Skip to main content
IUCrData logoLink to IUCrData
. 2020 Nov 10;5(Pt 11):x201465. doi: 10.1107/S2414314620014650

2H-[1,3]Thia­zolo[5,4,3-ij]quinolin-3-ium chloride monohydrate

Madeleine A Ehweiner a, Ferdinand Belaj a,*, Nadia C Mösch-Zanetti a
Editor: W T A Harrisonb
PMCID: PMC9462152  PMID: 36340016

The cations in the title salt show π-stacking. The chloride anions, together with the water mol­ecules, form hydrogen-bonded zigzag chains.

Keywords: crystal structure, quinoline, hydrogen bonding

Abstract

The structure of the title hydrated mol­ecular salt, C10H8NS+·Cl·H2O, obtained by the reaction of sodium quinoline-8-thiolate Na(Quin-8-S) with CH2Cl2 and an aqueous solution of [Bu4N]Cl, contains π-stacked cations [plane-to-plane separation = 3.338 (4)–3.356 (4) Å] and features chains built by alternating Cl anions and H2O mol­ecules connected by O—H⋯O hydrogen bonds. The cation shows whole-mol­ecule disorder over two flipped orientations in a 0.853 (3):0.147 (3) ratio. graphic file with name x-05-x201465-scheme1-3D1.jpg

Structure description

The crystal structure analysis of the title compound is the first structure determination of this tricyclic cation. The anhydrous iodide compound has previously been synthesized (Kim et al., 1993). All atoms lie on general positions but the cation is planar within experimental accuracy. It is disordered over two orientations with occupation factors of 0.853 (3) and 0.147 (3) that both occupy approximately the same space (Fig. 1). The cations show π-stacking in the a-axis direction (Fig. 2), with the cations and inversion centers alternating. The distances between their least-squares planes are alternately 3.338 (4) and 3.356 (4) Å. The chloride anions, together with the water mol­ecules, form O—H⋯Cl hydrogen bonded (Table 1) zigzag chains running parallel to the b axis (Fig. 2).

Figure 1.

Figure 1

The mol­ecular structure of the disordered cation of the title compound. The bonds of the minor disorder component [14.7 (3)%] are drawn with thin lines. The probability ellipsoids are drawn at the 30% probability level, the H atoms are drawn with arbitrary radii.

Figure 2.

Figure 2

Stereoscopic ORTEP plot (Johnson, 1965) of the packing. The atoms are drawn with arbitrary radii. The cations in the less occupied orientations and the H atoms of the cations were omitted for clarity. The hydrogen bonds are indicated by dotted lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Cl1 0.84 2.34 (1) 3.174 (2) 174 (2)
O1—H12⋯Cl1i 0.84 2.40 (1) 3.240 (2) 178 (2)

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

During an attempt to obtain [Bu4N][Quin-8-S], an aqueous solution of [Bu4N]Cl was added to an aqueous solution of Na(Quin-8-S). The solution was then extracted with CH2Cl2 giving a yellow organic phase, which was then evaporated yielding a yellow oil. After a few hours, yellow–orange crystals of 2H-[1,3]thia­zolo[5,4,3-ij]quinolin-3-ium chloride monohydrate had formed in the oil.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The thia­zolo-quinolinium cation is disordered over two orientations, which refined to site occupation factors of 0.853 (3) and 0.147 (3), respectively. The same anisotropic displacement parameters were used for the ring atoms of the less occupied orientation and the equivalent bonds were restrained to have the same lengths.

Table 2. Experimental details.

Crystal data
Chemical formula C10H8NS+·Cl·H2O
M r 227.70
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.0543 (11), 7.8252 (11), 18.223 (3)
β (°) 94.752 (7)
V3) 1002.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.32 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.695, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6361, 1968, 1474
R int 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.096, 1.04
No. of reflections 1968
No. of parameters 179
No. of restraints 16
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.30

Computer programs: APEX2 and SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL2014/6 (Sheldrick, 2015) and modified ORTEP (Johnson, 1965).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620014650/hb4368sup1.cif

x-05-x201465-sup1.cif (224KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620014650/hb4368Isup2.hkl

x-05-x201465-Isup2.hkl (158.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620014650/hb4368Isup3.mol

CCDC reference: 2042568

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C10H8NS+·Cl·H2O F(000) = 472
Mr = 227.70 Dx = 1.509 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.0543 (11) Å Cell parameters from 1699 reflections
b = 7.8252 (11) Å θ = 2.8–26.1°
c = 18.223 (3) Å µ = 0.55 mm1
β = 94.752 (7)° T = 100 K
V = 1002.5 (3) Å3 Plate, deep yellow
Z = 4 0.32 × 0.15 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer 1968 independent reflections
Radiation source: Incoatec microfocus sealed tube 1474 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.056
φ and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→8
Tmin = 0.695, Tmax = 1.000 k = −7→9
6361 measured reflections l = −12→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: mixed
wR(F2) = 0.096 Only H-atom displacement parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.026P)2 + 0.8115P] where P = (Fo2 + 2Fc2)/3
1968 reflections (Δ/σ)max = 0.001
179 parameters Δρmax = 0.32 e Å3
16 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The thiazolo-quinolinium cation was disordered over two orientations which refined to site occupation factors of 0.853 (3) and 0.147 (3), respectively. The same anisotropic displacement parameters were used for the ring atoms of the less occupied orientation (EADP of SHELXL) and the equivalent bonds were restrained to have the same lengths (SAME of SHELXL). The positions of the H atoms of the water molecule were taken from a difference Fourier map, the O-H distances were fixed to 0.84 Å, and the H atoms were refined with a common isotropic displacement parameter without any constraints to the bond angles. The H atoms of the CH2 groups were refined with a common isotropic displacement parameter and idealized geometries with approximately tetrahedral angles and C-H distances of 0.99 Å (AFIX 23 of SHELXL). The H atoms of the quinoline rings were put at the external bisectors of the C-C-C angles at C-H distances of 0.95 Å and a common isotropic displacement parameter was refined for these H atoms (AFIX 43 of SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.39598 (12) 0.13216 (12) 0.57556 (4) 0.0214 (3) 0.853 (3)
C2 0.3490 (11) 0.2798 (6) 0.6496 (2) 0.0205 (10) 0.853 (3)
H21 0.2482 0.2338 0.6788 0.029 (6)* 0.853 (3)
H22 0.4655 0.2976 0.6829 0.029 (6)* 0.853 (3)
N3 0.2867 (3) 0.4431 (4) 0.61387 (13) 0.0153 (6) 0.853 (3)
C4 0.2379 (4) 0.5808 (4) 0.65067 (19) 0.0233 (8) 0.853 (3)
H4 0.2434 0.5796 0.7029 0.027 (4)* 0.853 (3)
C5 0.1786 (10) 0.7272 (6) 0.61150 (19) 0.0234 (14) 0.853 (3)
H5 0.1436 0.8264 0.6372 0.027 (4)* 0.853 (3)
C6 0.1707 (6) 0.7285 (6) 0.5367 (2) 0.0246 (10) 0.853 (3)
H6 0.1309 0.8297 0.5111 0.027 (4)* 0.853 (3)
C7 0.2144 (18) 0.5684 (10) 0.4181 (3) 0.0204 (11) 0.853 (3)
H7 0.1756 0.6616 0.3870 0.027 (4)* 0.853 (3)
C8 0.2661 (13) 0.4161 (7) 0.3889 (3) 0.0208 (13) 0.853 (3)
H8 0.2660 0.4072 0.3369 0.027 (4)* 0.853 (3)
C9 0.3202 (9) 0.2702 (7) 0.43232 (19) 0.0200 (10) 0.853 (3)
H9 0.3497 0.1651 0.4098 0.027 (4)* 0.853 (3)
C10 0.3286 (7) 0.2850 (4) 0.50763 (17) 0.0149 (9) 0.853 (3)
C11 0.2783 (8) 0.4407 (5) 0.53779 (18) 0.0134 (10) 0.853 (3)
C12 0.2196 (16) 0.5844 (5) 0.4958 (3) 0.0183 (9) 0.853 (3)
Cl1 0.56970 (10) 0.56684 (9) 0.80204 (4) 0.0255 (2)
O1 0.9855 (2) 0.4364 (2) 0.77707 (10) 0.0274 (5)
H11 0.8735 (5) 0.4705 (12) 0.7800 (10) 0.037 (7)*
H12 0.969 (3) 0.3406 (4) 0.7567 (4) 0.037 (7)*
S2 0.1620 (9) 0.8059 (9) 0.5181 (4) 0.0328 (18) 0.147 (3)
C22 0.206 (9) 0.734 (3) 0.6134 (7) 0.0328 (18) 0.147 (3)
H221 0.3133 0.7991 0.6386 0.029 (6)* 0.147 (3)
H222 0.0920 0.7518 0.6404 0.029 (6)* 0.147 (3)
N23 0.254 (3) 0.550 (3) 0.6109 (10) 0.0328 (18) 0.147 (3)
C24 0.302 (3) 0.445 (2) 0.6669 (12) 0.0328 (18) 0.147 (3)
H24 0.2906 0.4853 0.7155 0.027 (4)* 0.147 (3)
C25 0.369 (8) 0.280 (4) 0.6575 (16) 0.0328 (18) 0.147 (3)
H25 0.4197 0.2139 0.6985 0.027 (4)* 0.147 (3)
C26 0.360 (3) 0.215 (3) 0.5881 (12) 0.0328 (18) 0.147 (3)
H26 0.3776 0.0953 0.5821 0.027 (4)* 0.147 (3)
C27 0.336 (7) 0.275 (6) 0.4491 (17) 0.0328 (18) 0.147 (3)
H27 0.3914 0.1696 0.4368 0.027 (4)* 0.147 (3)
C28 0.269 (9) 0.382 (6) 0.394 (3) 0.0328 (18) 0.147 (3)
H28 0.2510 0.3449 0.3440 0.027 (4)* 0.147 (3)
C29 0.228 (13) 0.553 (7) 0.414 (2) 0.0328 (18) 0.147 (3)
H29 0.2043 0.6360 0.3769 0.027 (4)* 0.147 (3)
C30 0.220 (12) 0.602 (3) 0.487 (2) 0.0328 (18) 0.147 (3)
C31 0.259 (7) 0.480 (5) 0.5414 (13) 0.0328 (18) 0.147 (3)
C32 0.327 (6) 0.317 (4) 0.5245 (14) 0.0328 (18) 0.147 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0242 (5) 0.0167 (5) 0.0228 (4) 0.0006 (4) −0.0008 (3) 0.0036 (3)
C2 0.023 (3) 0.0264 (19) 0.0107 (16) −0.0043 (16) −0.0047 (16) 0.0083 (14)
N3 0.0105 (13) 0.0221 (15) 0.0134 (13) −0.0035 (11) 0.0019 (10) −0.0009 (11)
C4 0.0187 (18) 0.033 (2) 0.0190 (16) −0.0096 (15) 0.0062 (14) −0.0105 (15)
C5 0.014 (4) 0.0217 (19) 0.0346 (19) −0.0044 (15) 0.0052 (15) −0.0142 (15)
C6 0.0154 (19) 0.020 (3) 0.038 (2) −0.0044 (18) −0.0019 (16) 0.0085 (19)
C7 0.011 (3) 0.027 (3) 0.0225 (18) −0.003 (2) −0.0034 (15) 0.0107 (16)
C8 0.0154 (17) 0.037 (4) 0.0101 (15) −0.005 (3) 0.0005 (13) 0.0014 (17)
C9 0.014 (2) 0.027 (2) 0.0187 (19) −0.0008 (16) −0.0056 (19) −0.009 (2)
C10 0.0109 (15) 0.0163 (19) 0.0169 (19) −0.0035 (16) −0.0020 (17) 0.0015 (14)
C11 0.005 (2) 0.024 (3) 0.0111 (14) −0.004 (2) 0.0006 (12) 0.0009 (13)
C12 0.0078 (15) 0.020 (2) 0.027 (2) −0.005 (2) −0.001 (2) −0.0029 (17)
Cl1 0.0225 (4) 0.0236 (4) 0.0308 (4) −0.0005 (3) 0.0038 (3) −0.0017 (3)
O1 0.0209 (11) 0.0319 (12) 0.0291 (11) 0.0027 (9) 0.0003 (9) 0.0007 (9)
S2 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C22 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
N23 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C24 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C25 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C26 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C27 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C28 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C29 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C30 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C31 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)
C32 0.015 (3) 0.028 (4) 0.054 (4) 0.001 (2) −0.009 (2) −0.006 (3)

Geometric parameters (Å, º)

S1—C2 1.827 (4) O1—H12 0.84
S1—C10 1.758 (4) S2—C30 1.758 (6)
N3—C2 1.484 (5) S2—C22 1.827 (6)
C2—H21 0.99 C22—N23 1.484 (6)
C2—H22 0.99 C22—H221 0.99
N3—C4 1.329 (4) C22—H222 0.99
N3—C11 1.383 (4) N23—C24 1.329 (5)
C4—C5 1.395 (5) N23—C31 1.384 (5)
C4—H4 0.95 C24—C25 1.395 (7)
C5—C6 1.360 (5) C24—H24 0.95
C5—H5 0.95 C25—C26 1.360 (7)
C6—C12 1.409 (5) C25—H25 0.95
C6—H6 0.95 C26—C32 1.411 (7)
C7—C8 1.366 (5) C26—H26 0.95
C7—C12 1.420 (5) C27—C28 1.366 (6)
C7—H7 0.95 C27—C32 1.419 (6)
C8—C9 1.423 (5) C27—H27 0.95
C8—H8 0.95 C28—C29 1.423 (7)
C9—C10 1.374 (4) C28—H28 0.95
C9—H9 0.95 C29—C30 1.373 (6)
C10—C11 1.394 (4) C29—H29 0.95
C11—C12 1.403 (5) C30—C31 1.394 (6)
O1—H11 0.84 C31—C32 1.402 (6)
N3—C2—S1 106.6 (2) C30—S2—C22 90.3 (14)
N3—C2—H21 110.4 N23—C22—S2 106.9 (11)
S1—C2—H21 110.4 N23—C22—H221 110.3
N3—C2—H22 110.4 S2—C22—H221 110.3
S1—C2—H22 110.4 N23—C22—H222 110.3
H21—C2—H22 108.6 S2—C22—H222 110.3
C2—S1—C10 91.98 (16) H221—C22—H222 108.6
S1—C10—C9 129.2 (3) C24—N23—C31 116 (3)
S1—C10—C11 112.3 (2) C24—N23—C22 128.2 (18)
C9—C10—C11 118.4 (4) C31—N23—C22 116 (2)
C10—C11—N3 114.6 (3) N23—C24—C25 123 (3)
C12—C11—N3 121.4 (3) N23—C24—H24 118.5
C10—C11—C12 124.0 (3) C25—C24—H24 118.5
C11—N3—C2 114.5 (3) C26—C25—C24 118 (3)
C11—N3—C4 121.7 (3) C26—C25—H25 121.0
C2—N3—C4 123.8 (3) C24—C25—H25 121.0
N3—C4—C5 119.1 (4) C25—C26—C32 123 (3)
N3—C4—H4 120.5 C25—C26—H26 118.5
C5—C4—H4 120.5 C32—C26—H26 118.5
C6—C5—C4 120.3 (4) C28—C27—C32 122 (4)
C6—C5—H5 119.8 C28—C27—H27 118.8
C4—C5—H5 119.8 C32—C27—H27 118.8
C5—C6—C12 122.1 (4) C27—C28—C29 116 (5)
C5—C6—H6 118.9 C27—C28—H28 121.9
C12—C6—H6 118.9 C29—C28—H28 121.9
C8—C7—C12 118.6 (6) C30—C29—C28 123 (5)
C8—C7—H7 120.7 C30—C29—H29 118.6
C12—C7—H7 120.7 C28—C29—H29 118.6
C7—C8—C9 123.5 (6) C29—C30—C31 118 (3)
C7—C8—H8 118.3 C29—C30—S2 127 (3)
C9—C8—H8 118.3 C31—C30—S2 115 (2)
C10—C9—C8 118.4 (5) N23—C31—C30 112 (3)
C10—C9—H9 120.8 N23—C31—C32 127 (3)
C8—C9—H9 120.8 C30—C31—C32 121.1 (17)
C11—C12—C6 115.3 (4) C31—C32—C26 112 (3)
C11—C12—C7 117.1 (4) C31—C32—C27 118 (2)
C6—C12—C7 127.6 (5) C26—C32—C27 130 (3)
H11—O1—H12 102.2 (17)
C10—S1—C2—N3 −1.3 (5) C30—S2—C22—N23 −3 (4)
S1—C2—N3—C4 179.3 (3) S2—C22—N23—C24 178 (2)
S1—C2—N3—C11 0.8 (6) S2—C22—N23—C31 2 (5)
C11—N3—C4—C5 −0.6 (6) C31—N23—C24—C25 5 (5)
C2—N3—C4—C5 −179.0 (6) C22—N23—C24—C25 −171 (5)
N3—C4—C5—C6 0.1 (8) N23—C24—C25—C26 −9 (6)
C4—C5—C6—C12 0.5 (10) C24—C25—C26—C32 14 (6)
C12—C7—C8—C9 1.9 (17) C32—C27—C28—C29 14 (9)
C7—C8—C9—C10 −2.8 (13) C27—C28—C29—C30 −12 (12)
C8—C9—C10—C11 1.9 (9) C28—C29—C30—C31 1 (13)
C8—C9—C10—S1 −178.0 (5) C28—C29—C30—S2 −177 (6)
C2—S1—C10—C9 −178.5 (6) C22—S2—C30—C29 −177 (8)
C2—S1—C10—C11 1.6 (5) C22—S2—C30—C31 4 (6)
C4—N3—C11—C10 −178.1 (4) C24—N23—C31—C30 −176 (5)
C2—N3—C11—C10 0.4 (7) C22—N23—C31—C30 1 (7)
C4—N3—C11—C12 0.6 (9) C24—N23—C31—C32 −7 (7)
C2—N3—C11—C12 179.2 (7) C22—N23—C31—C32 170 (5)
C9—C10—C11—N3 178.6 (5) C29—C30—C31—N23 177 (7)
S1—C10—C11—N3 −1.5 (6) S2—C30—C31—N23 −4 (8)
C9—C10—C11—C12 −0.1 (11) C29—C30—C31—C32 8 (11)
S1—C10—C11—C12 179.8 (7) S2—C30—C31—C32 −173 (4)
N3—C11—C12—C6 0.0 (12) N23—C31—C32—C26 11 (7)
C10—C11—C12—C6 178.6 (6) C30—C31—C32—C26 179 (5)
N3—C11—C12—C7 −179.5 (8) N23—C31—C32—C27 −174 (4)
C10—C11—C12—C7 −0.8 (14) C30—C31—C32—C27 −6 (9)
C5—C6—C12—C11 −0.5 (12) C25—C26—C32—C31 −14 (6)
C5—C6—C12—C7 178.8 (10) C25—C26—C32—C27 171 (5)
C8—C7—C12—C11 0.0 (16) C28—C27—C32—C31 −5 (8)
C8—C7—C12—C6 −179.4 (10) C28—C27—C32—C26 169 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H11···Cl1 0.84 2.34 (1) 3.174 (2) 174 (2)
O1—H12···Cl1i 0.84 2.40 (1) 3.240 (2) 178 (2)

Symmetry code: (i) −x+3/2, y−1/2, −z+3/2.

Funding Statement

Financial support by NAWI Graz is gratefully acknowledged.

References

  1. Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
  3. Kim, D. G., Sokolova, S. V., Lukina, V. V. & Volkova, S. A. (1993). Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tek. 36, 107–10.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620014650/hb4368sup1.cif

x-05-x201465-sup1.cif (224KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620014650/hb4368Isup2.hkl

x-05-x201465-Isup2.hkl (158.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620014650/hb4368Isup3.mol

CCDC reference: 2042568

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES