Skip to main content
IUCrData logoLink to IUCrData
. 2022 Apr 12;7(Pt 4):x220377. doi: 10.1107/S2414314622003777

Poly[bis­[μ2-4,4′-bis­(imidazol-1-ylmeth­yl)biphenyl-κ2 N:N′]di­chlorido­nickel(II)]

Min Deng a, Yue Yin a, Shan-Shan Wang a, Xin-Yi Qi a, Ai-Xin Zhu a,*
Editor: M Zellerb
PMCID: PMC9462028  PMID: 36337687

The crystal structure of a two-dimensional metal–organic compound constructed from 4,4′-bis­[(1H-imidazol-1-yl)meth­yl]-1,1′-biphenyl (BIMB) and nickel ions is described. Each BIMB ligand adopts a linear linker to connect Ni2+ ions, forming a layer with an sql network. In the crystal, neighboring layers repeat in an ABAB stacking mode, and weak inter­molecular C—H⋯Cl hydrogen bonds between alternate layers lead to a three-dimensional, twofold inter­penetrated, supra­molecular framework with a pcu topology net.

Keywords: crystal structure, coordination polymer, imidazole, nickel

Abstract

In the title compound, [NiCl2(C20H18N4)2] n , the Ni2+ cation is situated on an inversion center and is coordinated by two chloride ions and four imidazole N atoms of four different 4,4′-bis­[(1H-imidazol-1-yl)meth­yl]-1,1′-biphenyl (BIMB), forming a slightly distorted octa­hedral geometry. Each BIMB ligand adopts a linear linker to connect Ni2+ ions, forming a two-dimensional layer with an sql network. In the crystal, neighboring layers repeat in an ABAB stacking mode, and weak inter­molecular C—H⋯Cl hydrogen bonds between alternate layers lead to a three-dimensional, twofold inter­penetrated, supra­molecular framework with a pcu topology net. graphic file with name x-07-x220377-scheme1-3D1.jpg

Structure description

Over the last two decades, imidazole and its derivatives have attracted a lot of attention as N-heterocyclic aromatic ligands, since they can easily form metal–imidazole frameworks with special luminescent, magnetic and favorable gas-adsorption abilities (Banerjee et al. 2008; Zhang et al. 2012; Zhu et al. 2012; Chen et al. 2014). As an extended imidazole-type linker, the flexible ligand 4,4′-bis­[(1H-imidazol-1-yl)meth­yl]-1,1′-biphenyl (BIMB) exhibits a geometrical diversity with cis or trans conformations, leading to diverse structures of coordination compounds. Until now, most reported metal–organic compounds based on BIMB ligands have employed organic multi­carboxyl­ates as co-ligands because BIMB is a neutral ligand and another anion is needed to balance the charge requirement to form a neutral framework. Common inorganic anions such as Cl, Br, I, NO3 , SO4 2−, N3 , etc. can also be used as co-ligands to balance the charge requirement. However, only ten examples of neutral, BIMB-based metal–organic compounds have been reported [according to the Cambridge Structural Database (CSD, Version 5.43 with update of March, 2022; Groom et al., 2016) with inorganic anions as co-ligands.

The asymmetric unit of the title compound, [NiCl2(C20H18N4)2] n , contains one half nickel(II) ion, two half BIMB ligands and one chloride ion (Fig. 1). The nickel(II) ion sits on an inversion center and is coordinated by four imidazole nitro­gen atoms from four different BIMB ligands [Ni—N = 2.100 (3)–2.108 (3) Å] and two chloride ions [Ni—Cl = 2.4793 (11) Å], forming a slightly distorted octa­hedral geometry. In the crystal, the BIMB ligands have twofold rotational symmetry, being bis­ected by rotation axes, and the biphenyl groups are not coplanar, with dihedral angles of 33.21 (10) and 35.4 (10)° between the ring planes. The dihedral angles between the imidazole ring plane and the average plane of the biphenyl group are 87.71 (14) and 81.93 (14)°. Each BIMB ligand exhibits a cis-conformation relative to the average plane of the biphenyl group, and acts as a linear linker between Ni2+ ions, which gives a corrugated two-dimensional layer structure with an sql (square lattice) network as illustrated in Fig. 2. The layers stack in an –ABAB– mode, and the Ni2+ ion in one layer is located at the center of the grid of adjacent layers. Thus, there are no residual solvent-accessible voids in this compound. Alternate layers between AA or BB layers are further linked by C—H⋯Cl hydrogen bonds (Table 1, Figs. 3 and 4) to form a three-dimensional, twofold inter­penetrated, supra­molecular framework with a pcu (primitive cubic) topology network (Fig. 5).

Figure 1.

Figure 1

The coordination environment of the zinc ions and the BIMB ligands in the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (A) Inline graphic  − x, Inline graphic  − y, 1 − z; (B) −x, y, Inline graphic  − z; (C) 1 − x, y, Inline graphic  − z; (D) Inline graphic  + x, Inline graphic  − y, Inline graphic  + z; (E) x −  Inline graphic , Inline graphic  − y, Inline graphic  + z.]

Figure 2.

Figure 2

The two-dimensional structure of the title compound with sql network viewed along the b axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1i 0.93 2.79 3.605 (4) 147
C14—H14B⋯Cl1i 0.97 2.80 3.686 (5) 153

Symmetry code: (i) Inline graphic .

Figure 3.

Figure 3

The packing of the title compound viewed along the b axis. H atoms are omitted for clarity.

Figure 4.

Figure 4

View of the C—H⋯Cl hydrogen bonds (dashed lines) between alternate layers along the c axis. H atoms not involved in hydrogen bonding are omitted.

Figure 5.

Figure 5

The twofold inter­penetrated supra­molecular framework with a pcu topology network connected by C—H⋯Cl hydrogen bonds (shown as dashed lines).

The structure of the title compound is isomorphous to that of the cadmium(II) compound, whose structure has been studied at 200 K (Zhao et al. 2003). This structural similarity of the CdII and NiII compounds is somewhat unexpected in view of the different effective radii of these ions (Shannon & Prewitt, 1969, 1970), which causes the differences between M—N distances [Cd—-N = 2.339 (2)–2.364 (2) Å in the cadmium(II) compound]. It should also be noted that the title compound was easily obtained within one day using solvothermal conditions, whereas the cadmium(II) compound was obtained after several weeks using a slow-diffusion method.

Synthesis and crystallization

A mixture of NiCl2·H2O (24 mg, 0.1 mmol), BIMB (62 mg, 0.2 mmol) and DMF (6 ml) was added to a 20 ml glass vial and then ultrasonicated for 1 minute. The vial was capped tightly and placed in an oven at 120°C. After 12 h, the vial was removed from the oven and allowed to cool to room temperature. The light-green transparent needle-like crystals were collected by filtration, washed with DMF and dried under ambient conditions. About 34 mg of product was obtained (44% yield based on BIMB ligand). The phase purity of the bulk sample was verified by powder X-ray diffraction (PXRD). The experimental and simulated powder XRD patterns of the title compound are displayed in Fig. S1 of the supporting information. Their peak positions are in good agreement with each other, indicating the phase purity of the title compound (slight intensity mismatches due to preferred orientation are observed).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [NiCl2(C20H18N4)2]
M r 758.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 26.453 (3), 7.3571 (7), 18.099 (2)
β (°) 93.223 (11)
V3) 3516.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.30 × 0.22 × 0.16
 
Data collection
Diffractometer Oxford Diffraction, Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16025, 4343, 2543
R int 0.078
(sin θ/λ)max−1) 0.692
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.072, 0.161, 1.06
No. of reflections 4343
No. of parameters 232
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.27

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and DIAMOND (Brandenburg, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003777/zl4050sup1.cif

x-07-x220377-sup1.cif (504.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003777/zl4050Isup3.hkl

x-07-x220377-Isup3.hkl (346.4KB, hkl)

The experimental and simulated powder XRD patterns of the title compound. DOI: 10.1107/S2414314622003777/zl4050sup4.docx

CCDC reference: 2164744

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[NiCl2(C20H18N4)2] F(000) = 1576
Mr = 758.38 Dx = 1.432 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 26.453 (3) Å Cell parameters from 3041 reflections
b = 7.3571 (7) Å θ = 2.7–22.6°
c = 18.099 (2) Å µ = 0.75 mm1
β = 93.223 (11)° T = 296 K
V = 3516.8 (7) Å3 Needle, green
Z = 4 0.30 × 0.22 × 0.16 mm

Data collection

Oxford Diffraction, Xcalibur, Eos, Gemini diffractometer 2543 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tube Rint = 0.078
ω scans θmax = 29.5°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) h = −35→35
Tmin = 0.856, Tmax = 1.000 k = −9→10
16025 measured reflections l = −24→19
4343 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 5.351P] where P = (Fo2 + 2Fc2)/3
4343 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were placed in idealized positions (C—H = 0.93 Å for aromatic H; C—H = 0.97 Å for methylene H) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.250000 0.250000 0.500000 0.0419 (2)
Cl1 0.21866 (4) 0.51154 (14) 0.57071 (6) 0.0488 (3)
N1 0.22244 (12) 0.3739 (5) 0.40075 (19) 0.0423 (8)
N2 0.20188 (12) 0.5693 (5) 0.31205 (19) 0.0454 (9)
N3 0.32078 (12) 0.3777 (5) 0.49579 (19) 0.0451 (9)
N4 0.38019 (12) 0.5864 (5) 0.4895 (2) 0.0454 (9)
C1 0.21920 (15) 0.5462 (6) 0.3818 (2) 0.0480 (11)
H1 0.228055 0.641502 0.413725 0.058*
C2 0.19229 (17) 0.4035 (7) 0.2839 (3) 0.0605 (13)
H2 0.179357 0.375818 0.236414 0.073*
C3 0.20524 (17) 0.2848 (7) 0.3387 (3) 0.0594 (13)
H3 0.202711 0.159098 0.334459 0.071*
C4 0.19061 (16) 0.7409 (7) 0.2746 (3) 0.0598 (13)
H4A 0.205060 0.740434 0.226555 0.072*
H4B 0.205927 0.839897 0.303368 0.072*
C5 0.13415 (16) 0.7708 (6) 0.2650 (3) 0.0485 (11)
C6 0.10774 (17) 0.7322 (6) 0.1991 (3) 0.0555 (12)
H6 0.125207 0.697958 0.158149 0.067*
C7 0.05550 (17) 0.7438 (6) 0.1933 (3) 0.0511 (11)
H7 0.038471 0.716996 0.148230 0.061*
C8 0.02803 (15) 0.7940 (5) 0.2523 (2) 0.0443 (11)
C9 0.05500 (17) 0.8394 (7) 0.3182 (3) 0.0568 (12)
H9 0.037767 0.877617 0.358795 0.068*
C10 0.10719 (17) 0.8279 (7) 0.3234 (3) 0.0601 (13)
H10 0.124556 0.859617 0.367591 0.072*
C11 0.33046 (15) 0.5513 (6) 0.4876 (2) 0.0460 (11)
H11 0.305554 0.639986 0.481224 0.055*
C12 0.36761 (17) 0.2989 (6) 0.5055 (3) 0.0573 (13)
H12 0.373160 0.175661 0.513987 0.069*
C13 0.40491 (18) 0.4252 (6) 0.5009 (3) 0.0580 (13)
H13 0.439701 0.405819 0.504830 0.070*
C14 0.40289 (17) 0.7651 (6) 0.4815 (3) 0.0523 (12)
H14A 0.425099 0.790809 0.524742 0.063*
H14B 0.376426 0.856560 0.478823 0.063*
C15 0.43247 (16) 0.7761 (6) 0.4137 (3) 0.0474 (11)
C16 0.48277 (16) 0.8245 (6) 0.4154 (3) 0.0558 (12)
H16 0.499348 0.852339 0.460692 0.067*
C17 0.50950 (17) 0.8329 (7) 0.3518 (3) 0.0588 (13)
H17 0.543335 0.867828 0.354691 0.071*
C18 0.48594 (16) 0.7894 (5) 0.2841 (2) 0.0468 (11)
C19 0.43553 (17) 0.7414 (6) 0.2819 (3) 0.0544 (12)
H19 0.418879 0.713521 0.236701 0.065*
C20 0.40927 (17) 0.7340 (6) 0.3457 (3) 0.0556 (12)
H20 0.375352 0.700011 0.342800 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0420 (4) 0.0360 (4) 0.0478 (5) 0.0039 (3) 0.0020 (3) 0.0062 (4)
Cl1 0.0494 (6) 0.0406 (6) 0.0563 (7) 0.0077 (5) 0.0024 (5) 0.0018 (5)
N1 0.0364 (19) 0.042 (2) 0.048 (2) −0.0009 (16) −0.0007 (16) 0.0031 (17)
N2 0.0367 (19) 0.050 (2) 0.049 (2) 0.0005 (17) −0.0055 (16) 0.0120 (18)
N3 0.0380 (19) 0.039 (2) 0.059 (2) 0.0035 (16) 0.0041 (17) 0.0061 (18)
N4 0.040 (2) 0.036 (2) 0.060 (2) −0.0003 (16) 0.0051 (17) 0.0076 (17)
C1 0.046 (3) 0.047 (3) 0.050 (3) −0.002 (2) −0.007 (2) 0.000 (2)
C2 0.060 (3) 0.060 (3) 0.059 (3) 0.014 (3) −0.016 (2) −0.005 (3)
C3 0.055 (3) 0.046 (3) 0.075 (4) 0.009 (2) −0.013 (3) −0.005 (3)
C4 0.044 (3) 0.065 (3) 0.069 (3) −0.003 (2) −0.004 (2) 0.027 (3)
C5 0.045 (2) 0.045 (3) 0.055 (3) 0.000 (2) −0.005 (2) 0.015 (2)
C6 0.052 (3) 0.056 (3) 0.058 (3) 0.005 (2) −0.004 (2) 0.002 (2)
C7 0.053 (3) 0.051 (3) 0.048 (3) −0.001 (2) −0.013 (2) −0.002 (2)
C8 0.048 (2) 0.037 (2) 0.046 (3) −0.0001 (18) −0.009 (2) 0.004 (2)
C9 0.053 (3) 0.068 (3) 0.048 (3) 0.002 (2) −0.006 (2) −0.001 (3)
C10 0.052 (3) 0.072 (3) 0.055 (3) −0.002 (3) −0.018 (2) 0.001 (3)
C11 0.037 (2) 0.045 (3) 0.056 (3) 0.0067 (19) 0.001 (2) 0.006 (2)
C12 0.055 (3) 0.040 (3) 0.077 (4) 0.008 (2) 0.007 (3) 0.012 (2)
C13 0.049 (3) 0.046 (3) 0.079 (4) 0.008 (2) 0.002 (2) 0.004 (3)
C14 0.051 (3) 0.046 (3) 0.060 (3) −0.003 (2) 0.005 (2) −0.001 (2)
C15 0.045 (2) 0.040 (3) 0.057 (3) 0.001 (2) 0.003 (2) 0.001 (2)
C16 0.044 (3) 0.062 (3) 0.061 (3) −0.004 (2) 0.000 (2) 0.000 (3)
C17 0.039 (2) 0.060 (3) 0.078 (4) −0.006 (2) 0.005 (2) −0.002 (3)
C18 0.046 (3) 0.032 (2) 0.062 (3) 0.0030 (18) 0.005 (2) 0.000 (2)
C19 0.048 (3) 0.058 (3) 0.057 (3) −0.002 (2) −0.001 (2) −0.002 (2)
C20 0.043 (3) 0.058 (3) 0.066 (3) −0.004 (2) 0.003 (2) −0.001 (3)

Geometric parameters (Å, º)

Ni1—N3i 2.100 (3) C6—H6 0.9300
Ni1—N3 2.100 (3) C7—C8 1.377 (6)
Ni1—N1 2.108 (3) C7—H7 0.9300
Ni1—N1i 2.108 (3) C8—C9 1.395 (6)
Ni1—Cl1 2.4793 (11) C8—C8ii 1.480 (8)
Ni1—Cl1i 2.4793 (11) C9—C10 1.381 (6)
N1—C1 1.315 (5) C9—H9 0.9300
N1—C3 1.357 (5) C10—H10 0.9300
N2—C1 1.330 (5) C11—H11 0.9300
N2—C2 1.341 (6) C12—C13 1.361 (6)
N2—C4 1.456 (5) C12—H12 0.9300
N3—C11 1.312 (5) C13—H13 0.9300
N3—C12 1.370 (5) C14—C15 1.495 (6)
N4—C11 1.339 (5) C14—H14A 0.9700
N4—C13 1.365 (5) C14—H14B 0.9700
N4—C14 1.456 (5) C15—C16 1.376 (6)
C1—H1 0.9300 C15—C20 1.378 (6)
C2—C3 1.351 (6) C16—C17 1.386 (6)
C2—H2 0.9300 C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.380 (6)
C4—C5 1.510 (6) C17—H17 0.9300
C4—H4A 0.9700 C18—C19 1.378 (6)
C4—H4B 0.9700 C18—C18iii 1.476 (9)
C5—C10 1.374 (6) C19—C20 1.382 (6)
C5—C6 1.377 (6) C19—H19 0.9300
C6—C7 1.383 (6) C20—H20 0.9300
N3i—Ni1—N3 180.0 C7—C6—H6 119.7
N3i—Ni1—N1 87.59 (13) C8—C7—C6 121.8 (4)
N3—Ni1—N1 92.41 (13) C8—C7—H7 119.1
N3i—Ni1—N1i 92.41 (13) C6—C7—H7 119.1
N3—Ni1—N1i 87.59 (13) C7—C8—C9 117.4 (4)
N1—Ni1—N1i 180.00 (17) C7—C8—C8ii 121.8 (4)
N3i—Ni1—Cl1 90.22 (10) C9—C8—C8ii 120.8 (5)
N3—Ni1—Cl1 89.78 (10) C10—C9—C8 120.3 (5)
N1—Ni1—Cl1 89.69 (10) C10—C9—H9 119.8
N1i—Ni1—Cl1 90.31 (10) C8—C9—H9 119.8
N3i—Ni1—Cl1i 89.78 (10) C5—C10—C9 121.8 (4)
N3—Ni1—Cl1i 90.22 (10) C5—C10—H10 119.1
N1—Ni1—Cl1i 90.31 (10) C9—C10—H10 119.1
N1i—Ni1—Cl1i 89.69 (10) N3—C11—N4 112.5 (4)
Cl1—Ni1—Cl1i 180.0 N3—C11—H11 123.8
C1—N1—C3 103.7 (4) N4—C11—H11 123.8
C1—N1—Ni1 130.8 (3) C13—C12—N3 110.9 (4)
C3—N1—Ni1 125.5 (3) C13—C12—H12 124.6
C1—N2—C2 107.0 (4) N3—C12—H12 124.6
C1—N2—C4 127.1 (4) C12—C13—N4 105.0 (4)
C2—N2—C4 125.7 (4) C12—C13—H13 127.5
C11—N3—C12 104.2 (4) N4—C13—H13 127.5
C11—N3—Ni1 128.3 (3) N4—C14—C15 111.6 (4)
C12—N3—Ni1 127.4 (3) N4—C14—H14A 109.3
C11—N4—C13 107.3 (4) C15—C14—H14A 109.3
C11—N4—C14 125.6 (4) N4—C14—H14B 109.3
C13—N4—C14 127.1 (4) C15—C14—H14B 109.3
N1—C1—N2 112.6 (4) H14A—C14—H14B 108.0
N1—C1—H1 123.7 C16—C15—C20 117.4 (4)
N2—C1—H1 123.7 C16—C15—C14 123.0 (4)
N2—C2—C3 106.0 (4) C20—C15—C14 119.6 (4)
N2—C2—H2 127.0 C15—C16—C17 122.0 (4)
C3—C2—H2 127.0 C15—C16—H16 119.0
C2—C3—N1 110.8 (4) C17—C16—H16 119.0
C2—C3—H3 124.6 C18—C17—C16 120.1 (4)
N1—C3—H3 124.6 C18—C17—H17 120.0
N2—C4—C5 110.8 (3) C16—C17—H17 120.0
N2—C4—H4A 109.5 C19—C18—C17 118.2 (4)
C5—C4—H4A 109.5 C19—C18—C18iii 120.6 (5)
N2—C4—H4B 109.5 C17—C18—C18iii 121.2 (5)
C5—C4—H4B 109.5 C18—C19—C20 121.1 (4)
H4A—C4—H4B 108.1 C18—C19—H19 119.4
C10—C5—C6 118.0 (4) C20—C19—H19 119.4
C10—C5—C4 120.5 (4) C15—C20—C19 121.1 (4)
C6—C5—C4 121.4 (5) C15—C20—H20 119.4
C5—C6—C7 120.6 (5) C19—C20—H20 119.4
C5—C6—H6 119.7
C3—N1—C1—N2 −0.9 (5) C12—N3—C11—N4 1.7 (5)
Ni1—N1—C1—N2 176.6 (3) Ni1—N3—C11—N4 178.2 (3)
C2—N2—C1—N1 1.2 (5) C13—N4—C11—N3 −1.1 (5)
C4—N2—C1—N1 175.8 (4) C14—N4—C11—N3 179.6 (4)
C1—N2—C2—C3 −0.9 (5) C11—N3—C12—C13 −1.7 (5)
C4—N2—C2—C3 −175.6 (4) Ni1—N3—C12—C13 −178.2 (3)
N2—C2—C3—N1 0.4 (6) N3—C12—C13—N4 1.1 (6)
C1—N1—C3—C2 0.3 (5) C11—N4—C13—C12 0.0 (5)
Ni1—N1—C3—C2 −177.4 (3) C14—N4—C13—C12 179.3 (4)
C1—N2—C4—C5 −105.6 (5) C11—N4—C14—C15 −116.3 (5)
C2—N2—C4—C5 68.0 (6) C13—N4—C14—C15 64.6 (6)
N2—C4—C5—C10 77.7 (6) N4—C14—C15—C16 −123.9 (5)
N2—C4—C5—C6 −98.6 (5) N4—C14—C15—C20 55.2 (5)
C10—C5—C6—C7 −2.6 (7) C20—C15—C16—C17 0.6 (7)
C4—C5—C6—C7 173.8 (4) C14—C15—C16—C17 179.7 (4)
C5—C6—C7—C8 0.0 (7) C15—C16—C17—C18 −1.0 (7)
C6—C7—C8—C9 2.2 (7) C16—C17—C18—C19 1.2 (7)
C6—C7—C8—C8ii −175.6 (3) C16—C17—C18—C18iii −177.3 (3)
C7—C8—C9—C10 −2.0 (7) C17—C18—C19—C20 −1.0 (7)
C8ii—C8—C9—C10 175.9 (4) C18iii—C18—C19—C20 177.5 (3)
C6—C5—C10—C9 2.8 (7) C16—C15—C20—C19 −0.4 (7)
C4—C5—C10—C9 −173.6 (4) C14—C15—C20—C19 −179.5 (4)
C8—C9—C10—C5 −0.5 (8) C18—C19—C20—C15 0.7 (7)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, y, −z+1/2; (iii) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···Cl1iv 0.93 2.79 3.605 (4) 147
C14—H14B···Cl1iv 0.97 2.80 3.686 (5) 153

Symmetry code: (iv) −x+1/2, −y+3/2, −z+1.

Funding Statement

Funding for this research was provided by: the Research Training Program (KX2021018) for College Students of Yunnan Normal University.

References

  1. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943. [DOI] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Chen, B., Yang, Z., Zhu, Y. & Xia, Y. (2014). J. Mater. Chem. A, 2, 16811–16831.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  6. Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.
  7. Shannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046–1048.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. (2012). Chem. Rev. 112, 1001–1033. [DOI] [PubMed]
  11. Zhao, W., Zhu, H.-F., Okamura, T.-A., Sun, W.-Y. & Ueyama, N. (2003). Supramol. Chem. 15, 345–352.
  12. Zhu, A.-X., Lin, R.-B., Qi, X.-L., Liu, Y., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. (2012). Microporous Mesoporous Mater. 157, 42–49.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622003777/zl4050sup1.cif

x-07-x220377-sup1.cif (504.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622003777/zl4050Isup3.hkl

x-07-x220377-Isup3.hkl (346.4KB, hkl)

The experimental and simulated powder XRD patterns of the title compound. DOI: 10.1107/S2414314622003777/zl4050sup4.docx

CCDC reference: 2164744

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES