Skip to main content
IUCrData logoLink to IUCrData
. 2020 Jan 3;5(Pt 1):x191690. doi: 10.1107/S2414314619016900

4-Chloro-2-[1-(4-ethyl­phen­yl)-4,5-diphenyl-1H-imidazol-2-yl]phenol

K N Shraddha a, S Devika a, Noor Shahina Begum a,*
Editor: M Zellerb
PMCID: PMC9462148  PMID: 36337716

In the title compound, the 5-chloro­phenol ring and the imidazole ring are nearly coplanar, with a dihedral angle of 15.76 (9)°. The ethyl­phenyl ring and the two phenyl rings subtend at angles of 71.09 (7), 43.95 (5) and 36.53 (9)°, respectively, with the imidazole plane.

Keywords: crystal structure, imidazole, hydrogen bonding

Abstract

In the title compound, C29H23ClN2O, the 5-chloro­phenol ring and the imidazole ring are nearly coplanar, with a dihedral angle of 15.76 (9)° between them. The ethyl­phenyl ring and the two phenyl rings subtend angles of 71.09 (7), 43.95 (5) and 36.53 (9)°, respectively, with the imidazole plane. An intra­molecular O—H⋯N hydrogen bond supports the mol­ecular conformation, and an inter­molecular C—H⋯O inter­action, originating from an ortho-phenyl H atom, stabilizes the packing arrangement. In addition, a weak C—H⋯π inter­action, also involving an ortho-phenyl H atom, is observed. graphic file with name x-05-x191690-scheme1-3D1.jpg

Structure description

The imidazole moiety is known to play an important role in biological systems being a part of the histidyl residue in peptides and proteins (Sigel et al., 2000). Multi-substituted imidazoles are an important class of heterocyclic compounds that exhibit diverse biological activities such as anti-inflammatory (Gaonkar et al., 2009), anti­leishmanial (Bhandari et al., 2010) and anti­cancer (Ozkay et al., 2010) activities. As part of our ongoing studies in this area, we herein report the synthesis and crystal structure of the title compound, 4-chloro-2-(1-(4-ethyl­phen­yl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (Fig. 1). The 5-chloro­phenol ring, two phenyl rings and the ethyl­phenyl ring are substituents on the central five-membered imidazole ring (C1/N2/C3/C2/N1). The imidazole and the 5-chloro­phenol rings are close to coplanar with a dihedral angle of 15.76 (9)° between them. The imidazole ring subtends at dihedral angles of 71.09 (7), 43.95 (5) and 36.53 (9)° with the ethyl­phenyl ring and the two phenyl rings (C18–C23 and C24–C29), respectively. A strong intra­molecular O1—H1⋯N1 hydrogen bond is formed between the O1 atom of the 5-chloro­phenol group and atom N1 of the imidazole ring (Fig. 2), forming an Inline graphic (6) graph-set motif, which stabilizes the close to coplanar arrangement of the imidazole and phenol rings.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.

Figure 2.

Figure 2

Unit-cell packing of the title compound showing the intra­molecular O—H⋯N inter­actions, inter­molecular C—H⋯O inter­actions and inter­molecular C—H⋯π inter­actions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.

In the crystal, atom C19 of the phenyl ring and the hydroxyl O1 atom of the phenol group are involved in a weak C19—H19⋯O1i inter­action that links the mol­ecules along the a-axis direction (Fig. 2). Thus the hydroxyl O atom acts as both a hydrogen-bond donor and an acceptor. The crystal structure is further consolidated by a C15—H15⋯Cg ii inter­action with the aryl ring (Table 1, Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C4–C9 aryl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.00 1.66 2.549 (1) 145
C19—H19⋯O1i 0.93 2.57 3.242 (3) 129
C15—H15⋯Cg ii 0.93 2.72 3.527 (2) 146

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Synthesis and crystallization

The title compound was synthesized by the one-pot reaction of benzil (10 mmol), 4-ethyl­aniline (10 mmol) and 5-chloro-2-hy­droxy­benzaldehyde (10 mmol) with ammonium acetate (10 mmol) in a glacial acetic acid (20 ml) medium. The mixture was refluxed for 5 h at 343 K, the progress of the reaction being monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and poured into 100 ml of ice-cold water. The resulting precipitate was filtered, dried and further purified by column chromatography (7:3 petroleum ether:ethyl acetate) and isolated in good yield (85%). The product was recrystallized from ethanol solution. IR (KBr) (cm−1): 3448.63 (OH), 1947.51 (C=C), 1601.84 (C=N). 1H NMR (CDCl3): δ 1.242 (t, J = 7.2 Hz, 2H), 2.64–2.68 (q, J = 7.2 Hz, 3H), 7.09–7.26 (m, 13H), 7.50–7.52 (m, 4H), 6.34–6.35 (s, 1H). GC–MS (EI, 70 eV): m/z: 450.95.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C29H23ClN2O
M r 450.94
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 9.0627 (6), 10.7595 (8), 24.4636 (19)
β (°) 100.599 (3)
V3) 2344.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.45 × 0.38 × 0.35
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998)
T min, T max 0.821, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 34596, 4807, 3593
R int 0.044
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.129, 1.03
No. of reflections 4807
No. of parameters 301
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.29

Computer programs: SMARTand SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314619016900/zl4037sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314619016900/zl4037Isup2.hkl

x-05-x191690-Isup2.hkl (382.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037sup3.tif

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037sup4.pdf

x-05-x191690-sup4.pdf (15.5KB, pdf)

Proton-NMR. DOI: 10.1107/S2414314619016900/zl4037sup5.pdf

x-05-x191690-sup5.pdf (33.8KB, pdf)

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037Isup6.cml

CCDC reference: 1950453

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C29H23ClN2O F(000) = 944
Mr = 450.94 Dx = 1.277 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.0627 (6) Å Cell parameters from 4807 reflections
b = 10.7595 (8) Å θ = 2.6–26.5°
c = 24.4636 (19) Å µ = 0.19 mm1
β = 100.599 (3)° T = 297 K
V = 2344.7 (3) Å3 Block, colorless
Z = 4 0.45 × 0.38 × 0.35 mm

Data collection

Bruker SMART APEX CCD diffractometer 3593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
ω scans θmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −11→11
Tmin = 0.821, Tmax = 0.928 k = −13→13
34596 measured reflections l = −30→30
4807 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.5828P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
4807 reflections Δρmax = 0.26 e Å3
301 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0135 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were placed at calculated positions in the riding-model approximation, with O—H = 1.00 Å and C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methine H atoms, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.10374 (7) 0.46682 (6) 1.17331 (2) 0.0588 (2)
O1 0.67555 (18) 0.23218 (14) 0.99506 (7) 0.0538 (4)
H1 0.647 (3) 0.2890 (19) 0.9625 (11) 0.081*
N1 0.65078 (19) 0.43455 (15) 0.93998 (7) 0.0412 (4)
N2 0.71390 (18) 0.61739 (15) 0.97832 (6) 0.0367 (4)
C1 0.7255 (2) 0.49090 (18) 0.98494 (8) 0.0374 (4)
C2 0.6291 (2) 0.64067 (18) 0.92560 (7) 0.0365 (4)
C3 0.5904 (2) 0.52542 (18) 0.90324 (8) 0.0372 (4)
C4 0.8032 (2) 0.42008 (18) 1.03298 (8) 0.0369 (4)
C5 0.7687 (2) 0.29210 (19) 1.03599 (8) 0.0404 (5)
C6 0.8346 (2) 0.2226 (2) 1.08197 (9) 0.0451 (5)
H6 0.808858 0.139367 1.084268 0.054*
C7 0.9371 (2) 0.2747 (2) 1.12404 (8) 0.0453 (5)
H7 0.980055 0.227497 1.154686 0.054*
C8 0.9756 (2) 0.3984 (2) 1.12027 (8) 0.0407 (5)
C9 0.9117 (2) 0.47049 (19) 1.07553 (8) 0.0401 (4)
H9 0.940636 0.553051 1.073556 0.048*
C10 0.7779 (2) 0.70811 (17) 1.01924 (7) 0.0343 (4)
C11 0.7207 (2) 0.7207 (2) 1.06745 (8) 0.0410 (5)
H11 0.634020 0.678509 1.071702 0.049*
C12 0.7936 (2) 0.7967 (2) 1.10933 (8) 0.0465 (5)
H12 0.755755 0.804476 1.142025 0.056*
C13 0.9217 (2) 0.86161 (19) 1.10368 (8) 0.0431 (5)
C14 0.9724 (2) 0.8518 (2) 1.05376 (9) 0.0483 (5)
H14 1.055933 0.897377 1.048605 0.058*
C15 0.9012 (2) 0.7755 (2) 1.01134 (8) 0.0428 (5)
H15 0.936377 0.769909 0.978027 0.051*
C16 1.0063 (3) 0.9367 (2) 1.15138 (10) 0.0616 (7)
H16A 0.936247 0.989876 1.165958 0.074*
H16B 1.078251 0.989614 1.137768 0.074*
C17 1.0880 (4) 0.8561 (3) 1.19769 (13) 0.0940 (11)
H17A 1.139962 0.907784 1.227008 0.141*
H17B 1.017021 0.804672 1.211867 0.141*
H17C 1.159005 0.804410 1.183681 0.141*
C18 0.6046 (2) 0.76627 (18) 0.90155 (8) 0.0372 (4)
C19 0.5629 (3) 0.8667 (2) 0.93102 (9) 0.0504 (5)
H19 0.549954 0.855868 0.967564 0.061*
C20 0.5404 (3) 0.9826 (2) 0.90656 (11) 0.0641 (7)
H20 0.513916 1.049426 0.926859 0.077*
C21 0.5569 (3) 0.9994 (2) 0.85245 (12) 0.0686 (8)
H21 0.540690 1.077261 0.835939 0.082*
C22 0.5975 (3) 0.9009 (2) 0.82270 (10) 0.0639 (7)
H22 0.608119 0.912305 0.785941 0.077*
C23 0.6226 (2) 0.7851 (2) 0.84696 (9) 0.0475 (5)
H23 0.651751 0.719374 0.826657 0.057*
C24 0.4960 (2) 0.48681 (18) 0.85017 (8) 0.0376 (4)
C25 0.3671 (2) 0.5502 (2) 0.82669 (9) 0.0490 (5)
H25 0.341256 0.623145 0.843045 0.059*
C26 0.2763 (3) 0.5057 (3) 0.77900 (10) 0.0602 (6)
H26 0.190035 0.549194 0.763527 0.072*
C27 0.3123 (3) 0.3978 (3) 0.75417 (9) 0.0599 (6)
H27 0.250298 0.368055 0.722302 0.072*
C28 0.4405 (3) 0.3347 (2) 0.77687 (9) 0.0568 (6)
H28 0.466097 0.262341 0.760037 0.068*
C29 0.5316 (3) 0.3779 (2) 0.82458 (8) 0.0471 (5)
H29 0.617670 0.333929 0.839817 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0561 (3) 0.0675 (4) 0.0446 (3) 0.0094 (3) −0.0121 (2) −0.0065 (3)
O1 0.0686 (10) 0.0383 (8) 0.0474 (9) −0.0101 (7) −0.0079 (7) 0.0039 (7)
N1 0.0487 (10) 0.0358 (9) 0.0348 (8) −0.0001 (7) −0.0034 (7) 0.0022 (7)
N2 0.0440 (9) 0.0315 (8) 0.0318 (8) −0.0011 (7) −0.0006 (7) 0.0009 (6)
C1 0.0424 (10) 0.0343 (10) 0.0326 (9) 0.0000 (8) −0.0008 (8) 0.0025 (8)
C2 0.0400 (10) 0.0363 (10) 0.0311 (9) 0.0031 (8) 0.0011 (8) 0.0010 (8)
C3 0.0414 (10) 0.0362 (10) 0.0316 (9) 0.0025 (8) 0.0006 (8) 0.0026 (8)
C4 0.0421 (10) 0.0335 (10) 0.0336 (9) 0.0027 (8) 0.0027 (8) 0.0030 (8)
C5 0.0450 (11) 0.0380 (10) 0.0372 (10) 0.0005 (9) 0.0043 (8) 0.0021 (8)
C6 0.0543 (12) 0.0377 (11) 0.0433 (11) 0.0023 (9) 0.0086 (9) 0.0089 (9)
C7 0.0515 (12) 0.0488 (12) 0.0347 (10) 0.0112 (10) 0.0051 (9) 0.0110 (9)
C8 0.0416 (10) 0.0466 (12) 0.0320 (10) 0.0096 (9) 0.0020 (8) −0.0016 (9)
C9 0.0441 (11) 0.0364 (10) 0.0370 (10) 0.0052 (8) −0.0001 (8) 0.0020 (8)
C10 0.0372 (9) 0.0331 (9) 0.0304 (9) 0.0013 (8) 0.0004 (7) −0.0011 (7)
C11 0.0377 (10) 0.0483 (12) 0.0373 (10) −0.0013 (9) 0.0076 (8) 0.0021 (9)
C12 0.0518 (12) 0.0558 (13) 0.0321 (10) 0.0068 (10) 0.0083 (9) −0.0040 (9)
C13 0.0497 (12) 0.0388 (11) 0.0368 (10) 0.0045 (9) −0.0024 (9) −0.0023 (9)
C14 0.0479 (12) 0.0486 (12) 0.0478 (12) −0.0126 (10) 0.0073 (9) −0.0018 (10)
C15 0.0477 (11) 0.0466 (12) 0.0355 (10) −0.0050 (9) 0.0109 (9) −0.0023 (9)
C16 0.0747 (16) 0.0534 (14) 0.0492 (13) −0.0026 (12) −0.0083 (12) −0.0121 (11)
C17 0.113 (3) 0.083 (2) 0.0662 (18) −0.0077 (19) −0.0367 (17) 0.0015 (16)
C18 0.0393 (10) 0.0357 (10) 0.0337 (9) 0.0006 (8) −0.0007 (8) 0.0013 (8)
C19 0.0603 (14) 0.0431 (12) 0.0457 (12) 0.0093 (10) 0.0038 (10) −0.0019 (10)
C20 0.0767 (17) 0.0389 (12) 0.0701 (17) 0.0139 (12) −0.0044 (13) −0.0034 (12)
C21 0.0850 (19) 0.0389 (13) 0.0733 (18) 0.0027 (12) −0.0085 (14) 0.0181 (12)
C22 0.0799 (17) 0.0586 (15) 0.0495 (14) −0.0013 (13) 0.0021 (12) 0.0194 (12)
C23 0.0583 (13) 0.0450 (12) 0.0377 (11) 0.0030 (10) 0.0047 (9) 0.0056 (9)
C24 0.0414 (10) 0.0391 (10) 0.0307 (9) −0.0038 (8) 0.0025 (8) 0.0006 (8)
C25 0.0476 (12) 0.0532 (13) 0.0431 (11) 0.0037 (10) 0.0000 (9) −0.0028 (10)
C26 0.0478 (13) 0.0774 (18) 0.0484 (13) 0.0038 (12) −0.0092 (10) −0.0020 (12)
C27 0.0625 (15) 0.0707 (17) 0.0408 (12) −0.0156 (13) −0.0060 (11) −0.0064 (12)
C28 0.0792 (17) 0.0480 (13) 0.0403 (12) −0.0074 (12) 0.0030 (11) −0.0107 (10)
C29 0.0577 (13) 0.0409 (11) 0.0391 (11) 0.0029 (10) −0.0009 (9) −0.0013 (9)

Geometric parameters (Å, º)

Cl1—C8 1.738 (2) C14—H14 0.9300
O1—C5 1.349 (2) C15—H15 0.9300
O1—H1 1.00 (3) C16—C17 1.509 (4)
N1—C1 1.327 (2) C16—H16A 0.9700
N1—C3 1.372 (2) C16—H16B 0.9700
N2—C1 1.372 (2) C17—H17A 0.9600
N2—C2 1.397 (2) C17—H17B 0.9600
N2—C10 1.441 (2) C17—H17C 0.9600
C1—C4 1.468 (3) C18—C23 1.390 (3)
C2—C3 1.375 (3) C18—C19 1.390 (3)
C2—C18 1.474 (3) C19—C20 1.382 (3)
C3—C24 1.477 (3) C19—H19 0.9300
C4—C9 1.403 (3) C20—C21 1.371 (4)
C4—C5 1.417 (3) C20—H20 0.9300
C5—C6 1.391 (3) C21—C22 1.373 (4)
C6—C7 1.373 (3) C21—H21 0.9300
C6—H6 0.9300 C22—C23 1.381 (3)
C7—C8 1.383 (3) C22—H22 0.9300
C7—H7 0.9300 C23—H23 0.9300
C8—C9 1.379 (3) C24—C25 1.383 (3)
C9—H9 0.9300 C24—C29 1.394 (3)
C10—C15 1.376 (3) C25—C26 1.383 (3)
C10—C11 1.379 (3) C25—H25 0.9300
C11—C12 1.380 (3) C26—C27 1.377 (4)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.384 (3) C27—C28 1.372 (4)
C12—H12 0.9300 C27—H27 0.9300
C13—C14 1.386 (3) C28—C29 1.381 (3)
C13—C16 1.507 (3) C28—H28 0.9300
C14—C15 1.386 (3) C29—H29 0.9300
C5—O1—H1 109.5 C14—C15—H15 120.5
C1—N1—C3 107.38 (16) C13—C16—C17 112.5 (2)
C1—N2—C2 107.68 (15) C13—C16—H16A 109.1
C1—N2—C10 125.28 (15) C17—C16—H16A 109.1
C2—N2—C10 127.04 (16) C13—C16—H16B 109.1
N1—C1—N2 109.82 (16) C17—C16—H16B 109.1
N1—C1—C4 121.54 (17) H16A—C16—H16B 107.8
N2—C1—C4 128.64 (17) C16—C17—H17A 109.5
C3—C2—N2 105.22 (16) C16—C17—H17B 109.5
C3—C2—C18 131.25 (17) H17A—C17—H17B 109.5
N2—C2—C18 123.34 (17) C16—C17—H17C 109.5
N1—C3—C2 109.88 (16) H17A—C17—H17C 109.5
N1—C3—C24 118.18 (17) H17B—C17—H17C 109.5
C2—C3—C24 131.90 (18) C23—C18—C19 118.45 (19)
C9—C4—C5 117.94 (17) C23—C18—C2 118.78 (18)
C9—C4—C1 124.14 (17) C19—C18—C2 122.77 (18)
C5—C4—C1 117.91 (17) C20—C19—C18 120.6 (2)
O1—C5—C6 117.42 (18) C20—C19—H19 119.7
O1—C5—C4 122.68 (17) C18—C19—H19 119.7
C6—C5—C4 119.88 (19) C21—C20—C19 120.2 (2)
C7—C6—C5 121.2 (2) C21—C20—H20 119.9
C7—C6—H6 119.4 C19—C20—H20 119.9
C5—C6—H6 119.4 C20—C21—C22 119.8 (2)
C6—C7—C8 119.18 (18) C20—C21—H21 120.1
C6—C7—H7 120.4 C22—C21—H21 120.1
C8—C7—H7 120.4 C21—C22—C23 120.5 (2)
C9—C8—C7 121.29 (19) C21—C22—H22 119.8
C9—C8—Cl1 118.69 (17) C23—C22—H22 119.8
C7—C8—Cl1 120.00 (15) C22—C23—C18 120.4 (2)
C8—C9—C4 120.42 (19) C22—C23—H23 119.8
C8—C9—H9 119.8 C18—C23—H23 119.8
C4—C9—H9 119.8 C25—C24—C29 118.41 (19)
C15—C10—C11 120.72 (18) C25—C24—C3 122.32 (19)
C15—C10—N2 119.52 (17) C29—C24—C3 119.12 (18)
C11—C10—N2 119.63 (17) C26—C25—C24 120.3 (2)
C10—C11—C12 119.32 (19) C26—C25—H25 119.8
C10—C11—H11 120.3 C24—C25—H25 119.8
C12—C11—H11 120.3 C27—C26—C25 120.8 (2)
C11—C12—C13 121.36 (19) C27—C26—H26 119.6
C11—C12—H12 119.3 C25—C26—H26 119.6
C13—C12—H12 119.3 C28—C27—C26 119.4 (2)
C12—C13—C14 118.03 (19) C28—C27—H27 120.3
C12—C13—C16 120.6 (2) C26—C27—H27 120.3
C14—C13—C16 121.3 (2) C27—C28—C29 120.4 (2)
C13—C14—C15 121.4 (2) C27—C28—H28 119.8
C13—C14—H14 119.3 C29—C28—H28 119.8
C15—C14—H14 119.3 C28—C29—C24 120.7 (2)
C10—C15—C14 119.03 (19) C28—C29—H29 119.6
C10—C15—H15 120.5 C24—C29—H29 119.6
C3—N1—C1—N2 0.4 (2) C15—C10—C11—C12 −3.6 (3)
C3—N1—C1—C4 179.45 (17) N2—C10—C11—C12 172.22 (18)
C2—N2—C1—N1 −1.1 (2) C10—C11—C12—C13 0.8 (3)
C10—N2—C1—N1 178.44 (17) C11—C12—C13—C14 2.3 (3)
C2—N2—C1—C4 179.94 (19) C11—C12—C13—C16 −175.5 (2)
C10—N2—C1—C4 −0.5 (3) C12—C13—C14—C15 −2.6 (3)
C1—N2—C2—C3 1.3 (2) C16—C13—C14—C15 175.1 (2)
C10—N2—C2—C3 −178.22 (17) C11—C10—C15—C14 3.3 (3)
C1—N2—C2—C18 −174.15 (18) N2—C10—C15—C14 −172.56 (18)
C10—N2—C2—C18 6.3 (3) C13—C14—C15—C10 −0.1 (3)
C1—N1—C3—C2 0.4 (2) C12—C13—C16—C17 71.3 (3)
C1—N1—C3—C24 −177.67 (17) C14—C13—C16—C17 −106.4 (3)
N2—C2—C3—N1 −1.1 (2) C3—C2—C18—C23 −40.4 (3)
C18—C2—C3—N1 173.9 (2) N2—C2—C18—C23 133.8 (2)
N2—C2—C3—C24 176.7 (2) C3—C2—C18—C19 139.0 (2)
C18—C2—C3—C24 −8.4 (4) N2—C2—C18—C19 −46.8 (3)
N1—C1—C4—C9 164.28 (19) C23—C18—C19—C20 −0.2 (3)
N2—C1—C4—C9 −16.9 (3) C2—C18—C19—C20 −179.6 (2)
N1—C1—C4—C5 −14.4 (3) C18—C19—C20—C21 1.0 (4)
N2—C1—C4—C5 164.4 (2) C19—C20—C21—C22 −0.7 (4)
C9—C4—C5—O1 −174.41 (19) C20—C21—C22—C23 −0.4 (4)
C1—C4—C5—O1 4.4 (3) C21—C22—C23—C18 1.1 (4)
C9—C4—C5—C6 4.1 (3) C19—C18—C23—C22 −0.8 (3)
C1—C4—C5—C6 −177.12 (19) C2—C18—C23—C22 178.6 (2)
O1—C5—C6—C7 176.40 (19) N1—C3—C24—C25 140.6 (2)
C4—C5—C6—C7 −2.2 (3) C2—C3—C24—C25 −37.0 (3)
C5—C6—C7—C8 −0.3 (3) N1—C3—C24—C29 −34.8 (3)
C6—C7—C8—C9 0.9 (3) C2—C3—C24—C29 147.5 (2)
C6—C7—C8—Cl1 179.40 (16) C29—C24—C25—C26 0.1 (3)
C7—C8—C9—C4 1.1 (3) C3—C24—C25—C26 −175.4 (2)
Cl1—C8—C9—C4 −177.38 (15) C24—C25—C26—C27 0.1 (4)
C5—C4—C9—C8 −3.6 (3) C25—C26—C27—C28 −0.6 (4)
C1—C4—C9—C8 177.71 (19) C26—C27—C28—C29 0.8 (4)
C1—N2—C10—C15 107.0 (2) C27—C28—C29—C24 −0.6 (4)
C2—N2—C10—C15 −73.5 (3) C25—C24—C29—C28 0.1 (3)
C1—N2—C10—C11 −68.8 (3) C3—C24—C29—C28 175.8 (2)
C2—N2—C10—C11 110.7 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C4–C9 aryl ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 1.00 1.66 2.549 (1) 145
C19—H19···O1i 0.93 2.57 3.242 (3) 129
C15—H15···Cgii 0.93 2.72 3.527 (2) 146

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+2, −y+1, −z+2.

References

  1. Bhandari, K., Srinivas, N., Marrapu, V. K., Verma, A., Srivastava, S. & Gupta, S. (2010). Bioorg. Med. Chem. Lett. 20, 291–293. [DOI] [PubMed]
  2. Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gaonkar, S. L., Rai, K. M. L. & Shetty, N. S. (2009). Med. Chem. Res. 18, 221–230.
  5. Özkay, Y., Işıkdağ, , İncesu, Z. & Akalın, G. (2010). Eur. J. Med. Chem. 45, 3320–3328. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Sigel, H., Saha, A., Saha, N., Carloni, P., Kapinos, L. E. & Griesser, R. (2000). J. Inorg. Biochem. 78, 129–137. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314619016900/zl4037sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314619016900/zl4037Isup2.hkl

x-05-x191690-Isup2.hkl (382.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037sup3.tif

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037sup4.pdf

x-05-x191690-sup4.pdf (15.5KB, pdf)

Proton-NMR. DOI: 10.1107/S2414314619016900/zl4037sup5.pdf

x-05-x191690-sup5.pdf (33.8KB, pdf)

Supporting information file. DOI: 10.1107/S2414314619016900/zl4037Isup6.cml

CCDC reference: 1950453

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES