Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jan 31;5(Pt 1):x200100. doi: 10.1107/S2414314620001005

Benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate)

Kedar U Narvekar a, Bikshandarkoil R Srinivasan a,*
Editor: R J Butcherb
PMCID: PMC9462139  PMID: 36337720

In the structure of the title compound, which consists of a unique benzene-1,2-diaminium dication charge-balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions, the cations and anions are inter­linked by several N—H⋯O hydrogen bonds.

Keywords: crystal structure; benzene-1,2-diaminium dication; 4-methyl­benzene-1-sulfonate anion; organic salt

Abstract

The structure of the title salt, C6H10N2 2+·2C7H7O3S, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds. graphic file with name x-05-x200100-scheme1-3D1.jpg

Structure description

The aromatic di­amine, benzene-1,2-di­amine also known as o-phenyl­enedi­amine, can function as a neutral ligand and bind to a metal via both amine N atoms (Koizumi & Fukuju, 2011; Guillén et al., 2018) or by a single nitro­gen in a monodentate fashion (Nelson et al., 1982; Dickman, 2000). In addition, benzene-1,2-di­amine can function as a charge-balancing dication in which both the amine N atoms are protonated (Raghavaiah et al., 2006; Powers & Geiger, 2019) or as a monocation (Raghavaiah et al., 2005; Mishra & Pallepogu, 2018). The structural diversity of the compounds of benzene-1,2-di­amine in neutral or cationic form is highlighted by the results of a survey of the Cambridge Structural Database (CSD; Groom et al., 2016), which had more than 220 hits for the above three types of compounds. Of these, a total of 79 deposits do not contain any metal ions and correspond to crystal structures containing only diprotonated benzene-1,2-diaminium cations (47 hits) and monoprotonated 2-amino­anilinium cations (55 hits). An example of a mol­ecular salt of 4-methyl­benzene-1-sulfonic acid containing both mono and diprotonated cations, namely 2-amino­anilinium benzene-1,2-diaminium tris­(4-methyl­benzene-1-sulfonate) (2) has been reported recently (Amirthakumar et al., 2018).

In this report, we describe the crystal structure of the title compound, which was obtained by an aqueous reaction of the aromatic di­amine with 4-methyl­benzene-1-sulfonic acid in a 1:2 molar ratio, unlike 2, which was isolated from a 1:1 reaction. The asymmetric unit of the title compound consists of an unique benzene-1,2-diaminium dication charge-balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions (Fig. 1) with all atoms located on general positions. The geometric parameters of the unique dication and the crystallographically independent anions are in normal ranges and are in agreement with reported data (Powers & Geiger, 2019).

Figure 1.

Figure 1

The crystal structure of 1 showing the atom-labelling scheme. Blue dotted lines indicate hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

All six oxygen atoms attached to the sulfur atom of the sulfonate moiety of the anion function as hydrogen-bond acceptors while the H atoms attached to the N atoms of the dication function as hydrogen-bond donors, resulting in a total of eight N—H⋯O hydrogen bonds of which six are inter­molecular (Table 1). It is inter­esting to note that the dications and the unique anions are inter­linked only via N—H⋯O hydrogen bonds, unlike in 2 for which both N—H⋯O and C—H⋯O hydrogen bonds were reported. Each anion is linked to three symmetry-related dications (Fig. 2) while each dication is hydrogen-bonded to six symmetry-related anions. The net result of the hydrogen-bonding inter­actions is the inter­linking of the cations with the anions, resulting in alternating layers of cations and anions parallel to [010] (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O21 0.89 1.92 2.8062 (19) 175
N1—H1B⋯O11i 0.89 2.07 2.7509 (19) 133
N1—H1B⋯O22ii 0.89 2.31 2.9017 (18) 124
N1—H1C⋯O13iii 0.89 1.89 2.7733 (19) 170
N2—H2A⋯O13iii 0.89 2.46 2.9128 (19) 112
N2—H2A⋯O23iv 0.89 1.97 2.7820 (18) 151
N2—H2B⋯O22ii 0.89 1.98 2.8611 (19) 173
N2—H2C⋯O12 0.89 1.84 2.7224 (19) 175

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

The hydrogen-bonding scheme around the two unique anions (left and right). For clarity, the H atoms of the aromatic ring are not shown. The hydrogen-bonding environment of the dication (middle) shows only the acceptor oxygen atoms of the unique anions. Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y, −z + 1; (iv) x, y − 1, z.

Figure 3.

Figure 3

A view along b axis of the unit-cell packing showing the inter­linking of the dications with the monocations via N—H⋯O hydrogen bonds which are shown as dashed lines. For clarity, the H atoms attached to the C atoms are not shown.

Synthesis and crystallization

Freshly recrystallized benzene-1,2-di­amine (108 mg, 1 mmol) was dissolved in double-distilled water (10–15 ml) by heating the mixture. Into this, an aqueous solution of 4-methyl­benzene-1-sulfonic acid (380 mg, 2 mmol) was added. The reaction mixture was heated to boiling and a pinch of activated charcoal was added. The hot solution was filtered and the clear filtrate was left aside for crystallization. After a few days, crystals of the title compound 1 slowly separated. The crystals were filtered and air dried. Yield 50%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H10N2 2+·2C7H7O3S
M r 452.53
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 29.1537 (9), 8.8739 (3), 19.9919 (6)
β (°) 123.621 (1)
V3) 4306.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.56 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 59056, 6568, 4705
R int 0.046
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.126, 1.07
No. of reflections 6568
No. of parameters 276
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.39

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and shelXle (Hübschle et al., 2011).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620001005/bv4029sup1.cif

x-05-x200100-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620001005/bv4029Isup3.hkl

x-05-x200100-Isup3.hkl (522.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620001005/bv4029Isup3.cml

CCDC reference: 1979912

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Science & Technology (DST) New Delhi, for the sanction of a Bruker D8 Quest Eco single-crystal X-ray diffractometer under the DST–FIST program.

full crystallographic data

Crystal data

C6H10N22+·2C7H7O3S F(000) = 1904
Mr = 452.53 Dx = 1.396 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 29.1537 (9) Å Cell parameters from 9968 reflections
b = 8.8739 (3) Å θ = 2.9–29.9°
c = 19.9919 (6) Å µ = 0.29 mm1
β = 123.621 (1)° T = 293 K
V = 4306.9 (2) Å3 Block, colourless
Z = 8 0.56 × 0.14 × 0.12 mm

Data collection

Bruker D8 Quest ECO diffractometer 4705 reflections with I > 2σ(I)
Radiation source: Sealed Tube Rint = 0.046
φ and ω scans θmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2018) h = −41→41
Tmin = 0.696, Tmax = 0.746 k = −12→12
59056 measured reflections l = −28→28
6568 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0525P)2 + 2.9966P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.34 e Å3
6568 reflections Δρmin = −0.39 e Å3
276 parameters Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0026 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were located in appropriate positions and were included in calculated positions and refined with a riding model for both C—H and N—H protons. C–H distances ranged from = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and 0.89 for NH3+ H atoms with Uiso(H) = 1.2 Ueq(C-aromatic) and Uiso(H) = 1.5 Ueq(C-methyl, NH3+).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.52597 (6) 0.42385 (15) 0.43447 (8) 0.0399 (3)
H1A 0.516000 0.511465 0.408451 0.060*
H1B 0.552390 0.439398 0.485886 0.060*
H1C 0.497014 0.381592 0.430938 0.060*
N2 0.54019 (6) 0.10069 (15) 0.46813 (8) 0.0374 (3)
H2A 0.505767 0.066255 0.439229 0.056*
H2B 0.543473 0.168126 0.503495 0.056*
H2C 0.563230 0.024462 0.494094 0.056*
C1 0.54643 (6) 0.32416 (17) 0.39869 (9) 0.0349 (3)
C2 0.55343 (6) 0.17140 (17) 0.41510 (9) 0.0344 (3)
C3 0.57224 (8) 0.0796 (2) 0.37927 (12) 0.0505 (4)
H3 0.576521 −0.023317 0.389900 0.061*
C4 0.58462 (11) 0.1411 (3) 0.32770 (14) 0.0661 (6)
H4 0.597256 0.079592 0.303508 0.079*
C5 0.57830 (11) 0.2935 (3) 0.31201 (15) 0.0664 (6)
H5 0.586983 0.334936 0.277609 0.080*
C6 0.55909 (9) 0.3848 (2) 0.34726 (12) 0.0529 (4)
H6 0.554660 0.487571 0.336310 0.064*
S11 0.60971 (2) −0.26457 (4) 0.57918 (2) 0.03904 (11)
O11 0.61408 (5) −0.40103 (15) 0.54362 (8) 0.0562 (3)
O12 0.61358 (6) −0.12891 (15) 0.54200 (8) 0.0563 (3)
O13 0.56134 (5) −0.26132 (16) 0.58310 (9) 0.0573 (4)
C11 0.81185 (11) −0.2503 (3) 0.92035 (15) 0.0827 (8)
H11A 0.833550 −0.338591 0.929269 0.124*
H11B 0.801302 −0.248348 0.958103 0.124*
H11C 0.833111 −0.161970 0.927333 0.124*
C12 0.76068 (8) −0.2532 (2) 0.83564 (12) 0.0540 (5)
C13 0.71405 (8) −0.1716 (2) 0.81418 (11) 0.0541 (5)
H13 0.713844 −0.113580 0.852757 0.065*
C14 0.66758 (7) −0.1744 (2) 0.73639 (11) 0.0460 (4)
H14 0.636634 −0.118206 0.722766 0.055*
C15 0.66778 (6) −0.26174 (17) 0.67934 (10) 0.0363 (3)
C16 0.71387 (7) −0.3444 (2) 0.69966 (12) 0.0523 (4)
H16 0.713945 −0.403424 0.661270 0.063*
C17 0.76014 (8) −0.3390 (3) 0.77780 (13) 0.0616 (5)
H17 0.791258 −0.394165 0.791294 0.074*
S21 0.45059 (2) 0.76496 (4) 0.35286 (2) 0.03714 (11)
O21 0.49995 (5) 0.70837 (16) 0.36096 (8) 0.0547 (3)
O22 0.44084 (6) 0.69248 (16) 0.40921 (7) 0.0559 (3)
O23 0.44971 (6) 0.92776 (14) 0.35764 (8) 0.0565 (4)
C21 0.26881 (15) 0.5602 (4) 0.01997 (17) 0.1233 (14)
H21A 0.233080 0.582893 0.009049 0.185*
H21B 0.272805 0.452969 0.018852 0.185*
H21C 0.272661 0.606499 −0.020056 0.185*
C22 0.31300 (11) 0.6205 (3) 0.10249 (13) 0.0742 (7)
C23 0.30782 (11) 0.6004 (3) 0.16652 (16) 0.0813 (7)
H23 0.275944 0.556751 0.157815 0.098*
C24 0.34940 (9) 0.6443 (3) 0.24375 (13) 0.0609 (5)
H24 0.345911 0.627550 0.286660 0.073*
C25 0.39576 (7) 0.71265 (18) 0.25587 (9) 0.0387 (3)
C26 0.40091 (9) 0.7360 (2) 0.19192 (11) 0.0496 (4)
H26 0.432285 0.782254 0.200184 0.060*
C27 0.35939 (11) 0.6905 (3) 0.11584 (12) 0.0665 (6)
H27 0.362871 0.707427 0.072940 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0434 (7) 0.0323 (6) 0.0424 (7) 0.0035 (5) 0.0229 (6) −0.0005 (5)
N2 0.0435 (7) 0.0346 (6) 0.0376 (7) 0.0003 (5) 0.0246 (6) 0.0022 (5)
C1 0.0357 (7) 0.0340 (7) 0.0356 (7) −0.0015 (6) 0.0202 (6) −0.0014 (6)
C2 0.0390 (8) 0.0329 (7) 0.0352 (7) −0.0019 (6) 0.0230 (6) −0.0009 (6)
C3 0.0707 (12) 0.0390 (9) 0.0597 (11) 0.0038 (8) 0.0473 (10) −0.0019 (8)
C4 0.0979 (17) 0.0598 (12) 0.0792 (15) 0.0033 (11) 0.0732 (14) −0.0036 (11)
C5 0.0924 (16) 0.0672 (13) 0.0737 (14) −0.0001 (12) 0.0673 (14) 0.0091 (11)
C6 0.0669 (12) 0.0435 (9) 0.0623 (11) −0.0018 (8) 0.0444 (10) 0.0082 (8)
S11 0.03285 (19) 0.0358 (2) 0.0398 (2) 0.00174 (14) 0.01463 (16) −0.00139 (15)
O11 0.0498 (7) 0.0493 (7) 0.0513 (7) 0.0054 (6) 0.0165 (6) −0.0134 (6)
O12 0.0558 (8) 0.0497 (7) 0.0522 (7) 0.0056 (6) 0.0227 (6) 0.0147 (6)
O13 0.0324 (6) 0.0628 (9) 0.0694 (9) −0.0034 (5) 0.0237 (6) −0.0094 (7)
C11 0.0602 (14) 0.095 (2) 0.0504 (12) 0.0003 (12) 0.0039 (11) −0.0007 (12)
C12 0.0433 (9) 0.0557 (11) 0.0440 (10) −0.0025 (8) 0.0122 (8) 0.0027 (8)
C13 0.0534 (11) 0.0615 (12) 0.0427 (9) −0.0035 (9) 0.0236 (8) −0.0089 (8)
C14 0.0403 (8) 0.0516 (10) 0.0449 (9) 0.0032 (7) 0.0229 (7) −0.0038 (7)
C15 0.0320 (7) 0.0356 (7) 0.0390 (8) −0.0009 (6) 0.0182 (6) 0.0017 (6)
C16 0.0413 (9) 0.0563 (11) 0.0504 (10) 0.0096 (8) 0.0199 (8) −0.0063 (8)
C17 0.0403 (10) 0.0659 (13) 0.0586 (12) 0.0134 (9) 0.0149 (9) −0.0009 (10)
S21 0.0452 (2) 0.03159 (19) 0.03394 (19) 0.00202 (14) 0.02151 (17) 0.00074 (13)
O21 0.0502 (7) 0.0599 (8) 0.0523 (7) 0.0147 (6) 0.0274 (6) 0.0096 (6)
O22 0.0741 (9) 0.0606 (8) 0.0383 (6) −0.0077 (7) 0.0345 (7) −0.0003 (6)
O23 0.0581 (8) 0.0318 (6) 0.0582 (8) 0.0003 (5) 0.0188 (7) −0.0062 (5)
C21 0.131 (3) 0.089 (2) 0.0642 (16) −0.005 (2) 0.0007 (17) −0.0314 (16)
C22 0.0841 (16) 0.0541 (12) 0.0475 (11) 0.0005 (11) 0.0132 (11) −0.0131 (9)
C23 0.0700 (15) 0.0772 (17) 0.0764 (16) −0.0281 (13) 0.0279 (13) −0.0191 (13)
C24 0.0641 (12) 0.0657 (13) 0.0564 (11) −0.0176 (10) 0.0355 (10) −0.0091 (10)
C25 0.0486 (9) 0.0326 (7) 0.0356 (7) 0.0005 (6) 0.0237 (7) −0.0019 (6)
C26 0.0659 (12) 0.0465 (10) 0.0406 (9) 0.0041 (8) 0.0320 (9) 0.0042 (7)
C27 0.0919 (17) 0.0610 (12) 0.0383 (9) 0.0128 (12) 0.0309 (11) 0.0004 (9)

Geometric parameters (Å, º)

N1—C1 1.4570 (19) C13—C14 1.386 (3)
N2—C2 1.4561 (18) C14—C15 1.382 (2)
C1—C6 1.380 (2) C15—C16 1.380 (2)
C1—C2 1.383 (2) C16—C17 1.389 (3)
C2—C3 1.383 (2) S21—O21 1.4462 (14)
C3—C4 1.380 (3) S21—O23 1.4490 (13)
C4—C5 1.378 (3) S21—O22 1.4554 (13)
C5—C6 1.380 (3) S21—C25 1.7602 (17)
S11—O11 1.4451 (13) C21—C22 1.521 (3)
S11—O12 1.4517 (14) C22—C27 1.373 (4)
S11—O13 1.4553 (14) C22—C23 1.381 (4)
S11—C15 1.7671 (16) C23—C24 1.390 (3)
C11—C12 1.515 (3) C24—C25 1.375 (3)
C12—C17 1.377 (3) C25—C26 1.383 (2)
C12—C13 1.382 (3) C26—C27 1.379 (3)
C6—C1—C2 119.60 (15) C16—C15—C14 120.25 (16)
C6—C1—N1 118.71 (15) C16—C15—S11 119.46 (13)
C2—C1—N1 121.69 (13) C14—C15—S11 120.27 (12)
C3—C2—C1 120.23 (14) C15—C16—C17 119.57 (18)
C3—C2—N2 117.66 (14) C12—C17—C16 121.09 (18)
C1—C2—N2 122.10 (13) O21—S21—O23 113.06 (9)
C4—C3—C2 119.78 (17) O21—S21—O22 111.63 (9)
C5—C4—C3 120.09 (18) O23—S21—O22 111.81 (9)
C4—C5—C6 120.07 (18) O21—S21—C25 105.80 (8)
C5—C6—C1 120.23 (18) O23—S21—C25 107.28 (8)
O11—S11—O12 112.95 (9) O22—S21—C25 106.77 (8)
O11—S11—O13 113.27 (8) C27—C22—C23 118.7 (2)
O12—S11—O13 111.32 (8) C27—C22—C21 121.4 (3)
O11—S11—C15 106.21 (7) C23—C22—C21 119.9 (3)
O12—S11—C15 105.73 (8) C22—C23—C24 121.2 (2)
O13—S11—C15 106.72 (8) C25—C24—C23 119.1 (2)
C17—C12—C13 118.48 (17) C24—C25—C26 120.16 (17)
C17—C12—C11 119.6 (2) C24—C25—S21 121.00 (14)
C13—C12—C11 121.9 (2) C26—C25—S21 118.79 (14)
C12—C13—C14 121.40 (18) C27—C26—C25 119.8 (2)
C15—C14—C13 119.22 (17) C22—C27—C26 121.0 (2)
C6—C1—C2—C3 −0.9 (2) C14—C15—C16—C17 −0.2 (3)
N1—C1—C2—C3 179.13 (16) S11—C15—C16—C17 178.16 (16)
C6—C1—C2—N2 −179.29 (16) C13—C12—C17—C16 −0.2 (3)
N1—C1—C2—N2 0.8 (2) C11—C12—C17—C16 179.8 (2)
C1—C2—C3—C4 0.7 (3) C15—C16—C17—C12 0.5 (3)
N2—C2—C3—C4 179.15 (19) C27—C22—C23—C24 −2.5 (4)
C2—C3—C4—C5 0.0 (4) C21—C22—C23—C24 175.2 (3)
C3—C4—C5—C6 −0.6 (4) C22—C23—C24—C25 1.8 (4)
C4—C5—C6—C1 0.4 (4) C23—C24—C25—C26 −0.6 (3)
C2—C1—C6—C5 0.4 (3) C23—C24—C25—S21 −177.95 (19)
N1—C1—C6—C5 −179.68 (19) O21—S21—C25—C24 131.47 (17)
C17—C12—C13—C14 −0.3 (3) O23—S21—C25—C24 −107.57 (17)
C11—C12—C13—C14 179.6 (2) O22—S21—C25—C24 12.44 (18)
C12—C13—C14—C15 0.6 (3) O21—S21—C25—C26 −45.95 (16)
C13—C14—C15—C16 −0.3 (3) O23—S21—C25—C26 75.00 (16)
C13—C14—C15—S11 −178.67 (15) O22—S21—C25—C26 −164.99 (14)
O11—S11—C15—C16 22.07 (17) C24—C25—C26—C27 0.0 (3)
O12—S11—C15—C16 −98.17 (16) S21—C25—C26—C27 177.46 (15)
O13—S11—C15—C16 143.20 (15) C23—C22—C27—C26 1.9 (4)
O11—S11—C15—C14 −159.58 (14) C21—C22—C27—C26 −175.7 (2)
O12—S11—C15—C14 80.18 (15) C25—C26—C27—C22 −0.7 (3)
O13—S11—C15—C14 −38.45 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O21 0.89 1.92 2.8062 (19) 175
N1—H1B···O11i 0.89 2.07 2.7509 (19) 133
N1—H1B···O22ii 0.89 2.31 2.9017 (18) 124
N1—H1C···O13iii 0.89 1.89 2.7733 (19) 170
N2—H2A···O13iii 0.89 2.46 2.9128 (19) 112
N2—H2A···O23iv 0.89 1.97 2.7820 (18) 151
N2—H2B···O22ii 0.89 1.98 2.8611 (19) 173
N2—H2C···O12 0.89 1.84 2.7224 (19) 175

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x, y−1, z.

References

  1. Amirthakumar, C., Pandi, P., Kumar, R. M. & Chakkaravarthi, G. (2018). IUCrData, 3, x180437.
  2. Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dickman, M. H. (2000). Acta Cryst. C56, 58–60. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. González Guillén, A., Oszajca, M., Luberda-Durnaś, K., Gryl, M., Bartkiewicz, S., Miniewicz, A. & Lasocha, W. (2018). Cryst. Growth Des. 18, 5029–5037.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  8. Koizumi, T. & Fukuju, K. (2011). J. Organomet. Chem. 696, 232–1235.
  9. Mishra, R. & Pallepogu, R. (2018). Acta Cryst. B74, 32–41. [DOI] [PMC free article] [PubMed]
  10. Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.
  11. Powers, K. A. & Geiger, D. K. (2019). Acta Cryst. C75, 329–335. [DOI] [PubMed]
  12. Raghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167–170.
  13. Raghavaiah, P., Supriya, S. & Das, S. K. (2006). Chem. Commun. pp. 2762–2764. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620001005/bv4029sup1.cif

x-05-x200100-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620001005/bv4029Isup3.hkl

x-05-x200100-Isup3.hkl (522.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620001005/bv4029Isup3.cml

CCDC reference: 1979912

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES