Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jan 28;5(Pt 1):x200040. doi: 10.1107/S2414314620000401

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN 3]nickel(II) monohydrate

Connor S MacNeil a,*, Aloice O Ogweno b, Stephen O Ojwach c, Paul G Hayes a
Editor: H Stoeckli-Evansd
PMCID: PMC9462142  PMID: 36337723

The crystal structure of the nickel(II) dichloride complex of the ligand 2-(pyridin-2-yl)-1H-benzimidazole is described.

Keywords: crystal structure, nickel(II) complex, 2-(pyridin-2-yl)-1H-benzimidazole, hydrogen bonding, C—H⋯π inter­actions, transfer hydrogenation

Abstract

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N′-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107]. graphic file with name x-05-x200040-scheme1-3D1.jpg

Structure description

Transition-metal-catalyzed transfer hydrogenation (TH) is an effective method of reducing ketones to the corresponding secondary alcohols (Zhu et al., 2014). Generally, the method is operationally simple, selective, and sources hydrogen from alcohols, thus avoiding high pressures of H2 gas (Zhu et al., 2014). Several transition-metal complexes have been studied in catalytic TH and have been used on laboratory and industrial scales. Complexes of precious metals (Rh, Ir, and Ru) have been the preferred catalysts for TH owing to their high activity and commercial availability (Raja et al., 2012; Wang et al., 2015; Li et al., 2015). With growing concern surrounding the economic and environmental impact of using precious metals in chemistry, a renewed inter­est in Earth-abundant metal catalysis has prompted our research into TH catalysts featuring first-row transition metals, such as iron, cobalt, or nickel (Morris, 2009; Garduño & García, 2017; Abubakar et al., 2018; Chen et al., 2010). Recognizing that nickel(II) complexes of chiral bis­(phosphines) have been utilized in asymmetric TH, we turned our attention to nickel(II) complexes of the commercially available ligand 2-(pyridin-2-yl)-1H-benzimidazole.

The asymmetric unit of the title complex consists of a NiII ion coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands bound in a κ2-N,N arrangement, along with two cis-oriented anionic chloride donors (Fig. 1). The complex crystallized as a monohydrate with the water mol­ecule disordered over two sites (Fig. 1). The metal center adopts a slightly distorted octa­hedral geometry. The pyridyl N-donor atoms are trans-disposed [N1—Ni1—N4 = 170.66 (8)°], while the chloride ligands are cis-disposed [Cl2—Ni1—Cl1 = 93.04 (2)°]. The disordered water mol­ecules are linked to the complex mol­ecule by O—H⋯Cl hydrogen bonds, and water H atom H2B is directed to the centroid of the C7–C12 ring (Fig. 1, Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as orange dashed lines and the O—H⋯π inter­action as a red arrow (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C7–C12, N5/N6/C18/C19/C24, N1/C1–C5, N4/C13–C17 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.95 2.75 3.378 (2) 124
O1—H1A⋯Cl1 0.85 2.37 3.221 (4) 174
O2—H2B⋯Cl1 0.85 2.41 3.239 (4) 165
O2—H2A⋯O1i 0.85 1.97 2.806 (6) 167
N3—H3⋯Cl2ii 0.88 2.29 3.162 (2) 171
N6—H6⋯Cl1iii 0.88 2.23 3.069 (2) 160
C2—H2⋯O2iv 0.95 2.56 3.400 (5) 147
C20—H20⋯O2iii 0.95 2.54 3.317 (5) 139
O1—H1BCg1 0.85 3.11 3.869 (3) 150
C3—H3ACg5ii 0.95 2.97 3.738 (3) 139
C8—H8⋯Cg2v 0.95 2.69 3.579 (3) 155
C9—H9⋯Cg5v 0.95 2.88 3.542 (3) 128
C11—H11⋯Cg4 0.95 2.93 3.810 (3) 155
C23—H23⋯Cg3 0.95 2.94 3.733 (3) 142

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

In the crystal, extensive hydrogen bonding is observed involving the disordered water mol­ecule, the ligand NH groups and the chloride ions (Fig. 2 a and 2b and Table 1). The result is the formation of a supra­molecular three-dimensional network (Fig. 3). There are also C—H⋯O and C—H⋯π inter­actions present (Table 1) consolidating the packing.

Figure 2.

Figure 2

Hydrogen-bonding networks involving, (a) the discorded water mol­ecule, and (b) the N—H⋯Cl hydrogen bonds. For clarity, only the H atoms involved in hydrogen bonding (dashed lines; Table 1) have been included.

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title complex. For clarity, only the H atoms involved in hydrogen bonding (dashed lines; Table 1) have been included.

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom et al., 2016) revealed that the title compound is isostructural with the cobalt(II) complex di­chlorido­bis-[2-(pyridin-2-yl)-1H-benzimidazole]­cobalt(II) monohydrate (CSD refcode DACRIK; Das et al., 2011). The later was reported in space group C2/c but transformation of the unit cell gives space group I2/a (ADDSYMM in PLATON; Spek, 2020) with almost identical cell parameters to those of the title complex – see Fig. 4.

Figure 4.

Figure 4

A view of the ADDSYM (PLATON; Spek, 2020) transformation of the cell dimensions of the isostructural compound di­chlorido­bis­[2-(pyridin-2-yl)-1H-benzimidazole]­cobalt(II) monohydrate (CSD refcode DACRIK; Das et al., 2011).

Synthesis and crystallization

The reaction scheme for the synthesis of the title complex is given in Fig. 5. A solution of 2-(pyridin-2-yl)-1H-benzimidazole (0.15 g, 0.78 mmol) in ethanol (5 ml) was added dropwise to a stirring ethano­lic solution of bis­(tri­phenyl­phosphine)nickel(II) dichloride (0.50 g, 0.76 mmol). The mixture was stirred at room temperature for 24 h. The resulting mixture was concentrated and the product isolated by addition of diethyl ether (5 ml) giving a light-brown solid. Yield: 0.27 g (68%). Analysis calculated for C24H18Cl2N6Ni: C, 55.43; H, 3.49; N, 16.16%. Found: C, 55.23; H, 3.59; N, 16.25%. Light-blue plate-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of a concentrated ethanol solution.

Figure 5.

Figure 5

Reaction scheme for the synthesis of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The complex crystallized as a monohydrate with the water mol­ecule disordered over two sites (O1 and O2); occupancies fixed at 0.5 each.

Table 2. Experimental details.

Crystal data
Chemical formula [NiCl2(C12H9N3)2]·H2O
M r 538.07
Crystal system, space group Monoclinic, I2/a
Temperature (K) 100
a, b, c (Å) 15.9019 (6), 14.7008 (7), 20.0039 (7)
β (°) 95.924 (4)
V3) 4651.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.10
Crystal size (mm) 0.21 × 0.15 × 0.1
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.785, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29773, 6268, 5296
R int 0.046
(sin θ/λ)max−1) 0.734
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.113, 1.06
No. of reflections 6268
No. of parameters 322
H-atom treatment H-atom parameters constrained
   
Δρmax, Δρmin (e Å−3) 1.16, −0.64

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010)’.

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2414314620000401/su4175sup1.cif

x-05-x200040-sup1.cif (732.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620000401/su4175Isup2.hkl

x-05-x200040-Isup2.hkl (343.6KB, hkl)

CCDC reference: 1946553

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CSM is grateful to Professor Paul J. Chirik of Princeton University for hosting during the submission of the manuscript.

full crystallographic data

Crystal data

[NiCl2(C12H9N3)2]·H2O F(000) = 2208
Mr = 538.07 Dx = 1.537 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 15.9019 (6) Å Cell parameters from 13739 reflections
b = 14.7008 (7) Å θ = 3.8–30.9°
c = 20.0039 (7) Å µ = 1.10 mm1
β = 95.924 (4)° T = 100 K
V = 4651.4 (3) Å3 Plate, clear light blue
Z = 8 0.21 × 0.15 × 0.1 mm

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Pilatus 200/300K diffractometer 5296 reflections with I > 2σ(I)
ω scans Rint = 0.046
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) θmax = 31.4°, θmin = 3.4°
Tmin = 0.785, Tmax = 1.000 h = −22→21
29773 measured reflections k = −19→19
6268 independent reflections l = −29→26

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: mixed
wR(F2) = 0.113 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0511P)2 + 11.2375P] where P = (Fo2 + 2Fc2)/3
6268 reflections (Δ/σ)max = 0.001
322 parameters Δρmax = 1.16 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The O-, N- and C-bound H atoms were included in calculated positions and treated as riding on the parent atom: O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.41587 (2) 0.53396 (2) 0.26342 (2) 0.01946 (9)
Cl2 0.51535 (3) 0.65004 (4) 0.30400 (2) 0.02048 (12)
Cl1 0.34436 (3) 0.63357 (5) 0.17809 (3) 0.02851 (14)
N1 0.32601 (11) 0.56738 (14) 0.32888 (9) 0.0206 (4)
N4 0.50259 (11) 0.47857 (14) 0.20265 (9) 0.0223 (4)
N3 0.19362 (11) 0.38608 (14) 0.25224 (9) 0.0214 (4)
H3 0.1459 0.3800 0.2704 0.026*
N5 0.47605 (11) 0.43649 (14) 0.32845 (9) 0.0216 (4)
N2 0.32190 (11) 0.43767 (14) 0.23554 (9) 0.0230 (4)
N6 0.54931 (12) 0.30631 (15) 0.33216 (10) 0.0251 (4)
H6 0.5796 0.2610 0.3188 0.030*
C1 0.33068 (14) 0.63587 (16) 0.37299 (11) 0.0220 (4)
H1 0.3771 0.6767 0.3740 0.026*
C6 0.25743 (13) 0.44376 (16) 0.27227 (10) 0.0197 (4)
C2 0.27009 (14) 0.64957 (17) 0.41747 (11) 0.0239 (5)
H2 0.2741 0.6996 0.4477 0.029*
C13 0.52147 (14) 0.50999 (18) 0.14323 (12) 0.0260 (5)
H13 0.4931 0.5627 0.1250 0.031*
C7 0.21767 (13) 0.33846 (16) 0.19770 (11) 0.0220 (4)
C5 0.25879 (13) 0.51099 (16) 0.32589 (10) 0.0200 (4)
C3 0.20350 (14) 0.58805 (18) 0.41653 (11) 0.0251 (5)
H3A 0.1628 0.5939 0.4479 0.030*
C4 0.19672 (13) 0.51814 (17) 0.36966 (11) 0.0232 (5)
H4 0.1509 0.4764 0.3676 0.028*
C12 0.29871 (14) 0.37186 (17) 0.18758 (11) 0.0239 (5)
C17 0.54399 (13) 0.40452 (16) 0.22848 (11) 0.0229 (4)
C19 0.52027 (14) 0.31581 (18) 0.39437 (11) 0.0266 (5)
C18 0.52220 (13) 0.38021 (17) 0.29551 (11) 0.0229 (4)
C24 0.47421 (14) 0.39799 (17) 0.39175 (11) 0.0247 (5)
C8 0.17716 (14) 0.27144 (18) 0.15768 (12) 0.0273 (5)
H8 0.1232 0.2488 0.1658 0.033*
C9 0.21903 (16) 0.23914 (19) 0.10533 (12) 0.0305 (5)
H9 0.1928 0.1942 0.0761 0.037*
C16 0.60480 (15) 0.35909 (18) 0.19622 (12) 0.0285 (5)
H16 0.6329 0.3071 0.2159 0.034*
C10 0.29967 (16) 0.2715 (2) 0.09461 (13) 0.0335 (6)
H10 0.3266 0.2477 0.0582 0.040*
C14 0.58124 (16) 0.46814 (19) 0.10720 (13) 0.0320 (6)
H14 0.5929 0.4915 0.0648 0.038*
C11 0.34100 (15) 0.3368 (2) 0.13516 (13) 0.0319 (6)
H11 0.3960 0.3572 0.1279 0.038*
C23 0.43824 (16) 0.42902 (19) 0.44841 (11) 0.0290 (5)
H23 0.4070 0.4842 0.4476 0.035*
C22 0.45004 (18) 0.3760 (2) 0.50589 (12) 0.0345 (6)
H22 0.4270 0.3959 0.5453 0.041*
C20 0.53109 (16) 0.2614 (2) 0.45225 (13) 0.0335 (6)
H20 0.5614 0.2057 0.4534 0.040*
C21 0.49486 (17) 0.2940 (2) 0.50755 (12) 0.0362 (6)
H21 0.5006 0.2596 0.5479 0.043*
C15 0.62325 (16) 0.3922 (2) 0.13411 (13) 0.0320 (5)
H15 0.6644 0.3627 0.1105 0.038*
O1 0.3180 (3) 0.5134 (3) 0.0429 (2) 0.0440 (10) 0.5
H1A 0.3268 0.5413 0.0802 0.066* 0.5
H1B 0.3085 0.4575 0.0502 0.066* 0.5
O2 0.2882 (3) 0.6487 (3) 0.01818 (18) 0.0429 (10) 0.5
H2A 0.2602 0.6019 0.0042 0.064* 0.5
H2B 0.3113 0.6391 0.0578 0.064* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01005 (13) 0.03529 (17) 0.01374 (13) −0.00391 (10) 0.00448 (10) −0.00355 (11)
Cl2 0.0109 (2) 0.0340 (3) 0.0169 (2) −0.00172 (18) 0.00350 (17) −0.00279 (19)
Cl1 0.0169 (2) 0.0491 (4) 0.0188 (2) −0.0029 (2) −0.00126 (19) 0.0018 (2)
N1 0.0130 (8) 0.0355 (10) 0.0141 (8) −0.0013 (7) 0.0049 (6) −0.0016 (7)
N4 0.0129 (8) 0.0379 (11) 0.0165 (8) −0.0066 (7) 0.0038 (7) −0.0047 (8)
N3 0.0098 (7) 0.0387 (11) 0.0162 (8) −0.0036 (7) 0.0033 (6) 0.0001 (8)
N5 0.0154 (8) 0.0346 (10) 0.0153 (8) −0.0064 (7) 0.0036 (7) −0.0023 (7)
N2 0.0133 (8) 0.0401 (11) 0.0166 (8) −0.0052 (8) 0.0059 (7) −0.0046 (8)
N6 0.0167 (8) 0.0376 (11) 0.0208 (9) −0.0022 (8) 0.0007 (7) −0.0010 (8)
C1 0.0172 (10) 0.0334 (12) 0.0158 (9) −0.0009 (8) 0.0035 (8) −0.0014 (8)
C6 0.0114 (9) 0.0319 (11) 0.0159 (9) −0.0005 (8) 0.0020 (7) 0.0000 (8)
C2 0.0196 (10) 0.0384 (13) 0.0143 (9) 0.0055 (9) 0.0048 (8) −0.0004 (9)
C13 0.0179 (10) 0.0420 (13) 0.0192 (10) −0.0054 (9) 0.0064 (8) −0.0015 (9)
C7 0.0141 (9) 0.0351 (12) 0.0163 (9) −0.0028 (8) 0.0000 (8) 0.0011 (9)
C5 0.0113 (9) 0.0368 (12) 0.0120 (8) 0.0018 (8) 0.0020 (7) 0.0007 (8)
C3 0.0149 (9) 0.0445 (14) 0.0166 (9) 0.0053 (9) 0.0049 (8) 0.0013 (9)
C4 0.0111 (9) 0.0423 (13) 0.0163 (9) 0.0005 (8) 0.0022 (8) 0.0036 (9)
C12 0.0160 (10) 0.0385 (13) 0.0172 (9) −0.0054 (9) 0.0025 (8) −0.0057 (9)
C17 0.0129 (9) 0.0362 (12) 0.0196 (10) −0.0059 (8) 0.0021 (8) −0.0051 (9)
C19 0.0190 (10) 0.0422 (13) 0.0178 (10) −0.0096 (9) −0.0019 (8) −0.0011 (9)
C18 0.0128 (9) 0.0383 (12) 0.0173 (9) −0.0046 (8) −0.0002 (8) −0.0024 (9)
C24 0.0174 (10) 0.0386 (13) 0.0176 (10) −0.0094 (9) −0.0009 (8) −0.0009 (9)
C8 0.0180 (10) 0.0414 (14) 0.0216 (10) −0.0077 (9) −0.0025 (9) −0.0010 (10)
C9 0.0255 (11) 0.0430 (14) 0.0219 (11) −0.0073 (10) −0.0036 (9) −0.0077 (10)
C16 0.0179 (10) 0.0418 (14) 0.0264 (11) −0.0009 (9) 0.0053 (9) −0.0049 (10)
C10 0.0252 (12) 0.0514 (16) 0.0245 (11) −0.0056 (11) 0.0050 (9) −0.0140 (11)
C14 0.0236 (12) 0.0501 (16) 0.0242 (11) −0.0064 (11) 0.0123 (10) −0.0039 (11)
C11 0.0204 (11) 0.0509 (15) 0.0260 (12) −0.0089 (10) 0.0098 (9) −0.0165 (11)
C23 0.0253 (11) 0.0434 (14) 0.0182 (10) −0.0138 (10) 0.0021 (9) −0.0041 (10)
C22 0.0358 (14) 0.0520 (16) 0.0158 (10) −0.0193 (12) 0.0023 (10) −0.0037 (10)
C20 0.0270 (12) 0.0454 (15) 0.0263 (12) −0.0106 (11) −0.0057 (10) 0.0043 (11)
C21 0.0362 (14) 0.0533 (17) 0.0174 (10) −0.0191 (12) −0.0048 (10) 0.0042 (11)
C15 0.0201 (11) 0.0511 (15) 0.0268 (12) −0.0027 (10) 0.0114 (9) −0.0093 (11)
O1 0.057 (3) 0.048 (2) 0.0260 (19) 0.009 (2) −0.0008 (18) 0.0042 (17)
O2 0.052 (3) 0.057 (3) 0.0188 (17) −0.022 (2) 0.0026 (17) −0.0022 (16)

Geometric parameters (Å, º)

Ni1—Cl2 2.4101 (6) C3—C4 1.388 (3)
Ni1—Cl1 2.4394 (6) C4—H4 0.9500
Ni1—N1 2.0937 (18) C12—C11 1.401 (3)
Ni1—N4 2.0949 (19) C17—C18 1.463 (3)
Ni1—N5 2.099 (2) C17—C16 1.388 (3)
Ni1—N2 2.0918 (19) C19—C24 1.411 (4)
N1—C1 1.336 (3) C19—C20 1.403 (3)
N1—C5 1.349 (3) C24—C23 1.398 (3)
N4—C13 1.338 (3) C8—H8 0.9500
N4—C17 1.347 (3) C8—C9 1.382 (4)
N3—H3 0.8800 C9—H9 0.9500
N3—C6 1.351 (3) C9—C10 1.405 (4)
N3—C7 1.383 (3) C16—H16 0.9500
N5—C18 1.326 (3) C16—C15 1.393 (4)
N5—C24 1.390 (3) C10—H10 0.9500
N2—C6 1.325 (3) C10—C11 1.378 (3)
N2—C12 1.385 (3) C14—H14 0.9500
N6—H6 0.8800 C14—C15 1.382 (4)
N6—C19 1.378 (3) C11—H11 0.9500
N6—C18 1.356 (3) C23—H23 0.9500
C1—H1 0.9500 C23—C22 1.386 (4)
C1—C2 1.392 (3) C22—H22 0.9500
C6—C5 1.457 (3) C22—C21 1.398 (4)
C2—H2 0.9500 C20—H20 0.9500
C2—C3 1.391 (3) C20—C21 1.385 (4)
C13—H13 0.9500 C21—H21 0.9500
C13—C14 1.394 (3) C15—H15 0.9500
C7—C12 1.413 (3) O1—H1A 0.8505
C7—C8 1.386 (3) O1—H1B 0.8503
C5—C4 1.389 (3) O2—H2A 0.8507
C3—H3A 0.9500 O2—H2B 0.8498
Cl2—Ni1—Cl1 93.04 (2) C5—C4—H4 120.9
N1—Ni1—Cl2 95.15 (5) C3—C4—C5 118.1 (2)
N1—Ni1—Cl1 89.87 (5) C3—C4—H4 120.9
N1—Ni1—N4 170.66 (8) N2—C12—C7 108.96 (19)
N1—Ni1—N5 93.99 (7) N2—C12—C11 131.4 (2)
N4—Ni1—Cl2 91.27 (5) C11—C12—C7 119.6 (2)
N4—Ni1—Cl1 96.57 (6) N4—C17—C18 113.3 (2)
N4—Ni1—N5 78.99 (8) N4—C17—C16 123.1 (2)
N5—Ni1—Cl2 91.90 (5) C16—C17—C18 123.4 (2)
N5—Ni1—Cl1 173.44 (6) N6—C19—C24 105.9 (2)
N2—Ni1—Cl2 174.23 (5) N6—C19—C20 131.6 (3)
N2—Ni1—Cl1 87.19 (6) C20—C19—C24 122.5 (2)
N2—Ni1—N1 79.09 (7) N5—C18—N6 113.1 (2)
N2—Ni1—N4 94.43 (7) N5—C18—C17 119.9 (2)
N2—Ni1—N5 88.32 (8) N6—C18—C17 126.8 (2)
C1—N1—Ni1 126.52 (15) N5—C24—C19 108.8 (2)
C1—N1—C5 118.82 (18) N5—C24—C23 130.9 (2)
C5—N1—Ni1 114.63 (15) C23—C24—C19 120.2 (2)
C13—N4—Ni1 127.08 (17) C7—C8—H8 121.6
C13—N4—C17 118.3 (2) C9—C8—C7 116.8 (2)
C17—N4—Ni1 114.60 (15) C9—C8—H8 121.6
C6—N3—H3 126.5 C8—C9—H9 119.4
C6—N3—C7 106.94 (17) C8—C9—C10 121.2 (2)
C7—N3—H3 126.5 C10—C9—H9 119.4
C18—N5—Ni1 111.00 (15) C17—C16—H16 121.1
C18—N5—C24 105.3 (2) C17—C16—C15 117.9 (2)
C24—N5—Ni1 142.33 (16) C15—C16—H16 121.1
C6—N2—Ni1 112.26 (15) C9—C10—H10 118.9
C6—N2—C12 105.40 (18) C11—C10—C9 122.2 (2)
C12—N2—Ni1 142.08 (15) C11—C10—H10 118.9
C19—N6—H6 126.6 C13—C14—H14 120.6
C18—N6—H6 126.6 C15—C14—C13 118.9 (2)
C18—N6—C19 106.8 (2) C15—C14—H14 120.6
N1—C1—H1 118.8 C12—C11—H11 121.3
N1—C1—C2 122.4 (2) C10—C11—C12 117.4 (2)
C2—C1—H1 118.8 C10—C11—H11 121.3
N3—C6—C5 126.71 (19) C24—C23—H23 121.4
N2—C6—N3 113.18 (19) C22—C23—C24 117.2 (3)
N2—C6—C5 120.04 (19) C22—C23—H23 121.4
C1—C2—H2 120.9 C23—C22—H22 119.0
C3—C2—C1 118.3 (2) C23—C22—C21 122.0 (2)
C3—C2—H2 120.9 C21—C22—H22 119.0
N4—C13—H13 118.8 C19—C20—H20 122.1
N4—C13—C14 122.3 (2) C21—C20—C19 115.9 (3)
C14—C13—H13 118.8 C21—C20—H20 122.1
N3—C7—C12 105.53 (19) C22—C21—H21 118.9
N3—C7—C8 131.7 (2) C20—C21—C22 122.1 (2)
C8—C7—C12 122.7 (2) C20—C21—H21 118.9
N1—C5—C6 113.64 (18) C16—C15—H15 120.3
N1—C5—C4 122.5 (2) C14—C15—C16 119.5 (2)
C4—C5—C6 123.9 (2) C14—C15—H15 120.3
C2—C3—H3A 120.1 H1A—O1—H1B 109.4
C4—C3—C2 119.8 (2) H2A—O2—H2B 109.5
C4—C3—H3A 120.1

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C7–C12, N5/N6/C18/C19/C24, N1/C1–C5, N4/C13–C17 and C19–C24 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl2 0.95 2.75 3.378 (2) 124
O1—H1A···Cl1 0.85 2.37 3.221 (4) 174
O2—H2B···Cl1 0.85 2.41 3.239 (4) 165
O2—H2A···O1i 0.85 1.97 2.806 (6) 167
N3—H3···Cl2ii 0.88 2.29 3.162 (2) 171
N6—H6···Cl1iii 0.88 2.23 3.069 (2) 160
C2—H2···O2iv 0.95 2.56 3.400 (5) 147
C20—H20···O2iii 0.95 2.54 3.317 (5) 139
O1—H1B···Cg1 0.85 3.11 3.869 (3) 150
C3—H3A···Cg5ii 0.95 2.97 3.738 (3) 139
C8—H8···Cg2v 0.95 2.69 3.579 (3) 155
C9—H9···Cg5v 0.95 2.88 3.542 (3) 128
C11—H11···Cg4 0.95 2.93 3.810 (3) 155
C23—H23···Cg3 0.95 2.94 3.733 (3) 142

Symmetry codes: (i) −x+1/2, y, −z; (ii) x−1/2, −y+1, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1/2, −y+3/2, −z+1/2; (v) −x+1/2, −y+1/2, −z+1/2.

Funding Statement

The authors thank the NSERC of Canada for funding. CSM is grateful to NSERC for a CGS-D fellowship. PGH thanks NSERC for a Discovery Grant and the University of Lethbridge for a Tier I Board of Governors Research Chair in Organometallic Chemistry. SOO is grateful to the University of KwaZulu-Natal and National Research Foundation–South Africa (grant No. CPRR98938) for financial support.

References

  1. Abubakar, S. & Bala, M. D. (2018). J. Coord. Chem. 71, 2913–2923.
  2. Chen, Z., Zeng, M., Zhang, Y., Zhang, Z. & Liang, F. (2010). Appl. Organomet. Chem. 24, 625–630.
  3. Das, S., Guha, S., Banerjee, A., Lohar, S., Sahana, A. & Das, D. (2011). Org. Biomol. Chem. 9, 7097–7104. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Garduño, J. A. & García, J. J. (2017). ACS Omega, 2, 2337–2343. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Li, Y. Y., Yu, S. L., Shen, W. Y. & Gao, J. X. (2015). Acc. Chem. Res. 48, 2587–2598. [DOI] [PubMed]
  8. Morris, R. H. (2009). Chem. Soc. Rev. 38, 2282–2291.
  9. Raja, N. & Ramesh, R. (2012). Tetrahedron Lett. 53, 4770–4774.
  10. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  14. Wang, D. & Astruc, D. (2015). Chem. Rev. 115, 6621–6686. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zhu, M. (2014). Appl. Catal. Gen. 479, 45–48.
  17. Zhu, X.-H., Cai, L., Wang, C., Wang, Y., Guo, X. & Hou, X. (2014). J. Mol. Catal. A Chem. 393, 134–141.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2414314620000401/su4175sup1.cif

x-05-x200040-sup1.cif (732.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620000401/su4175Isup2.hkl

x-05-x200040-Isup2.hkl (343.6KB, hkl)

CCDC reference: 1946553

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES