (14) C17—C18—H18 117.8
N1—C4—H4A 110.9 C18i—C18—C17 124.4 (2)
N1—C4—H4B 110.9 C18i—C18—H18 117.8
C3—C4—H4A 110.9 O6A—C17A—C18A 116.1 (16)
C3—C4—H4B 110.9 O7A—C17A—O6A 123.5 (16)
H4A—C4—H4B 109.0 O7A—C17A—C18A 119.4 (16)
N1—C5—H5A 109.3 C17A—C18A—H18A 114.6
N1—C5—H5B 109.3 C18Ai—C18A—C17A 130.7 (16)
N1—C5—C6 111.67 (13) C18Ai—C18A—H18A 114.6
O2—C13—C14—C15 −159.84 (18) C5—N1—C1—O1 2.9 (2)
O3—C13—C14—C15 19.3 (2) C5—N1—C1—C2 −176.77 (14)
C14—C15—C16—O4 −8.4 (2) C5—N1—C4—C3 −179.65 (16)
C14—C15—C16—O5 170.45 (18) C8—N2—C9—C10 −169.44 (14)
C16—C15—C14—C13 179.50 (15) C8—N2—C12—C11 168.12 (15)
N2—C9—C10—C11 25.88 (19) C9—N2—C8—C7 59.62 (19)
C2—C3—C4—N1 −4.8 (2) C9—N2—C12—C11 38.48 (17)
C1—N1—C4—C3 2.4 (2) C9—C10—C11—C12 −2.6 (2)
C1—N1—C5—C6 109.44 (16) C10—C11—C12—N2 −21.6 (2)
C1—C2—C3—C4 5.5 (2) C12—N2—C8—C7 −64.18 (19)
C3—C2—C1—O1 176.15 (18) C12—N2—C9—C10 −39.98 (16)
C3—C2—C1—N1 −4.2 (2) O6—C17—C18—C18i −171.2 (3)
C4—N1—C1—O1 −179.16 (16) O7—C17—C18—C18i 7.4 (4)
C4—N1—C1—C2 1.17 (19) O6A—C17A—C18A—C18Ai −1 (3)
C4—N1—C5—C6 −68.36 (19) O7A—C17A—C18A—C18Ai −169 (2)

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O5ii 0.93 2.65 3.498 (2) 152
C3—H3B···O1ii 0.97 2.43 3.381 (3) 166
C5—H5B···O2iii 0.97 2.51 3.434 (2) 159
C8—H8A···O4iv 0.97 2.54 3.191 (2) 125
C8—H8A···O6iv 0.97 2.53 3.456 (3) 161
C8—H8B···O5v 0.97 2.52 3.480 (2) 173
C9—H9A···O6v 0.97 2.56 3.228 (3) 126
C10—H10A···O5vi 0.97 2.66 3.624 (3) 175
C11—H11A···O4vii 0.97 2.64 3.553 (3) 157
C12—H12B···O7viii 0.97 2.68 3.399 (2) 132
C12—H12B···O7Aviii 0.97 2.37 3.139 (15) 135
O4—H4···O6 0.91 (1) 1.58 (1) 2.483 (2) 167 (2)
O3—H3···O1 0.90 (1) 1.69 (1) 2.5739 (16) 167 (2)
N2—H2···O6v 0.908 (19) 2.554 (18) 3.172 (3) 125.8 (14)
N2—H2···O7v 0.908 (19) 1.809 (19) 2.705 (2) 168.3 (17)
N2—H2···O6Av 0.908 (19) 2.43 (3) 3.131 (19) 133.6 (15)
N2—H2···O7Av 0.908 (19) 1.61 (2) 2.489 (15) 161.7 (17)

Symmetry codes: (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y, −z+1; (vii) −x+1, −y, −z+1; (viii) x−1, y−1, z+1.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086); CaaMTech, Inc.

References

  1. Baker, R. W. & Pauling, P. J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1247–1249.
  2. Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Clarke, P. J., Pauling, P. J. & Petcher, T. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 774–778.
  4. Collin, S., Norberg, B., Evrard, G. & Durant, F. (1987). Acta Cryst. C43, 572–577.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Fang, Z.-Y., Zhang, B.-X., Xing, W.-H., Jia, H.-L., Wang, X., Gong, N.-B., Lu, Y. & Du, G.-H. (2022). Chin. Lett. Chem. In the press.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.
  10. Jones, P. G., Schön, U. & Finner, E. (2004). Acta Cryst. E60, o1285–o1287.
  11. Li, Z.-F. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 883–890.
  12. Liebig, T. J. & Ruschewitz, U. (2012). Cryst. Growth Des. 12, 5402–5410.
  13. Lin, J.-L. & Zheng, Y.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 230–232.
  14. Mohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889.
  15. Moon, M. W., Chidester, C. G., Heier, R. F., Morris, J. K., Collins, R. J., Russell, R. R., Francis, J. W., Sage, G. P. & Sethy, V. H. (1991). J. Med. Chem. 34, 2314–2327. [DOI] [PubMed]
  16. Provins, L., Christophe, B., Danhaive, P., Dulieu, J., Durieu, V., Gillard, M., Lebon, F., Lengelé, S., Quéré, L. & van Keulen, B. (2006). Bioorg. Med. Chem. Lett. 16, 1834–1839. [DOI] [PubMed]
  17. Ringdahl, B. & Jenden, D. J. (1983). Life Sci. 32, 2401–2413. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003649/zl4049sup1.cif

x-07-x220364-sup1.cif (806.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003649/zl4049Isup2.hkl

x-07-x220364-Isup2.hkl (291.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622003649/zl4049Isup3.cml

CCDC reference: 2163782

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES