Skip to main content
IUCrData logoLink to IUCrData
. 2022 May 20;7(Pt 5):x220526. doi: 10.1107/S2414314622005260

1,1′-Methyl­enebis(4,4′-bipyridin-1-ium) dibromide

Sara A Schuster a, Volodymyr V Nesterov b, Bradley W Smucker a,*
Editor: I Britoc
PMCID: PMC9462032  PMID: 36338934

The asymmetric unit of the title salt comprises half of the mol­ecule and a bromide ion. The chevron-shaped cations stack as columns that are stabilized by through space electrostatic inter­actions and inter­columnar hydrogen bonding.

Keywords: crystal structure, pyridinium, hydrogen bonding, π–π inter­actions

Abstract

The asymmetric unit of the title salt, C21H18N4 2+·2Br, comprises half of the mol­ecule and a bromide ion. The chevron-shaped cations stack as columns in the [001] direction with suitable inter­molecular distance for π–π inter­actions. These cationic columns are further stabilized by inter­columnar C—H⋯N hydrogen bonding with the bromide ions distributed between them. graphic file with name x-07-x220526-scheme1-3D1.jpg

Structure description

The N1—C1—N1(1 − x, 1 − y, z) bond angle of the chevron-shaped 1,1′-methyl­enebis-4,4′-bipyridinium cation in the title compound (Fig. 1) is 111.1 (4)°, which is slightly smaller than the angle of 112.3 (4)° in the corresponding PF6 salt (Blanco et al., 2007). The packing resulting from the smaller bromide results in the cations of the title compound stacking to form columns (Fig. 2) in the [001] direction with the bromide ions distributed between them (Fig. 3). The closest inter­molecular C⋯C distance between these stacked cations is 3.493 (5) Å between C5 and C8(x, y, 1 + z), which is indicative of through space electrostatic inter­actions (Martinez & Iverson, 2012). The structure of the aforementioned PF6 salt does not form these stacked columns. Even with bromide ions, the structure of the slightly larger 1,1′-methyl­enebis{4-[(E)-2-(pyridin-4-yl)vin­yl]pyridinium} dibromide dihydrate packs in back-to-back zigzag ribbons (Neal et al., 2022) instead of the columns seen in this structure. For the title compound, in the extended structure, the columns of the cation are positioned such that the H3 and H11 atoms of the bipyridinium moiety are 2.620 and 2.546 Å, respectively, from the N2(− Inline graphic  + x, Inline graphic  − y, Inline graphic  + z) atom of a pyridyl group in an adjacent column (Fig. 4). The shorter N⋯H distance for H11 results from the rotation of the pyridyl ring relative to the pyridinium ring by 21.00 (14)° [dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C7–C11) rings].

Figure 1.

Figure 1

Ellipsoid (50%) representation of the title complex with the cation expanded by symmetry.

Figure 2.

Figure 2

Ellipsoid (50%) representation of the columnar stacking of the cations with distance between C5 and C8(x, y, z + 1) shown. Bromide ions are omitted for clarity.

Figure 3.

Figure 3

View down the crystallographic c axis showing the distribution of bromide ions (brown) between the columns of cations. Cell axes shown with ellipsoid (50%) representation.

Figure 4.

Figure 4

Ellipsoid (50%) representation of the inter-columnar N⋯H distances between H3 and H11 atoms of the bipyridinium and the N2(− Inline graphic  + x, Inline graphic  − y, Inline graphic  + z) atom on the terminal pyridyl ring. Bromide ions are omitted for clarity.

Synthesis and crystallization

The title compound was synthesized following published procedures (Blanco et al., 2007). Colorless block-shaped crystals were grown from the vapor diffusion of THF into a DMF solution of the compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula C21H18N4 2+·2Br
M r 486.21
Crystal system, space group Orthorhombic, F d d2
Temperature (K) 220
a, b, c (Å) 18.0776 (2), 48.2301 (5), 4.5424 (2)
V3) 3960.45 (18)
Z 8
Radiation type Cu Kα
μ (mm−1) 5.29
Crystal size (mm) 0.04 × 0.02 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2021)
T min, T max 0.775, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21913, 2127, 2118
R int 0.028
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.022, 0.053, 1.16
No. of reflections 2127
No. of parameters 123
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.26
Absolute structure Flack x determined using 895 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.015 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622005260/bx4020sup1.cif

x-07-x220526-sup1.cif (653.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005260/bx4020Isup2.hkl

x-07-x220526-Isup2.hkl (171.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005260/bx4020Isup3.mol

Supporting information file. DOI: 10.1107/S2414314622005260/bx4020Isup4.cml

CCDC reference: 2173318

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C21H18N42+·2Br Dx = 1.631 Mg m3
Mr = 486.21 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Fdd2 Cell parameters from 18629 reflections
a = 18.0776 (2) Å θ = 3.7–78.7°
b = 48.2301 (5) Å µ = 5.29 mm1
c = 4.5424 (2) Å T = 220 K
V = 3960.45 (18) Å3 Block, clear light colourless
Z = 8 0.04 × 0.02 × 0.01 mm
F(000) = 1936

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2127 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2118 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.028
Detector resolution: 10.0000 pixels mm-1 θmax = 79.9°, θmin = 3.7°
ω scans h = −22→22
Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2021) k = −60→59
Tmin = 0.775, Tmax = 1.000 l = −5→5
21913 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0076P)2 + 10.8403P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053 (Δ/σ)max = 0.002
S = 1.16 Δρmax = 0.26 e Å3
2127 reflections Δρmin = −0.25 e Å3
123 parameters Absolute structure: Flack x determined using 895 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.015 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.65219 (2) 0.46137 (2) 0.25829 (7) 0.04764 (12)
N1 0.53731 (13) 0.52084 (5) 0.8226 (6) 0.0304 (6)
N2 0.71760 (17) 0.62446 (6) −0.0002 (10) 0.0532 (8)
C1 0.500000 0.500000 1.0054 (12) 0.0327 (8)
H1A 0.463945 0.509067 1.130882 0.039* 0.5
H1B 0.536051 0.490934 1.130908 0.039* 0.5
C2 0.49878 (16) 0.54322 (6) 0.7299 (10) 0.0360 (7)
H2 0.449003 0.545007 0.778057 0.043*
C3 0.53289 (17) 0.56327 (6) 0.5653 (8) 0.0370 (8)
H3 0.506094 0.578632 0.502375 0.044*
C4 0.60776 (15) 0.56086 (5) 0.4907 (10) 0.0318 (6)
C5 0.64502 (17) 0.53725 (7) 0.5872 (8) 0.0383 (8)
H5 0.694617 0.534836 0.539168 0.046*
C6 0.60952 (15) 0.51762 (6) 0.7513 (10) 0.0365 (6)
H6 0.635047 0.501967 0.814337 0.044*
C7 0.64574 (17) 0.58273 (6) 0.3206 (8) 0.0353 (8)
C8 0.71058 (19) 0.57758 (7) 0.1703 (9) 0.0425 (8)
H8 0.731788 0.560015 0.174291 0.051*
C9 0.7435 (2) 0.59865 (7) 0.0146 (12) 0.0515 (9)
H9 0.786861 0.594616 −0.087262 0.062*
C10 0.6558 (2) 0.62938 (8) 0.1498 (11) 0.0561 (12)
H10 0.637202 0.647358 0.148926 0.067*
C11 0.6175 (2) 0.60960 (7) 0.3062 (11) 0.0492 (10)
H11 0.573509 0.614083 0.400858 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03445 (16) 0.0558 (2) 0.0527 (2) 0.01006 (15) −0.00518 (18) 0.0093 (2)
N1 0.0247 (11) 0.0267 (11) 0.0400 (16) −0.0010 (9) −0.0013 (10) −0.0019 (10)
N2 0.0482 (16) 0.0388 (14) 0.073 (2) −0.0034 (12) 0.015 (2) 0.0040 (19)
C1 0.0306 (18) 0.0320 (18) 0.035 (2) −0.0004 (15) 0.000 0.000
C2 0.0255 (13) 0.0324 (14) 0.0500 (19) 0.0050 (11) 0.0050 (16) 0.0038 (15)
C3 0.0287 (15) 0.0304 (14) 0.052 (2) 0.0047 (11) 0.0043 (14) 0.0056 (14)
C4 0.0273 (13) 0.0283 (12) 0.0396 (16) −0.0010 (10) 0.0011 (15) −0.0045 (16)
C5 0.0233 (14) 0.0355 (16) 0.056 (2) 0.0030 (11) 0.0061 (13) 0.0021 (14)
C6 0.0245 (12) 0.0331 (14) 0.0520 (18) 0.0053 (10) 0.0012 (16) 0.0047 (16)
C7 0.0315 (15) 0.0295 (13) 0.045 (2) −0.0018 (11) 0.0014 (13) −0.0021 (13)
C8 0.0353 (17) 0.0331 (16) 0.059 (2) 0.0028 (13) 0.0115 (15) −0.0021 (14)
C9 0.0421 (18) 0.0399 (16) 0.073 (3) −0.0003 (13) 0.021 (2) −0.001 (2)
C10 0.050 (2) 0.0330 (17) 0.085 (3) 0.0041 (15) 0.022 (2) 0.0093 (18)
C11 0.0384 (17) 0.0357 (16) 0.073 (3) 0.0041 (13) 0.0183 (19) 0.0022 (18)

Geometric parameters (Å, º)

N1—C1 1.468 (4) C4—C7 1.477 (4)
N1—C2 1.352 (4) C5—H5 0.9300
N1—C6 1.354 (4) C5—C6 1.365 (5)
N2—C9 1.332 (4) C6—H6 0.9300
N2—C10 1.330 (5) C7—C8 1.379 (4)
C1—H1A 0.9700 C7—C11 1.394 (4)
C1—H1B 0.9700 C8—H8 0.9300
C2—H2 0.9300 C8—C9 1.374 (5)
C2—C3 1.369 (5) C9—H9 0.9300
C3—H3 0.9300 C10—H10 0.9300
C3—C4 1.400 (4) C10—C11 1.376 (5)
C4—C5 1.394 (4) C11—H11 0.9300
C2—N1—C1 119.1 (2) C6—C5—C4 120.7 (3)
C2—N1—C6 120.9 (3) C6—C5—H5 119.6
C6—N1—C1 120.0 (2) N1—C6—C5 120.3 (3)
C10—N2—C9 115.9 (3) N1—C6—H6 119.9
N1—C1—N1i 111.1 (4) C5—C6—H6 119.9
N1—C1—H1A 109.4 C8—C7—C4 121.7 (3)
N1i—C1—H1A 109.4 C8—C7—C11 117.1 (3)
N1—C1—H1B 109.4 C11—C7—C4 121.2 (3)
N1i—C1—H1B 109.4 C7—C8—H8 120.3
H1A—C1—H1B 108.0 C9—C8—C7 119.4 (3)
N1—C2—H2 119.9 C9—C8—H8 120.3
N1—C2—C3 120.1 (3) N2—C9—C8 124.4 (3)
C3—C2—H2 119.9 N2—C9—H9 117.8
C2—C3—H3 119.7 C8—C9—H9 117.8
C2—C3—C4 120.6 (3) N2—C10—H10 117.9
C4—C3—H3 119.7 N2—C10—C11 124.3 (3)
C3—C4—C7 121.1 (3) C11—C10—H10 117.9
C5—C4—C3 117.3 (3) C7—C11—H11 120.5
C5—C4—C7 121.6 (3) C10—C11—C7 119.0 (3)
C4—C5—H5 119.6 C10—C11—H11 120.5
N1—C2—C3—C4 0.1 (6) C4—C7—C8—C9 179.8 (4)
N2—C10—C11—C7 2.5 (8) C4—C7—C11—C10 178.7 (4)
C1—N1—C2—C3 178.4 (4) C5—C4—C7—C8 20.9 (6)
C1—N1—C6—C5 −178.5 (4) C5—C4—C7—C11 −158.9 (4)
C2—N1—C1—N1i 87.1 (3) C6—N1—C1—N1i −93.5 (3)
C2—N1—C6—C5 1.0 (6) C6—N1—C2—C3 −1.0 (6)
C2—C3—C4—C5 0.9 (6) C7—C4—C5—C6 178.1 (4)
C2—C3—C4—C7 −178.2 (4) C7—C8—C9—N2 0.9 (7)
C3—C4—C5—C6 −0.9 (6) C8—C7—C11—C10 −1.1 (6)
C3—C4—C7—C8 −160.1 (4) C9—N2—C10—C11 −2.1 (8)
C3—C4—C7—C11 20.1 (6) C10—N2—C9—C8 0.3 (7)
C4—C5—C6—N1 0.1 (6) C11—C7—C8—C9 −0.4 (6)

Symmetry code: (i) −x+1, −y+1, z.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).

References

  1. Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978–13986. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  4. Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.
  5. Neal, H. C., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220525. [DOI] [PMC free article] [PubMed]
  6. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  7. Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622005260/bx4020sup1.cif

x-07-x220526-sup1.cif (653.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005260/bx4020Isup2.hkl

x-07-x220526-Isup2.hkl (171.7KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005260/bx4020Isup3.mol

Supporting information file. DOI: 10.1107/S2414314622005260/bx4020Isup4.cml

CCDC reference: 2173318

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES