Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jan 31;5(Pt 1):x200114. doi: 10.1107/S2414314620001145

Redetermination of the crystal structure of caesium tetra­fluorido­bromate(III) from single-crystal X-ray diffraction data

Artem V Malin a, Sergei I Ivlev b, Roman V Ostvald a, Florian Kraus b,*
Editor: M Weilc
PMCID: PMC9462145  PMID: 36337717

The crystal structure of CsBrF4 was determined from single-crystal X-ray diffraction data collected at 100 K and is compared with previous models based on powder X-ray diffraction data.

Keywords: crystal structure, caesium, tetra­fluorido­bromate(III), redetermination

Abstract

Caesium tetra­fluorido­bromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4] anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anti­cubocta­hedron. CsBrF4 is isotypic with CsAuF4. graphic file with name x-05-x200114-scheme1-3D1.jpg

Structure description

The first report of unit-cell parameters of CsBrF4 from powder X-ray diffraction data was given by Popov et al. (1987). They indexed the powder pattern using a primitive tetra­gonal unit cell with lattice parameters of a = 9.828 (3), c = 7.166 (5) Å, V = 692.2 (3) Å3 (temperature not given). These lattice parameters are quite different compared to those of other known alkali metal tetra­fluorido­bromates(III) that crystallize in the KBrF4 structure type [KBrF4, I4/mcm (No. 140), a = 6.174 (2), c = 11.103 (2) Å, V = 423 Å3; Siegel, 1956], and consequently CsBrF4 is not isotypic with KBrF4 on basis of the data provided by Popov et al. (1987). However, neither the crystal structure nor other crystallographic details of CsBrF4 were given at that time.

Recently, we have determined the crystal structure of CsBrF4 from powder X-ray diffraction (PXRD) data where we could only refine the F atoms isotropically (Ivlev et al., 2013). We have shown that CsBrF4 is isotypic with CsAuF4 (Schmidt & Müller, 2004) and crystallizes in the space group Immm (No. 71) with lattice parameters a = 5.6413 (8), b = 6.8312 (9), c = 12.2687 (17) Å, V = 472.79 (11) Å3, Z = 4 at 293 K. These lattice parameters are not related to the unit cell reported by Popov et al. (1987). We assume that their powder pattern probably contained impurity lines, e.g. from possible hydrolysis products, which led to erroneous indexing. Here we present the results of a redetermination of the crystal structure of CsBrF4 from single-crystal X-ray diffraction data at 100 K, leading to bond lengths and angles with higher precision, and with all atoms refined with anisotropic displacement parameters.

The unit-cell parameters of CsBrF4 obtained from single-crystal X-ray diffraction data (Table 1) are expectedly smaller than those from the PXRD data at 293 K. The crystal structure contains two different square-planar [BrF4] anions, the planes of which are parallel and rotated by about 45° with respect to each other. The first anion consists of one bromine(III) atom (Br1) on the special 2d (mmm) Wyckoff position and two fluorine atoms F1 and F3 on the special 4j (mm2) and 4g (m2m) Wyckoff positions, respectively. As a result of symmetry restrictions, the F—Br—F angle is exactly 90°. The Br1—F bond lengths are 1.8852 (13) and 1.9020 (15) Å [cf. 1.94 (4) and 1.97 (4) Å from PXRD data]. The second [BrF4] anion contains one bromine(III) atom (Br2) on the special 2b (mmm) Wyckoff position and one fluorine atom (F2) on the special 8l (m..) Wyckoff position. The anion is slightly distorted in-plane, resulting in an almost rectangular structure with F2—Br2—F2 angles of 87.96 (7) and 92.04 (7)° and a Br2—F2 bond length of 1.8907 (10) Å [cf. 87.6 (13) and 92.4 (13)°, 1.96 (3) Å from PXRD data]. In general, the bond lengths and angles of the [BrF4] anions in CsBrF4 are in good correspondence with other known tetra­fluorido­bromates(III) [see Table 2 in Ivlev & Kraus (2018), and references therein]. The caesium cation occupies the special 4i (mm2) Wyckoff position and is coordinated by twelve fluorine atoms. The resulting coordination polyhedron is an anti­cubocta­hedron (Fig. 1). The Cs⋯F distances are in the range 2.9615 (11) to 3.4784 (4) Å [cf. 3.011 (1) to 3.605 (1) from PXRD data].

Table 1. Experimental details.

Crystal data
Chemical formula CsBrF4
M r 288.82
Crystal system, space group Orthorhombic, I m m m
Temperature (K) 100
a, b, c (Å) 5.5075 (3), 6.7890 (3), 12.2572 (6)
V3) 458.30 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 16.75
Crystal size (mm) 0.11 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.330, 0.558
No. of measured, independent and observed [I > 2σ(I)] reflections 8570, 669, 622
R int 0.029
(sin θ/λ)max−1) 0.835
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.012, 0.022, 1.12
No. of reflections 669
No. of parameters 26
Δρmax, Δρmin (e Å−3) 1.20, −0.88

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2019) and publCIF (Westrip, 2010); coordinates taken from previous refinement.

Figure 1.

Figure 1

The anti­cubocta­hedron around the caesium cation. Displacement ellipsoids are shown at the 70% probability level. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, y, −z + 1; (iii) x +  Inline graphic , y +  Inline graphic , z +  Inline graphic ; (iv) x  −  Inline graphic , y +  Inline graphic , z +  Inline graphic ; (v) −x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic ; (vi) −x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic ; (vii) −x + 1, −y, −z + 1.]

The crystal structure of CsBrF4 is shown in Fig. 2.

Figure 2.

Figure 2

The crystal structure of CsBrF4 in a projection along the a axis. Displacement ellipsoids are shown at the 70% probability level.

Synthesis and crystallization

Caesium tetra­fluorido­bromate(III) was synthesized by direct reaction of bromine trifluoride with caesium chloride. The reaction was carried out under Freon-113, which acted as a protective layer against hydrolysis and as a heat absorber. The mixture of CsCl and BrF3 was kept in a closed Teflon vessel. After three days the Freon was removed by vacuum distillation and CsBrF4 was obtained as a solid white residue. The powder was melted at 483 K and cooled down to room temperature. Single crystals of CsBrF4 were obtained as small blocks after crushing the solid lumps.

Refinement

Details of data collection and structure refinement are given in Table 1. Coordinates and atom labelling were taken from the previous refinement from PXRD data (Ivlev et al., 2013).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620001145/wm4121sup1.cif

x-05-x200114-sup1.cif (260.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620001145/wm4121Isup2.hkl

x-05-x200114-Isup2.hkl (56.4KB, hkl)

CCDC reference: 1980292

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Russian Governmental Program ‘Nauka’ N 4.3967.2017/PCh for support. We thank the Deutsche Forschungsgemeinschaft for generous funding.

full crystallographic data

Crystal data

CsBrF4 Dx = 4.186 Mg m3
Mr = 288.82 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Immm Cell parameters from 2913 reflections
a = 5.5075 (3) Å θ = 3.3–36.8°
b = 6.7890 (3) Å µ = 16.75 mm1
c = 12.2572 (6) Å T = 100 K
V = 458.30 (4) Å3 Block, colorless
Z = 4 0.11 × 0.09 × 0.06 mm
F(000) = 504

Data collection

Bruker D8 QUEST diffractometer 622 reflections with I > 2σ(I)
Radiation source: microfocus X-ray tube Rint = 0.029
ω and φ scans θmax = 36.4°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→9
Tmin = 0.330, Tmax = 0.558 k = −11→11
8570 measured reflections l = −20→20
669 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0065P)2 + 0.5686P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.012 (Δ/σ)max = 0.001
wR(F2) = 0.022 Δρmax = 1.20 e Å3
S = 1.12 Δρmin = −0.88 e Å3
669 reflections Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
26 parameters Extinction coefficient: 0.00232 (16)
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cs1 0.500000 0.500000 0.71714 (2) 0.01008 (4)
Br1 0.500000 0.000000 0.500000 0.00720 (6)
Br2 0.500000 0.000000 0.000000 0.00760 (6)
F1 0.500000 0.000000 0.34482 (12) 0.0155 (3)
F2 0.500000 0.19339 (16) 0.11100 (9) 0.0169 (2)
F3 0.500000 0.2777 (2) 0.500000 0.0141 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs1 0.01130 (6) 0.01075 (6) 0.00821 (7) 0.000 0.000 0.000
Br1 0.00756 (12) 0.00827 (11) 0.00578 (13) 0.000 0.000 0.000
Br2 0.00816 (12) 0.00841 (11) 0.00624 (13) 0.000 0.000 0.000
F1 0.0179 (7) 0.0216 (7) 0.0069 (6) 0.000 0.000 0.000
F2 0.0201 (5) 0.0160 (4) 0.0146 (5) 0.000 0.000 −0.0073 (4)
F3 0.0164 (6) 0.0087 (6) 0.0172 (7) 0.000 0.000 0.000

Geometric parameters (Å, º)

Cs1—F2i 2.9615 (11) Cs1—F1vii 3.4784 (4)
Cs1—F2ii 2.9615 (11) Cs1—F1i 3.4784 (4)
Cs1—F3i 3.0597 (7) Br1—F3 1.8852 (13)
Cs1—F3 3.0597 (7) Br1—F3vii 1.8853 (13)
Cs1—F1iii 3.1674 (8) Br1—F1vii 1.9020 (15)
Cs1—F1iv 3.1674 (8) Br1—F1 1.9020 (15)
Cs1—F2v 3.3166 (7) Br2—F2viii 1.8907 (10)
Cs1—F2iii 3.3166 (7) Br2—F2ix 1.8907 (10)
Cs1—F2iv 3.3166 (7) Br2—F2x 1.8907 (10)
Cs1—F2vi 3.3166 (7) Br2—F2 1.8907 (10)
F2i—Cs1—F2ii 89.32 (4) F1iv—Cs1—F1i 96.194 (16)
F2i—Cs1—F3i 105.79 (3) F2v—Cs1—F1i 107.50 (2)
F2ii—Cs1—F3i 164.90 (3) F2iii—Cs1—F1i 61.838 (19)
F2i—Cs1—F3 164.90 (3) F2iv—Cs1—F1i 61.838 (19)
F2ii—Cs1—F3 105.79 (3) F2vi—Cs1—F1i 107.50 (2)
F3i—Cs1—F3 59.11 (4) F1vii—Cs1—F1i 154.77 (5)
F2i—Cs1—F1iii 69.423 (18) F3—Br1—F3vii 180.0
F2ii—Cs1—F1iii 69.423 (18) F3—Br1—F1vii 90.0
F3i—Cs1—F1iii 115.46 (2) F3vii—Br1—F1vii 90.0
F3—Cs1—F1iii 115.46 (2) F3—Br1—F1 90.0
F2i—Cs1—F1iv 69.423 (18) F3vii—Br1—F1 90.0
F2ii—Cs1—F1iv 69.423 (18) F1vii—Br1—F1 180.0
F3i—Cs1—F1iv 115.46 (2) F2viii—Br2—F2ix 87.96 (7)
F3—Cs1—F1iv 115.46 (2) F2viii—Br2—F2x 92.04 (7)
F1iii—Cs1—F1iv 120.78 (5) F2ix—Br2—F2x 180.00 (6)
F2i—Cs1—F2v 123.869 (16) F2viii—Br2—F2 180.0
F2ii—Cs1—F2v 90.05 (2) F2ix—Br2—F2 92.04 (7)
F3i—Cs1—F2v 81.61 (2) F2x—Br2—F2 87.96 (7)
F3—Cs1—F2v 57.553 (17) F2viii—Br2—Cs1xi 120.01 (2)
F1iii—Cs1—F2v 156.305 (19) F2ix—Br2—Cs1xi 120.005 (19)
F1iv—Cs1—F2v 58.13 (3) F2x—Br2—Cs1xi 59.995 (19)
F2i—Cs1—F2iii 90.05 (2) F2—Br2—Cs1xi 59.99 (2)
F2ii—Cs1—F2iii 123.868 (16) F2viii—Br2—Cs1xii 59.99 (2)
F3i—Cs1—F2iii 57.553 (17) F2ix—Br2—Cs1xii 59.995 (19)
F3—Cs1—F2iii 81.61 (2) F2x—Br2—Cs1xii 120.005 (19)
F1iii—Cs1—F2iii 58.13 (3) F2—Br2—Cs1xii 120.01 (2)
F1iv—Cs1—F2iii 156.305 (19) Cs1xi—Br2—Cs1xii 180.0
F2v—Cs1—F2iii 133.81 (3) F2viii—Br2—Cs1xiii 120.01 (2)
F2i—Cs1—F2iv 90.05 (2) F2ix—Br2—Cs1xiii 120.005 (19)
F2ii—Cs1—F2iv 123.868 (17) F2x—Br2—Cs1xiii 59.995 (19)
F3i—Cs1—F2iv 57.553 (17) F2—Br2—Cs1xiii 59.99 (2)
F3—Cs1—F2iv 81.61 (2) Cs1xi—Br2—Cs1xiii 91.951 (5)
F1iii—Cs1—F2iv 156.305 (19) Cs1xii—Br2—Cs1xiii 88.049 (5)
F1iv—Cs1—F2iv 58.13 (3) F2viii—Br2—Cs1xiv 59.99 (2)
F2v—Cs1—F2iv 46.64 (4) F2ix—Br2—Cs1xiv 59.995 (19)
F2iii—Cs1—F2iv 112.26 (3) F2x—Br2—Cs1xiv 120.005 (19)
F2i—Cs1—F2vi 123.868 (17) F2—Br2—Cs1xiv 120.01 (2)
F2ii—Cs1—F2vi 90.05 (2) Cs1xi—Br2—Cs1xiv 88.049 (5)
F3i—Cs1—F2vi 81.61 (2) Cs1xii—Br2—Cs1xiv 91.951 (5)
F3—Cs1—F2vi 57.553 (17) Cs1xiii—Br2—Cs1xiv 180.0
F1iii—Cs1—F2vi 58.13 (3) Br1—F1—Cs1xiii 119.61 (2)
F1iv—Cs1—F2vi 156.305 (19) Br1—F1—Cs1xi 119.61 (2)
F2v—Cs1—F2vi 112.26 (3) Cs1xiii—F1—Cs1xi 120.78 (5)
F2iii—Cs1—F2vi 46.64 (4) Br1—F1—Cs1vii 102.61 (2)
F2iv—Cs1—F2vi 133.81 (3) Cs1xiii—F1—Cs1vii 83.807 (16)
F2i—Cs1—F1vii 147.27 (3) Cs1xi—F1—Cs1vii 83.807 (16)
F2ii—Cs1—F1vii 57.95 (3) Br1—F1—Cs1i 102.61 (2)
F3i—Cs1—F1vii 106.94 (3) Cs1xiii—F1—Cs1i 83.807 (16)
F3—Cs1—F1vii 47.83 (3) Cs1xi—F1—Cs1i 83.807 (16)
F1iii—Cs1—F1vii 96.194 (16) Cs1vii—F1—Cs1i 154.78 (5)
F1iv—Cs1—F1vii 96.194 (16) Br2—F2—Cs1i 179.32 (6)
F2v—Cs1—F1vii 61.838 (19) Br2—F2—Cs1xiii 90.42 (3)
F2iii—Cs1—F1vii 107.50 (2) Cs1i—F2—Cs1xiii 89.95 (2)
F2iv—Cs1—F1vii 107.50 (2) Br2—F2—Cs1xi 90.42 (3)
F2vi—Cs1—F1vii 61.838 (19) Cs1i—F2—Cs1xi 89.95 (2)
F2i—Cs1—F1i 57.95 (3) Cs1xiii—F2—Cs1xi 112.26 (3)
F2ii—Cs1—F1i 147.27 (3) Br1—F3—Cs1i 119.56 (2)
F3i—Cs1—F1i 47.83 (3) Br1—F3—Cs1 119.56 (2)
F3—Cs1—F1i 106.94 (3) Cs1i—F3—Cs1 120.89 (4)
F1iii—Cs1—F1i 96.194 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, −z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x−1/2, y+1/2, z+1/2; (v) −x+1/2, −y+1/2, z+1/2; (vi) −x+3/2, −y+1/2, z+1/2; (vii) −x+1, −y, −z+1; (viii) −x+1, −y, −z; (ix) x, y, −z; (x) −x+1, −y, z; (xi) x+1/2, y−1/2, z−1/2; (xii) −x+1/2, −y+1/2, −z+1/2; (xiii) x−1/2, y−1/2, z−1/2; (xiv) −x+3/2, −y+1/2, −z+1/2.

References

  1. Brandenburg, K. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ivlev, S., Woidy, P., Sobolev, V., Gerin, I., Ostvald, R. & Kraus, F. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850.
  4. Ivlev, S. I. & Kraus, F. (2018). IUCrData, 3, x180646.
  5. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  6. Popov, A. I., Kiselev, Y. M., Sukhoverkhov, V. F., Chumaevskii, N. A., Krasnyanskaya, O. A. & Sadikova, A. T. (1987). Russ. J. Inorg. Chem. 32, 619–622.
  7. Schmidt, R. & Müller, B. G. (2004). Z. Anorg. Allg. Chem. 630, 2393–2397.
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Siegel, S. (1956). Acta Cryst. 9, 493–495.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620001145/wm4121sup1.cif

x-05-x200114-sup1.cif (260.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620001145/wm4121Isup2.hkl

x-05-x200114-Isup2.hkl (56.4KB, hkl)

CCDC reference: 1980292

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES