Skip to main content
IUCrData logoLink to IUCrData
. 2022 May 20;7(Pt 5):x220525. doi: 10.1107/S2414314622005259

1,1′-Methyl­enebis{4-[(E)-2-(pyridin-4-yl)ethen­yl]pyridinium} dibromide dihydrate

Henry C Neal a, Volodymyr V Nesterov b, Bradley W Smucker a,*
Editor: I Britoc
PMCID: PMC9462029  PMID: 36338935

Cations of the title compound inter­act via π–π inter­actions and hydrogen bond with water to form a zigzag ribbon.

Keywords: crystal structure, pyridinium, hydrogen bonding, π–π inter­actions

Abstract

The chevron-shaped cations of the title hydrated salt, C25H22N4 2+·2Br·2H2O, are arranged in back-to-back alternating directions to form a zigzag ribbon propagating along the [010] direction. Inter­molecular inter­actions comprising these ribbons are π–π inter­actions between the pyridinium and adjacent pyridyl rings, as well as O—H⋯O hydrogen bonding between water molecules and two adjacent pyridyl N atoms. Half of the cation is generated by the mirror plane. The water O atoms, the central C atom and one Br atom are located on this mirror plane while the other Br atom is on a twofold screw axis. graphic file with name x-07-x220525-scheme1-3D1.jpg

Structure description

Half of the cation is generated by the mirror plane (x, Inline graphic  − y, z). The O1, O2, Br1, and C1 atoms are located on this mirror plane and the Br2 atom is on a twofold screw axis (−x, Inline graphic  + y, −z). The pyrid­yl–vin­yl–pyridinium moiety (Fig. 1) is essentially planar with a 1.7 (3)° dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C9–C13) rings. The N1—C1—N1(x, Inline graphic  − y, z) angle is 110.9 (10)°, which is similar to the N—C—N angles of 111.1 (4) or 112.3 (4)° found in the bromide (Schuster et al. 2022) or PF6 (Blanco et al., 2007) salts, respectively, of the 1,1′-methyl­enebis-4,4′-bipyridinium cation. When two of the title cations are used in a supra­molecular cyclic compound with two Pd(ethyl­enedi­amine) moieties, the crystal structure had this same N—C—N angle remaining relatively unchanged at 109.1 (19) and 111.2 (11)° (Blanco et al., 2009).

Figure 1.

Figure 1

Ellipsoid (50%) representation of the title complex with disorder omitted for clarity.

In the extended structure, the chevron-shaped cations of the title compound arrange in back-to-back alternating directions to form a zigzag ribbon (Fig. 2) propagating along the [010] direction. Water mol­ecules are positioned to inter­act with the terminal pyridyl nitro­gen atom, N2, with an N2—H1D( Inline graphic  − x, 1 − y, Inline graphic  + z) distance of 2.01 Å (Table 1). The distance between back-to-back pyridinium and pyridyl rings [the closest distance between carbon atoms, C6 of the pyridinium and C13(1 − x, 1 − y, 1 − z) of a pyridyl ring, being 3.46 (1) Å (Fig. 2)] is suitable for π–π inter­actions (Sinnokrot et al., 2002), which further consolidate these zigzag ribbons. Water molecules and bromide ions pack between the ribbons (Fig. 3). Other hydrogen-bonded zigzag ribbon structures are observed in 1,3-bis­[(tetra­hydro­furan-2-yl)meth­yl]thio­urea (Peña et al., 2009) or 1-(4-bromo­phen­yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2008).

Figure 2.

Figure 2

Zigzag ribbons composed of back-to-back chevron-shaped cations of the title complex. The distance between N2 and H1D( Inline graphic  − x, 1 − y, Inline graphic  + z) is shown. Ellipsoids at 50% with disorder, bromide ions and some water mol­ecules omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N2i 0.88 2.26 2.880 (11) 128
O1—H1D⋯N2ii 0.88 2.01 2.880 (11) 171

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

Ellipsoid (50%) representation of ribbons of cations with bromide ions (brown) and water mol­ecules positioned between them. Ellipsoids at 50% with disorder omitted for clarity.

Synthesis and crystallization

The title compound was synthesized according to published procedures (Blanco et al., 2009). Colorless plates were grown from liquid diffusion of tetra­hydro­furan into a di­methyl­formamide solution of the pyridinium bromide salt.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Disorder of the 4-[(E)-2-(pyridin-4-yl)ethen­yl]pyridinium moiety was refined using ‘PART 1’ and ‘PART 2’ with the ratio of occupancies at 47 and 53%. All our attempts to refine the structure to achieve equal occupancies led to a drastic worsening of R1 and wR2 values.

Table 2. Experimental details.

Crystal data
Chemical formula C25H22N4 2+·2Br·2H2O
M r 574.32
Crystal system, space group Orthorhombic, P n m a
Temperature (K) 220
a, b, c (Å) 15.4863 (2), 22.2936 (3), 7.2100 (1)
V3) 2489.22 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.37
Crystal size (mm) 0.04 × 0.03 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2021)
T min, T max 0.671, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25704, 2780, 2439
R int 0.030
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.104, 1.09
No. of reflections 2780
No. of parameters 244
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.99, −0.86

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622005259/bx4021sup1.cif

x-07-x220525-sup1.cif (914.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005259/bx4021Isup2.hkl

x-07-x220525-Isup2.hkl (222.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005259/bx4021Isup3.mol

Supporting information file. DOI: 10.1107/S2414314622005259/bx4021Isup4.cml

CCDC reference: 2173317

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C25H22N42+·2Br·2H2O Dx = 1.532 Mg m3
Mr = 574.32 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pnma Cell parameters from 14220 reflections
a = 15.4863 (2) Å θ = 6.1–79.8°
b = 22.2936 (3) Å µ = 4.37 mm1
c = 7.2100 (1) Å T = 220 K
V = 2489.22 (6) Å3 Plate, clear light colourless
Z = 4 0.04 × 0.03 × 0.02 mm
F(000) = 1160

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2780 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2439 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.0000 pixels mm-1 θmax = 80.3°, θmin = 4.0°
ω scans h = −17→19
Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2021) k = −28→27
Tmin = 0.671, Tmax = 1.000 l = −9→9
25704 measured reflections

Refinement

Refinement on F2 8 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0464P)2 + 1.8748P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2780 reflections Δρmax = 0.99 e Å3
244 parameters Δρmin = −0.86 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.83013 (2) 0.250000 0.51496 (5) 0.05780 (16)
Br2 0.500000 0.500000 0.000000 0.06787 (19)
O1 0.59949 (18) 0.250000 −0.0276 (5) 0.0644 (5)
H1C 0.628097 0.228712 0.053830 0.097* 0.5
H1D 0.637353 0.279127 −0.030494 0.097* 0.5
O2 0.61749 (17) 0.250000 0.5693 (5) 0.0644 (5)
H2B 0.666046 0.234075 0.534382 0.097* 0.5
H2C 0.616243 0.229500 0.676421 0.097* 0.5
N1 0.4441 (7) 0.3047 (4) 0.4944 (11) 0.0280 (19) 0.471 (7)
C2 0.4622 (7) 0.3261 (4) 0.6635 (9) 0.0336 (16) 0.471 (7)
H2 0.441055 0.306491 0.769534 0.040* 0.471 (7)
C3 0.5120 (5) 0.3769 (3) 0.6814 (7) 0.0338 (14) 0.471 (7)
H3 0.523534 0.392117 0.800374 0.041* 0.471 (7)
C4 0.5451 (3) 0.4059 (2) 0.5289 (9) 0.0259 (12) 0.471 (7)
C5 0.5254 (4) 0.3821 (3) 0.3578 (7) 0.0355 (15) 0.471 (7)
H5 0.546674 0.400906 0.250362 0.043* 0.471 (7)
C6 0.4753 (6) 0.3316 (4) 0.3410 (8) 0.0375 (17) 0.471 (7)
H6 0.462840 0.315841 0.223042 0.045* 0.471 (7)
N2 0.7822 (9) 0.6508 (4) 0.5018 (14) 0.048 (3) 0.471 (7)
C11 0.7660 (7) 0.6282 (4) 0.3350 (11) 0.0430 (17) 0.471 (7)
H11 0.788849 0.647826 0.230565 0.052* 0.471 (7)
C10 0.7170 (5) 0.5769 (3) 0.3083 (8) 0.0383 (15) 0.471 (7)
H10 0.707421 0.562561 0.187380 0.046* 0.471 (7)
C9 0.6822 (3) 0.54692 (19) 0.4566 (10) 0.0301 (12) 0.471 (7)
C13 0.6980 (5) 0.5710 (3) 0.6290 (8) 0.0394 (16) 0.471 (7)
H13 0.674916 0.552711 0.735506 0.047* 0.471 (7)
C12 0.7480 (8) 0.6224 (4) 0.6452 (10) 0.050 (2) 0.471 (7)
H12 0.758017 0.637927 0.764548 0.060* 0.471 (7)
C1 0.39067 (17) 0.250000 0.4756 (4) 0.0281 (5)
C7 0.5974 (3) 0.4592 (2) 0.5575 (7) 0.0328 (12) 0.471 (7)
H7 0.608461 0.470689 0.680642 0.039* 0.471 (7)
C8 0.6307 (3) 0.4929 (2) 0.4239 (6) 0.0321 (13) 0.471 (7)
H8 0.620576 0.481388 0.300419 0.038* 0.471 (7)
C8A 0.6252 (3) 0.4946 (2) 0.5660 (6) 0.0352 (12) 0.529 (7)
H8A 0.604322 0.485675 0.685211 0.042* 0.529 (7)
C7A 0.6033 (3) 0.4578 (2) 0.4290 (6) 0.0330 (11) 0.529 (7)
H7A 0.624114 0.466670 0.309581 0.040* 0.529 (7)
N1A 0.4453 (6) 0.3041 (3) 0.4673 (9) 0.0244 (15) 0.529 (7)
C2A 0.4791 (5) 0.3212 (3) 0.3033 (8) 0.0290 (12) 0.529 (7)
H2A 0.467537 0.298861 0.195459 0.035* 0.529 (7)
C3A 0.5305 (3) 0.3713 (2) 0.2945 (6) 0.0307 (12) 0.529 (7)
H3A 0.553479 0.383222 0.179661 0.037* 0.529 (7)
C4A 0.5489 (3) 0.40443 (19) 0.4506 (8) 0.0264 (11) 0.529 (7)
C5A 0.5131 (4) 0.3853 (3) 0.6147 (7) 0.0341 (13) 0.529 (7)
H5A 0.523793 0.407169 0.723830 0.041* 0.529 (7)
C6A 0.4621 (6) 0.3349 (3) 0.6226 (7) 0.0323 (13) 0.529 (7)
H6A 0.439049 0.322149 0.736540 0.039* 0.529 (7)
N2A 0.7859 (8) 0.6497 (4) 0.5226 (13) 0.052 (3) 0.529 (7)
C11A 0.7539 (7) 0.6311 (4) 0.6829 (10) 0.0468 (16) 0.529 (7)
H11A 0.767754 0.652790 0.790561 0.056* 0.529 (7)
C10A 0.7011 (4) 0.5811 (3) 0.7003 (7) 0.0401 (14) 0.529 (7)
H10A 0.680077 0.569719 0.817495 0.048* 0.529 (7)
C9A 0.6796 (3) 0.54816 (18) 0.5456 (9) 0.0325 (11) 0.529 (7)
C13A 0.7118 (4) 0.5682 (3) 0.3798 (8) 0.0442 (15) 0.529 (7)
H13A 0.698343 0.547622 0.269787 0.053* 0.529 (7)
C12A 0.7641 (7) 0.6187 (4) 0.3728 (10) 0.054 (2) 0.529 (7)
H12A 0.785018 0.631399 0.256891 0.065* 0.529 (7)
H1A 0.359 (2) 0.250000 0.584 (4) 0.025 (7)*
H1B 0.363 (2) 0.250000 0.372 (5) 0.036 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0341 (2) 0.1080 (4) 0.03128 (19) 0.000 0.00029 (12) 0.000
Br2 0.1255 (5) 0.0507 (2) 0.0274 (2) 0.0236 (2) 0.00356 (18) 0.00004 (13)
O1 0.0401 (9) 0.0554 (10) 0.0978 (16) 0.000 −0.0060 (10) 0.000
O2 0.0401 (9) 0.0554 (10) 0.0978 (16) 0.000 −0.0060 (10) 0.000
N1 0.023 (3) 0.025 (4) 0.036 (3) 0.001 (3) 0.004 (2) 0.007 (3)
C2 0.045 (3) 0.030 (3) 0.025 (3) −0.006 (3) 0.007 (3) −0.003 (2)
C3 0.046 (3) 0.033 (3) 0.022 (3) −0.006 (2) 0.003 (3) −0.008 (3)
C4 0.029 (2) 0.023 (2) 0.026 (3) 0.0000 (16) 0.002 (2) −0.004 (3)
C5 0.048 (3) 0.033 (3) 0.025 (4) −0.002 (2) 0.008 (3) 0.008 (3)
C6 0.051 (4) 0.036 (3) 0.026 (3) −0.003 (3) −0.010 (3) −0.004 (3)
N2 0.039 (6) 0.025 (6) 0.078 (6) 0.000 (5) 0.003 (5) 0.007 (5)
C11 0.042 (3) 0.028 (3) 0.060 (4) −0.005 (2) 0.005 (3) 0.006 (3)
C10 0.040 (3) 0.035 (3) 0.040 (4) −0.002 (2) 0.004 (3) −0.001 (3)
C9 0.028 (2) 0.023 (2) 0.039 (4) 0.0008 (16) 0.001 (3) 0.001 (3)
C13 0.040 (3) 0.036 (4) 0.042 (4) −0.004 (2) 0.000 (3) 0.001 (3)
C12 0.052 (4) 0.032 (3) 0.065 (5) −0.001 (3) −0.014 (4) −0.011 (3)
C1 0.0243 (12) 0.0240 (11) 0.0360 (14) 0.000 −0.0007 (11) 0.000
C7 0.033 (2) 0.027 (3) 0.038 (3) −0.0030 (19) 0.0006 (18) −0.0038 (17)
C8 0.032 (2) 0.028 (3) 0.035 (3) −0.0021 (19) −0.0027 (17) −0.0009 (16)
C8A 0.0346 (19) 0.032 (2) 0.039 (3) −0.0033 (18) 0.0025 (16) 0.0023 (16)
C7A 0.0326 (19) 0.029 (2) 0.037 (2) −0.0024 (17) 0.0024 (15) 0.0007 (16)
N1A 0.026 (3) 0.022 (3) 0.026 (2) 0.000 (2) −0.004 (2) −0.004 (2)
C2A 0.034 (2) 0.032 (3) 0.022 (2) −0.008 (2) 0.0000 (18) 0.0004 (19)
C3A 0.032 (2) 0.034 (2) 0.026 (3) −0.0048 (18) 0.004 (2) 0.003 (2)
C4A 0.0276 (18) 0.027 (2) 0.024 (3) 0.0010 (14) −0.001 (2) −0.008 (2)
C5A 0.047 (3) 0.032 (3) 0.024 (3) −0.002 (2) 0.000 (3) −0.008 (3)
C6A 0.039 (3) 0.034 (3) 0.023 (3) 0.001 (2) 0.006 (2) −0.002 (2)
N2A 0.041 (5) 0.033 (6) 0.081 (5) −0.010 (5) −0.001 (5) −0.007 (5)
C11A 0.045 (3) 0.035 (3) 0.061 (4) −0.006 (2) −0.007 (3) −0.007 (3)
C10A 0.042 (2) 0.034 (3) 0.044 (3) −0.001 (2) −0.006 (3) 0.000 (3)
C9A 0.0290 (19) 0.028 (2) 0.041 (3) 0.0021 (16) −0.001 (2) −0.003 (3)
C13A 0.053 (3) 0.037 (3) 0.042 (4) −0.007 (2) 0.005 (3) −0.005 (3)
C12A 0.058 (4) 0.036 (3) 0.068 (5) −0.005 (3) 0.017 (4) 0.003 (3)

Geometric parameters (Å, º)

O1—H1C 0.8753 C1—N1Ai 1.474 (4)
O1—H1Ci 0.88 (6) C1—H1A 0.92 (3)
O1—H1D 0.8752 C1—H1B 0.86 (4)
O1—H1Di 0.88 (8) C7—H7 0.9400
O2—H2B 0.8688 C7—C8 1.326 (7)
O2—H2Bi 0.87 (5) C8—H8 0.9400
O2—H2C 0.8975 C8A—H8A 0.9400
O2—H2Ci 0.90 (6) C8A—C7A 1.328 (6)
N1—C2 1.3385 C8A—C9A 1.468 (6)
N1—C6 1.3481 C7A—H7A 0.9400
N1—C1 1.480 (5) C7A—C4A 1.467 (7)
C2—H2 0.9400 N1A—C2A 1.3482
C2—C3 1.3755 N1A—C6A 1.3387
C3—H3 0.9400 C2A—H2A 0.9400
C3—C4 1.3742 C2A—C3A 1.3735
C4—C5 1.3759 C3A—H3A 0.9400
C4—C7 1.453 (7) C3A—C4A 1.3761
C5—H5 0.9400 C4A—C5A 1.3737
C5—C6 1.3734 C5A—H5A 0.9400
C6—H6 0.9400 C5A—C6A 1.3753
N2—C11 1.3275 C6A—H6A 0.9400
N2—C12 1.3235 N2A—C11A 1.3241
C11—H11 0.9400 N2A—C12A 1.3271
C11—C10 1.3868 C11A—H11A 0.9400
C10—H10 0.9400 C11A—C10A 1.3883
C10—C9 1.3715 C10A—H10A 0.9400
C9—C13 1.3756 C10A—C9A 1.3758
C9—C8 1.464 (7) C9A—C13A 1.3709
C13—H13 0.9400 C13A—H13A 0.9400
C13—C12 1.3883 C13A—C12A 1.3864
C12—H12 0.9400 C12A—H12A 0.9400
C1—N1A 1.474 (4)
H1C—O1—H1Ci 65.7 N1A—C1—H1A 110.0 (10)
H1Ci—O1—H1Di 94.5 N1Ai—C1—H1A 110.0 (10)
H1C—O1—H1Di 43.5 N1Ai—C1—H1B 104.5 (13)
H1C—O1—H1D 94.5 N1A—C1—H1B 104.5 (13)
H1D—O1—H1Ci 43.5 H1A—C1—H1B 118 (3)
H1D—O1—H1Di 95.8 C4—C7—H7 117.4
H2B—O2—H2Bi 48.2 C8—C7—C4 125.3 (6)
H2Bi—O2—H2Ci 93.4 C8—C7—H7 117.4
H2B—O2—H2Ci 118.4 C9—C8—H8 117.9
H2B—O2—H2C 93.4 C7—C8—C9 124.2 (5)
H2C—O2—H2Bi 118.4 C7—C8—H8 117.9
H2C—O2—H2Ci 61.2 C7A—C8A—H8A 117.5
C2—N1—C6 120.9 C7A—C8A—C9A 125.1 (5)
C2—N1—C1 119.6 (5) C9A—C8A—H8A 117.5
C6—N1—C1 119.4 (5) C8A—C7A—H7A 117.7
N1—C2—H2 120.1 C8A—C7A—C4A 124.7 (5)
N1—C2—C3 119.8 C4A—C7A—H7A 117.7
C3—C2—H2 120.1 C2A—N1A—C1 119.3 (4)
C2—C3—H3 119.3 C6A—N1A—C1 119.8 (4)
C4—C3—C2 121.4 C6A—N1A—C2A 120.9
C4—C3—H3 119.3 N1A—C2A—H2A 120.2
C3—C4—C5 117.0 N1A—C2A—C3A 119.7
C3—C4—C7 118.6 (4) C3A—C2A—H2A 120.2
C5—C4—C7 124.4 (4) C2A—C3A—H3A 119.4
C4—C5—H5 119.4 C2A—C3A—C4A 121.3
C6—C5—C4 121.3 C4A—C3A—H3A 119.4
C6—C5—H5 119.4 C3A—C4A—C7A 117.9 (4)
N1—C6—C5 119.7 C5A—C4A—C7A 125.1 (4)
N1—C6—H6 120.2 C5A—C4A—C3A 117.0
C5—C6—H6 120.2 C4A—C5A—H5A 119.3
C12—N2—C11 116.8 C4A—C5A—C6A 121.4
N2—C11—H11 118.6 C6A—C5A—H5A 119.3
N2—C11—C10 122.9 N1A—C6A—C5A 119.8
C10—C11—H11 118.6 N1A—C6A—H6A 120.1
C11—C10—H10 119.7 C5A—C6A—H6A 120.1
C9—C10—C11 120.6 C11A—N2A—C12A 116.8
C9—C10—H10 119.7 N2A—C11A—H11A 118.2
C10—C9—C13 116.4 N2A—C11A—C10A 123.5
C10—C9—C8 119.3 (5) C10A—C11A—H11A 118.2
C13—C9—C8 124.3 (5) C11A—C10A—H10A 120.1
C9—C13—H13 120.1 C9A—C10A—C11A 119.8
C9—C13—C12 119.8 C9A—C10A—H10A 120.1
C12—C13—H13 120.1 C10A—C9A—C8A 119.4 (4)
N2—C12—C13 123.5 C13A—C9A—C8A 124.2 (4)
N2—C12—H12 118.2 C13A—C9A—C10A 116.4
C13—C12—H12 118.2 C9A—C13A—H13A 119.7
N1i—C1—N1 110.9 (10) C9A—C13A—C12A 120.6
N1—C1—H1A 102.9 (11) C12A—C13A—H13A 119.7
N1i—C1—H1A 102.9 (11) N2A—C12A—C13A 122.8
N1—C1—H1B 110.9 (11) N2A—C12A—H12A 118.6
N1i—C1—H1B 110.9 (11) C13A—C12A—H12A 118.6
N1A—C1—N1Ai 109.8 (9)
N1—C2—C3—C4 −1.2 C7—C4—C5—C6 −179.8 (6)
C2—N1—C6—C5 −0.9 C8—C9—C13—C12 179.8 (6)
C2—N1—C1—N1i −84.1 (7) C8A—C7A—C4A—C3A 178.8 (4)
C2—C3—C4—C5 0.7 C8A—C7A—C4A—C5A 0.2 (6)
C2—C3—C4—C7 −179.8 (6) C8A—C9A—C13A—C12A −178.8 (6)
C3—C4—C5—C6 −0.3 C7A—C8A—C9A—C10A −176.9 (4)
C3—C4—C7—C8 −177.3 (5) C7A—C8A—C9A—C13A 2.7 (7)
C4—C5—C6—N1 0.4 C7A—C4A—C5A—C6A 179.4 (5)
C4—C7—C8—C9 179.1 (4) N1Ai—C1—N1A—C2A 76.4 (7)
C5—C4—C7—C8 2.2 (7) N1Ai—C1—N1A—C6A −102.3 (5)
C6—N1—C2—C3 1.3 N1A—C2A—C3A—C4A 0.5
C6—N1—C1—N1i 94.7 (7) C2A—N1A—C6A—C5A 1.2
N2—C11—C10—C9 0.2 C2A—C3A—C4A—C7A −179.2 (5)
C11—N2—C12—C13 0.7 C2A—C3A—C4A—C5A −0.5
C11—C10—C9—C13 0.8 C3A—C4A—C5A—C6A 0.8
C11—C10—C9—C8 180.0 (6) C4A—C5A—C6A—N1A −1.2
C10—C9—C13—C12 −1.1 C6A—N1A—C2A—C3A −0.9
C10—C9—C8—C7 177.0 (5) N2A—C11A—C10A—C9A 0.0
C9—C13—C12—N2 0.3 C11A—N2A—C12A—C13A −1.1
C13—C9—C8—C7 −3.9 (7) C11A—C10A—C9A—C8A 178.7 (6)
C12—N2—C11—C10 −1.0 C11A—C10A—C9A—C13A −1.0
C1—N1—C2—C3 180.0 (10) C10A—C9A—C13A—C12A 0.8
C1—N1—C6—C5 −179.6 (9) C9A—C8A—C7A—C4A −180.0 (4)
C1—N1A—C2A—C3A −179.6 (8) C9A—C13A—C12A—N2A 0.2
C1—N1A—C6A—C5A 179.9 (8) C12A—N2A—C11A—C10A 1.0

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1C···N2ii 0.88 2.26 2.880 (11) 128
O1—H1D···N2iii 0.88 2.01 2.880 (11) 171

Symmetry codes: (ii) −x+3/2, y−1/2, z−1/2; (iii) −x+3/2, −y+1, z−1/2.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).

References

  1. Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978–13986. [DOI] [PubMed]
  2. Blanco, V., Gutiérrez, A., Platas-Iglesias, C., Peinador, C. & Quintela, J. M. (2009). J. Org. Chem. 74, 6577–6583. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540–o1541. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  6. Peña, Ú., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o96. [DOI] [PMC free article] [PubMed]
  7. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Schuster, S. A., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220526. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622005259/bx4021sup1.cif

x-07-x220525-sup1.cif (914.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005259/bx4021Isup2.hkl

x-07-x220525-Isup2.hkl (222.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005259/bx4021Isup3.mol

Supporting information file. DOI: 10.1107/S2414314622005259/bx4021Isup4.cml

CCDC reference: 2173317

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES