Skip to main content
IUCrData logoLink to IUCrData
. 2022 Jun 10;7(Pt 6):x220598. doi: 10.1107/S2414314622005983

3-Isobutyl-5,5-di­phenyl­imidazolidine-2,4-dione

Walid Guerrab a, Abderrazzak El Moutaouakil Ala Allah a, Abdulsalam Alsubari b,*, Joel T Mague c, Youssef Ramli a,
Editor: E R T Tiekinkd
PMCID: PMC9462038  PMID: 36339896

The imidazolidine ring is slightly ‘ruffled’ and the isobutyl substituent is rotated well out of the plane of its ring. In the crystal, inversion dimers are formed by pairs of N—H⋯O hydrogen bonds with C—H⋯O hydrogen bonds linking them into chains parallel to (10 Inline graphic ). The chains are joined into layers parallel to the ac plane by C—H⋯π(ring) inter­actions.

Keywords: crystal structure, imidazolidinedione, hydrogen bond, C—H⋯π(ring) inter­action

Abstract

The imidazolidine ring in the title mol­ecule, C19H20N2O2, is slightly ‘ruffled’. In the crystal, a layer structure is generated by N—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) inter­actions. graphic file with name x-07-x220598-scheme1-3D1.jpg

Structure description

Imidazolidin-2,4-dione, also known as hydantoin, is an important nucleus found in numerous natural products and in several clinically important medicines. One of the best known examples of such a derivative is phenytoine, 5,5-di­phenyl­imidazolidine-2,4-dione, a drug widely prescribed as an anti­convulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974; Havera & Strycker, 1976; Khodair et al., 1997; Thenmozhiyal et al., 2004).

Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a ,b ; Akrad et al. 2017; Guerrab et al. 2019, 2020a ,b , 2021, 2022), the title compound (Fig. 1) was prepared and its crystal structure is reported here.

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

The two phenyl rings (C4–C9 and C10–C15) are disposed on either side of the five-membered ring and make dihedral angles of 68.42 (3) and 73.04 (3)°, respectively, with the mean plane of the latter ring. The five-membered ring is slightly ‘ruffled’ with deviations from the mean plane ranging from 0.206 (5) Å (N2) to −0.218 (5) Å (C3) (r.m.s. deviation = 0.0155 Å). The isobutyl group is rotated well out of the mean plane of the five-membered ring, as indicated by the C2—N1—C16—C17 torsion angle of 72.64 (10)°. In the crystal, inversion dimers are formed by pairs of N2—H2⋯O2 hydrogen bonds (Table 1) with the dimers connected by C8—H8⋯O1 hydrogen bonds, forming chains of mol­ecules extending parallel to (10 Inline graphic ) (Fig. 2 and Table 2). The chains are connected into layers parallel to the ac plane by C7—H7⋯Cg1 inter­actions (Table 1 and Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the five-membered ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.91 (1) 1.95 (1) 2.8512 (9) 174 (1)
C7—H7⋯Cg1ii 0.95 2.99 3.9308 (13) 170
C8—H8⋯O1iii 0.95 2.46 3.4069 (13) 172

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

A portion of one layer viewed along the b-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. C—H⋯π(ring) inter­actions are depicted by green dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

Table 2. Experimental details.

Crystal data
Chemical formula C19H20N2O2
M r 308.37
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 8.9747 (7), 9.7306 (7), 11.8780 (8)
α, β, γ (°) 104.676 (3), 96.334 (3), 112.243 (3)
V3) 903.81 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.46 × 0.41 × 0.13
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.93, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 42215, 6214, 5222
R int 0.040
(sin θ/λ)max−1) 0.755
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.128, 1.05
No. of reflections 6214
No. of parameters 213
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.19

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Figure 3.

Figure 3

Packing viewed along the c-axis direction with inter­molecular inter­actions depicted as in Fig. 2 and non-inter­acting hydrogen atoms omitted for clarity.

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of isobutyl bromide (246.88 mL, 1.98 mmol) in absolute di­methyl­formamide (DMF, 15 ml) was added and the resulting solution heated under reflux for 3 h in the presence of 1.1 equivalents of K2CO3 (301.31 mg, 2.18 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless prism-like crystals (Guerrab et al., 2018)

Refinement

Crystal data, data collection and structure refinement details are presented in Table 2. A small amount of residual density, well removed from the main mol­ecule and which could not be satisfactorily modelled by a plausible solvent mol­ecule disordered across a centre of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622005983/tk4078sup1.cif

x-07-x220598-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005983/tk4078Isup2.hkl

x-07-x220598-Isup2.hkl (493.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005983/tk4078Isup3.cml

CCDC reference: 2176804

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AS; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, YR; crystal-structure determination and validation, JTM.

full crystallographic data

Crystal data

C19H20N2O2 Z = 2
Mr = 308.37 F(000) = 328
Triclinic, P1 Dx = 1.133 Mg m3
a = 8.9747 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7306 (7) Å Cell parameters from 9909 reflections
c = 11.8780 (8) Å θ = 2.5–31.9°
α = 104.676 (3)° µ = 0.07 mm1
β = 96.334 (3)° T = 150 K
γ = 112.243 (3)° Thick plate, colourless
V = 903.81 (12) Å3 0.46 × 0.41 × 0.13 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 6214 independent reflections
Radiation source: fine-focus sealed tube 5222 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 7.3910 pixels mm-1 θmax = 32.5°, θmin = 2.5°
φ and ω scans h = −13→13
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −14→14
Tmin = 0.93, Tmax = 0.99 l = −17→17
42215 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: mixed
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1685P] where P = (Fo2 + 2Fc2)/3
6214 reflections (Δ/σ)max = 0.001
213 parameters Δρmax = 0.41 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. A small amount of residual density, well-removed from the main molecule and which could not be satisfactorily modeled by a plausible solvent molecule disordered across a center of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.74629 (9) 0.64608 (8) 0.94977 (5) 0.02535 (14)
O2 0.51349 (8) 0.68712 (7) 0.60449 (5) 0.02359 (14)
N1 0.63385 (9) 0.70411 (8) 0.79418 (6) 0.01786 (13)
N2 0.62040 (9) 0.51465 (8) 0.63706 (6) 0.01972 (14)
H2 0.5822 (15) 0.4472 (13) 0.5613 (8) 0.030*
C1 0.68961 (10) 0.48254 (9) 0.73985 (7) 0.01730 (14)
C2 0.69602 (10) 0.61866 (9) 0.84376 (7) 0.01818 (15)
C3 0.58232 (10) 0.63811 (9) 0.66914 (7) 0.01764 (15)
C4 0.86580 (10) 0.49751 (9) 0.74187 (7) 0.01831 (15)
C5 0.95614 (12) 0.56243 (11) 0.66554 (8) 0.02490 (17)
H5 0.908433 0.598669 0.610614 0.030*
C6 1.11659 (13) 0.57417 (12) 0.66981 (9) 0.0306 (2)
H6 1.177780 0.617680 0.617333 0.037*
C7 1.18692 (12) 0.52243 (12) 0.75054 (10) 0.0305 (2)
H7 1.295578 0.529077 0.752362 0.037*
C8 1.09899 (11) 0.46090 (11) 0.82877 (9) 0.02727 (18)
H8 1.148247 0.427406 0.885034 0.033*
C9 0.93872 (11) 0.44843 (10) 0.82459 (8) 0.02205 (16)
H9 0.878635 0.406433 0.878110 0.026*
C10 0.57204 (10) 0.32284 (9) 0.74399 (7) 0.01842 (15)
C11 0.45908 (11) 0.30670 (10) 0.81674 (8) 0.02336 (17)
H11 0.459215 0.397322 0.870843 0.028*
C12 0.34570 (12) 0.15808 (12) 0.81053 (9) 0.02819 (19)
H12 0.268623 0.147944 0.860092 0.034*
C13 0.34519 (12) 0.02510 (11) 0.73224 (9) 0.02882 (19)
H13 0.267373 −0.075954 0.727691 0.035*
C14 0.45904 (13) 0.04021 (11) 0.66037 (9) 0.02807 (19)
H14 0.459695 −0.050708 0.607264 0.034*
C15 0.57189 (11) 0.18826 (10) 0.66618 (8) 0.02336 (17)
H15 0.649371 0.197963 0.616936 0.028*
C16 0.61826 (10) 0.84333 (9) 0.86303 (7) 0.01963 (15)
H16A 0.564388 0.820207 0.928583 0.024*
H16B 0.545921 0.868521 0.810459 0.024*
C17 0.78453 (11) 0.98600 (10) 0.91629 (8) 0.02349 (17)
H17 0.854577 0.961276 0.972365 0.028*
C18 0.75511 (15) 1.12407 (11) 0.98774 (10) 0.0339 (2)
H18A 0.689042 1.151726 0.933699 0.051*
H18B 0.861657 1.214255 1.026831 0.051*
H18C 0.695748 1.094763 1.048519 0.051*
C19 0.87543 (13) 1.02639 (13) 0.81979 (11) 0.0353 (2)
H19A 0.899177 0.938670 0.778900 0.053*
H19B 0.979417 1.120428 0.856671 0.053*
H19C 0.806095 1.046019 0.761788 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0371 (4) 0.0246 (3) 0.0156 (3) 0.0173 (3) 0.0006 (2) 0.0042 (2)
O2 0.0304 (3) 0.0223 (3) 0.0201 (3) 0.0158 (2) −0.0010 (2) 0.0056 (2)
N1 0.0219 (3) 0.0160 (3) 0.0157 (3) 0.0104 (2) 0.0007 (2) 0.0029 (2)
N2 0.0279 (3) 0.0191 (3) 0.0142 (3) 0.0143 (3) 0.0004 (2) 0.0036 (2)
C1 0.0225 (3) 0.0167 (3) 0.0143 (3) 0.0110 (3) 0.0017 (3) 0.0046 (2)
C2 0.0218 (3) 0.0165 (3) 0.0170 (3) 0.0099 (3) 0.0027 (3) 0.0046 (3)
C3 0.0195 (3) 0.0165 (3) 0.0165 (3) 0.0083 (3) 0.0016 (3) 0.0045 (3)
C4 0.0213 (3) 0.0159 (3) 0.0178 (3) 0.0095 (3) 0.0019 (3) 0.0041 (3)
C5 0.0286 (4) 0.0262 (4) 0.0242 (4) 0.0135 (3) 0.0073 (3) 0.0115 (3)
C6 0.0283 (4) 0.0324 (5) 0.0332 (5) 0.0124 (4) 0.0119 (4) 0.0128 (4)
C7 0.0218 (4) 0.0295 (4) 0.0395 (5) 0.0114 (3) 0.0058 (4) 0.0097 (4)
C8 0.0235 (4) 0.0257 (4) 0.0329 (4) 0.0117 (3) 0.0001 (3) 0.0106 (3)
C9 0.0231 (4) 0.0214 (4) 0.0227 (4) 0.0102 (3) 0.0022 (3) 0.0087 (3)
C10 0.0213 (3) 0.0174 (3) 0.0176 (3) 0.0104 (3) 0.0015 (3) 0.0050 (3)
C11 0.0256 (4) 0.0228 (4) 0.0246 (4) 0.0133 (3) 0.0069 (3) 0.0071 (3)
C12 0.0261 (4) 0.0289 (4) 0.0311 (4) 0.0109 (3) 0.0088 (3) 0.0122 (4)
C13 0.0293 (4) 0.0214 (4) 0.0303 (4) 0.0058 (3) 0.0018 (3) 0.0094 (3)
C14 0.0344 (5) 0.0177 (4) 0.0270 (4) 0.0099 (3) 0.0018 (3) 0.0029 (3)
C15 0.0287 (4) 0.0190 (4) 0.0212 (4) 0.0112 (3) 0.0048 (3) 0.0030 (3)
C16 0.0211 (3) 0.0162 (3) 0.0212 (3) 0.0103 (3) 0.0024 (3) 0.0025 (3)
C17 0.0223 (4) 0.0167 (3) 0.0269 (4) 0.0078 (3) −0.0009 (3) 0.0030 (3)
C18 0.0423 (5) 0.0190 (4) 0.0335 (5) 0.0128 (4) 0.0026 (4) −0.0001 (3)
C19 0.0294 (5) 0.0288 (5) 0.0462 (6) 0.0090 (4) 0.0126 (4) 0.0132 (4)

Geometric parameters (Å, º)

O1—C2 1.2139 (10) C10—C15 1.3980 (11)
O2—C3 1.2259 (9) C11—C12 1.3956 (13)
N1—C2 1.3698 (10) C11—H11 0.9500
N1—C3 1.4045 (10) C12—C13 1.3870 (14)
N1—C16 1.4598 (10) C12—H12 0.9500
N2—C3 1.3465 (10) C13—C14 1.3916 (15)
N2—C1 1.4652 (10) C13—H13 0.9500
N2—H2 0.906 (8) C14—C15 1.3913 (13)
C1—C4 1.5289 (11) C14—H14 0.9500
C1—C10 1.5295 (11) C15—H15 0.9500
C1—C2 1.5425 (11) C16—C17 1.5273 (12)
C4—C5 1.3939 (12) C16—H16A 0.9900
C4—C9 1.3979 (11) C16—H16B 0.9900
C5—C6 1.3948 (13) C17—C19 1.5250 (14)
C5—H5 0.9500 C17—C18 1.5282 (13)
C6—C7 1.3868 (14) C17—H17 1.0000
C6—H6 0.9500 C18—H18A 0.9800
C7—C8 1.3895 (15) C18—H18B 0.9800
C7—H7 0.9500 C18—H18C 0.9800
C8—C9 1.3911 (12) C19—H19A 0.9800
C8—H8 0.9500 C19—H19B 0.9800
C9—H9 0.9500 C19—H19C 0.9800
C10—C11 1.3930 (12)
C2—N1—C3 111.47 (6) C10—C11—C12 120.34 (8)
C2—N1—C16 124.21 (7) C10—C11—H11 119.8
C3—N1—C16 124.29 (6) C12—C11—H11 119.8
C3—N2—C1 112.87 (6) C13—C12—C11 120.22 (9)
C3—N2—H2 120.9 (8) C13—C12—H12 119.9
C1—N2—H2 124.6 (8) C11—C12—H12 119.9
N2—C1—C4 112.60 (7) C12—C13—C14 119.79 (9)
N2—C1—C10 109.66 (6) C12—C13—H13 120.1
C4—C1—C10 112.73 (6) C14—C13—H13 120.1
N2—C1—C2 100.71 (6) C15—C14—C13 120.09 (9)
C4—C1—C2 108.58 (6) C15—C14—H14 120.0
C10—C1—C2 111.97 (6) C13—C14—H14 120.0
O1—C2—N1 125.93 (7) C14—C15—C10 120.44 (8)
O1—C2—C1 126.97 (7) C14—C15—H15 119.8
N1—C2—C1 107.10 (6) C10—C15—H15 119.8
O2—C3—N2 128.11 (7) N1—C16—C17 112.91 (7)
O2—C3—N1 124.19 (7) N1—C16—H16A 109.0
N2—C3—N1 107.69 (6) C17—C16—H16A 109.0
C5—C4—C9 119.56 (8) N1—C16—H16B 109.0
C5—C4—C1 121.55 (7) C17—C16—H16B 109.0
C9—C4—C1 118.87 (7) H16A—C16—H16B 107.8
C4—C5—C6 119.99 (8) C19—C17—C16 111.65 (8)
C4—C5—H5 120.0 C19—C17—C18 111.13 (8)
C6—C5—H5 120.0 C16—C17—C18 108.81 (8)
C7—C6—C5 120.10 (9) C19—C17—H17 108.4
C7—C6—H6 120.0 C16—C17—H17 108.4
C5—C6—H6 120.0 C18—C17—H17 108.4
C6—C7—C8 120.22 (9) C17—C18—H18A 109.5
C6—C7—H7 119.9 C17—C18—H18B 109.5
C8—C7—H7 119.9 H18A—C18—H18B 109.5
C7—C8—C9 119.90 (8) C17—C18—H18C 109.5
C7—C8—H8 120.1 H18A—C18—H18C 109.5
C9—C8—H8 120.1 H18B—C18—H18C 109.5
C8—C9—C4 120.21 (8) C17—C19—H19A 109.5
C8—C9—H9 119.9 C17—C19—H19B 109.5
C4—C9—H9 119.9 H19A—C19—H19B 109.5
C11—C10—C15 119.12 (8) C17—C19—H19C 109.5
C11—C10—C1 122.52 (7) H19A—C19—H19C 109.5
C15—C10—C1 118.25 (7) H19B—C19—H19C 109.5
C3—N2—C1—C4 −118.52 (8) C1—C4—C5—C6 −179.97 (8)
C3—N2—C1—C10 115.10 (8) C4—C5—C6—C7 −0.49 (15)
C3—N2—C1—C2 −3.05 (9) C5—C6—C7—C8 −0.99 (15)
C3—N1—C2—O1 −178.32 (8) C6—C7—C8—C9 1.21 (15)
C16—N1—C2—O1 −0.15 (14) C7—C8—C9—C4 0.04 (14)
C3—N1—C2—C1 1.65 (9) C5—C4—C9—C8 −1.51 (13)
C16—N1—C2—C1 179.81 (7) C1—C4—C9—C8 −179.85 (8)
N2—C1—C2—O1 −179.29 (9) N2—C1—C10—C11 −97.67 (9)
C4—C1—C2—O1 −60.86 (11) C4—C1—C10—C11 136.02 (8)
C10—C1—C2—O1 64.25 (11) C2—C1—C10—C11 13.23 (10)
N2—C1—C2—N1 0.74 (8) N2—C1—C10—C15 78.35 (9)
C4—C1—C2—N1 119.18 (7) C4—C1—C10—C15 −47.96 (9)
C10—C1—C2—N1 −115.71 (7) C2—C1—C10—C15 −170.75 (7)
C1—N2—C3—O2 −174.97 (8) C15—C10—C11—C12 −0.97 (13)
C1—N2—C3—N1 4.19 (9) C1—C10—C11—C12 175.01 (8)
C2—N1—C3—O2 175.58 (8) C10—C11—C12—C13 0.34 (14)
C16—N1—C3—O2 −2.58 (13) C11—C12—C13—C14 0.48 (15)
C2—N1—C3—N2 −3.61 (9) C12—C13—C14—C15 −0.65 (15)
C16—N1—C3—N2 178.23 (7) C13—C14—C15—C10 0.00 (14)
N2—C1—C4—C5 10.83 (11) C11—C10—C15—C14 0.81 (13)
C10—C1—C4—C5 135.55 (8) C1—C10—C15—C14 −175.35 (8)
C2—C1—C4—C5 −99.79 (9) C2—N1—C16—C17 72.64 (10)
N2—C1—C4—C9 −170.85 (7) C3—N1—C16—C17 −109.43 (9)
C10—C1—C4—C9 −46.14 (10) N1—C16—C17—C19 57.80 (10)
C2—C1—C4—C9 78.52 (9) N1—C16—C17—C18 −179.18 (7)
C9—C4—C5—C6 1.73 (13)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the five-membered ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.91 (1) 1.95 (1) 2.8512 (9) 174 (1)
C7—H7···Cg1ii 0.95 2.99 3.9308 (13) 170
C8—H8···O1iii 0.95 2.46 3.4069 (13) 172

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2.

References

  1. Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  4. Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865 [DOI] [PubMed]
  5. Guerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376.
  6. Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1922096 [DOI] [PubMed]
  7. Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020b). J. Mol. Struct. 1205, 127630.
  8. Guerrab, W., Mague, J. T. & Ramli, Y. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427.
  9. Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.
  10. Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.
  11. Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567. [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.
  14. Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  19. Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535. [DOI] [PubMed]
  20. Weichet, B. L. (1974). Czech Patent 151,744–747.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622005983/tk4078sup1.cif

x-07-x220598-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622005983/tk4078Isup2.hkl

x-07-x220598-Isup2.hkl (493.9KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622005983/tk4078Isup3.cml

CCDC reference: 2176804

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES