Skip to main content
IUCrData logoLink to IUCrData
. 2020 Nov 3;5(Pt 11):x201433. doi: 10.1107/S2414314620014339

cis-{1-Butyl-3-[2-(phenyl­sulfan­yl)eth­yl]-4-imidazolin-2-yl-κ2 C 2,S′}di­chlorido­platinum(II)

Bing-Bing Liang a, Hong-Gang Xiong a, Wan-Yu Hong a, Hua-Gang Yao a,*
Editor: H Ishidab
PMCID: PMC9462157  PMID: 36340012

The title compound, [PtCl2(C15H20N2S)], was synthesized from the reaction between N-heterocyclic carbene(NHC)-thio­ether ligand and potassium tetra­chloro­platinate. In the crystal, the mol­ecules are linked via C—H⋯Cl and C—H⋯π inter­actions, forming a layer parallel to the ab plane.

Keywords: crystal structure, Pt complex, N-heterocyclic carbene(NHC)-thio­ether ligand

Abstract

The asymmetric unit of the title compound, [PtCl2(C15H20N2S)], comprises one PtII ion, one N-heterocyclic carbene(NHC)-thio­ether ligand and two chloride ions. The PtII ion is four-coordinated by one C atom and one S atom of the NHC-thio­ether ligand, and by two chloride ions, forming an approximately square-planar geometry. In the crystal, the mol­ecules are linked via C—H⋯Cl and C—H⋯π inter­actions, forming a layer parallel to the ab plane. graphic file with name x-05-x201433-scheme1-3D1.jpg

Structure description

Nitro­gen heterocyclic carbene (NHC) exhibits attractive advantages such as simple operation and mild conditions in organic catalytic synthesis (Enders et al., 2007). In addition, as a neutral two-electron donor, NHC is currently regarded as the most effective ligand for the synthesis of new organometallic complexes owing to its unique features (Hahn & Jahnke, 2008; Nelson & Nolan, 2013). The first distinctive characteristic is the strong donor property of NHC ligands, which makes the inter­action with metal center closer (Perrin et al., 2001; Chianese et al., 2003). The second one is that NHC can be flexibly modified by introducing functional groups onto the nitro­gen atoms of the N-heterocycle ring. Over the past two decades, numerous attempts have been made to construct diverse donor-functionalized NHCs and their organometallic complexes, and N-, O- and P-functionalized NHCs have been developed and applied in organic synthesis, drug discovery and materials science (Kühl, 2007). However, there are still rare investigations of NHC with S-donor complexes (Liu et al., 2017). As soft and electron-rich ligands, thio­ethers usually have versatile coordination chemistry, and can form strong M—S bonds with the metal center (Bierenstiel & Cross, 2011; Yuan & Huynh, 2012). The development of new organometallic complexes bearing NHC-thio­ether ligands (Rosen et al., 2013) is thus highly desirable. In recent years, NHC complexes with group 10 metals have received increasing attention because of their catalytic activities. In contrast to complexes of lighter homologues, PtII-NHC complexes have been less well studied. The novel title metal PtII complex combined with an NHC-thio­ether ligand was designed and synthesized.

The asymmetric unit of the title complex is composed of one PtII ion, one NHC-thio­ether ligand, and two chloride ions. As shown in Fig. 1, the PtII ion is four-coordinated by one C atom and one S atom of the NHC-thio­ether ligand, and by two chloride ions in a nearly square-planar environment. The thio­ether side chain coordinates to the PtII atom in a chelating fashion, forming a six-membered ring with a distorted boat conformation. The Pt—C and Pt—S bond lengths are 1.968 (12) and 2.266 (3) Å, respectively, while the C—Pt—S bond angle is 87.93 (11)°. The two Pt—Cl bond lengths are different from each other [Pt1—Cl1 = 2.360 (3) Å and Pt1—Cl2 = 2.329 (3) Å]. In the crystal, mol­ecules are linked via C—H⋯Cl and C—H⋯π inter­actions (Table 1), forming a layer parallel to the ab plane (Figs. 2 and 3). A weak intra­molecular C—H⋯π inter­action is also observed.

Figure 1.

Figure 1

The structure of the title complex, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C10/C9/N2/C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2i 0.93 2.58 3.485 (12) 163
C2—H2⋯Cg1 0.93 2.98 3.828 (13) 151
C14—H14ACg1ii 0.97 2.82 3.480 (13) 126

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

A packing diagram of the title compound, showing intra- and inter­molecular C—H⋯π inter­actions (dashed lines).

Figure 3.

Figure 3

A view of the crystal packing of the title complex. Dashed lines denote the inter­molecular C—H⋯Cl hydrogen bonds.

Synthesis and crystallization

N-Heterocyclic carbene (NHC)-thio­ether ligand was synthesized by a slight modification of a reported procedure (Liu et al., 2017). Butyl-imidazole and 2-chloro­ethyl­benzene sulfide (molar ratio 1: 1) were dissolved in aceto­nitrile at 393 K for 2 days to obtain a dark-brown liquid, and then the solvent was removed by evaporation. The residue was washed repeatedly with diethyl ether, and a brownish-yellow solid was obtained.

The title complex was synthesized from the reaction of the NHC-thio­ether ligand with potassium tetra­chloro­platinate. A reaction tube was charged with the NHC-thio­ether ligand (0.1710 g, 0.576 mM) and 6 ml of aceto­nitrile. The tube was evacuated and back-filled with nitro­gen. Then a solution of potassium tetra­chloro­platinate (0.200 g, 0.480 mM) in 2 ml of water was added in the dark. Keeping it in the dark, the reaction mixture was allowed to stir at 353 K for 24 h. The mixture was concentrated in vacuo and purified by silica gel column chromatography. Pale-yellow rectangular crystals were obtained from the solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The anisotropy of displacement ellipsoid of atom C9 was restrained with ISOR.

Table 2. Experimental details.

Crystal data
Chemical formula [PtCl2(C15H20N2S)]
M r 526.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.4254 (3), 10.1535 (4), 20.2262 (10)
V3) 1730.30 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.53
Crystal size (mm) 0.12 × 0.11 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.310, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11246, 3045, 2911
R int 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.073, 1.10
No. of reflections 3045
No. of parameters 190
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −0.90
Absolute structure Flack x determined using 1166 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.020 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620014339/is5540sup1.cif

x-05-x201433-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620014339/is5540Isup2.hkl

x-05-x201433-Isup2.hkl (167KB, hkl)

CCDC reference: 2041081

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[PtCl2(C15H20N2S)] Dx = 2.021 Mg m3
Mr = 526.38 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 6072 reflections
a = 8.4254 (3) Å θ = 2.3–29.3°
b = 10.1535 (4) Å µ = 8.53 mm1
c = 20.2262 (10) Å T = 100 K
V = 1730.30 (13) Å3 Block, colourless
Z = 4 0.12 × 0.11 × 0.09 mm
F(000) = 1008

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2 diffractometer 3045 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 2911 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.050
Detector resolution: 5.2684 pixels mm-1 θmax = 25.0°, θmin = 2.0°
ω scans h = −9→10
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) k = −10→12
Tmin = 0.310, Tmax = 1.000 l = −24→22
11246 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0237P)2 + 8.5737P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 1.27 e Å3
3045 reflections Δρmin = −0.90 e Å3
190 parameters Absolute structure: Flack x determined using 1166 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraints Absolute structure parameter: −0.020 (7)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.63221 (5) 0.45155 (4) 0.36816 (2) 0.01172 (13)
Cl1 0.8671 (4) 0.3701 (3) 0.41687 (15) 0.0251 (7)
Cl2 0.7685 (3) 0.4970 (3) 0.27062 (15) 0.0166 (7)
S1 0.5012 (4) 0.3876 (3) 0.46058 (16) 0.0132 (6)
N1 0.3999 (10) 0.6337 (9) 0.2997 (5) 0.013 (2)
N2 0.2959 (10) 0.4495 (10) 0.3301 (5) 0.013 (2)
C1 0.4671 (13) 0.5293 (12) 0.5109 (6) 0.017 (3)
C2 0.3753 (16) 0.6352 (11) 0.4903 (6) 0.022 (3)
H2 0.324679 0.633418 0.449406 0.027*
C3 0.3602 (18) 0.7440 (11) 0.5317 (6) 0.023 (3)
H3 0.301393 0.816485 0.517916 0.027*
C4 0.4319 (15) 0.7454 (13) 0.5932 (7) 0.026 (3)
H4 0.421705 0.818696 0.620501 0.031*
C5 0.5187 (15) 0.6376 (14) 0.6141 (7) 0.028 (3)
H5 0.565556 0.637828 0.655695 0.034*
C6 0.5362 (14) 0.5289 (13) 0.5730 (6) 0.023 (3)
H6 0.594069 0.456209 0.587208 0.028*
C7 0.2978 (14) 0.3408 (13) 0.4385 (6) 0.017 (3)
H7A 0.270431 0.259251 0.460755 0.021*
H7B 0.225027 0.408416 0.453583 0.021*
C8 0.2785 (13) 0.3224 (11) 0.3637 (7) 0.016 (3)
H8A 0.358118 0.261421 0.347493 0.019*
H8B 0.174644 0.285757 0.354193 0.019*
C9 0.1750 (14) 0.5213 (13) 0.3000 (6) 0.020 (3)
H9 0.069889 0.495503 0.294379 0.024*
C10 0.2414 (14) 0.6358 (12) 0.2805 (6) 0.015 (3)
H10 0.190345 0.703945 0.258351 0.018*
C11 0.4343 (14) 0.5184 (11) 0.3288 (6) 0.016 (3)
C12 0.5054 (15) 0.7492 (12) 0.2959 (6) 0.018 (3)
H12A 0.477671 0.801717 0.257510 0.021*
H12B 0.614370 0.719995 0.290687 0.021*
C13 0.4914 (14) 0.8325 (11) 0.3576 (6) 0.018 (3)
H13A 0.533278 0.783493 0.394901 0.022*
H13B 0.380163 0.850067 0.366229 0.022*
C14 0.5803 (14) 0.9636 (13) 0.3520 (6) 0.023 (3)
H14A 0.691832 0.946477 0.343681 0.028*
H14B 0.538795 1.012962 0.314704 0.028*
C15 0.5640 (17) 1.0449 (15) 0.4139 (7) 0.037 (4)
H15A 0.620925 1.126163 0.408726 0.055*
H15B 0.453847 1.063416 0.421815 0.055*
H15C 0.606756 0.996986 0.450767 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.0068 (2) 0.0125 (2) 0.0158 (2) −0.00009 (17) 0.0003 (2) −0.0010 (2)
Cl1 0.0119 (14) 0.0317 (17) 0.0317 (18) 0.0032 (16) −0.0018 (16) 0.0097 (14)
Cl2 0.0094 (15) 0.0230 (15) 0.0174 (16) −0.0007 (11) 0.0022 (12) −0.0003 (12)
S1 0.0116 (15) 0.0097 (15) 0.0183 (17) −0.0005 (11) 0.0018 (13) 0.0005 (13)
N1 0.004 (5) 0.014 (5) 0.022 (6) 0.001 (4) −0.004 (4) 0.000 (4)
N2 0.010 (3) 0.012 (3) 0.016 (3) 0.000 (2) −0.001 (2) 0.001 (2)
C1 0.011 (6) 0.020 (7) 0.020 (7) 0.000 (5) 0.004 (5) −0.006 (6)
C2 0.013 (6) 0.024 (7) 0.030 (7) −0.002 (6) 0.002 (7) −0.003 (6)
C3 0.029 (7) 0.010 (6) 0.029 (8) 0.005 (6) 0.002 (7) −0.003 (5)
C4 0.021 (7) 0.023 (7) 0.033 (9) −0.006 (5) 0.011 (6) −0.018 (7)
C5 0.017 (7) 0.042 (9) 0.026 (9) 0.001 (6) −0.005 (6) −0.012 (7)
C6 0.013 (7) 0.025 (8) 0.032 (8) 0.007 (5) −0.004 (5) 0.000 (6)
C7 0.015 (6) 0.022 (7) 0.016 (7) −0.007 (5) −0.002 (5) 0.001 (6)
C8 0.008 (6) 0.016 (6) 0.023 (7) −0.003 (4) −0.005 (6) −0.004 (6)
C9 0.012 (7) 0.031 (8) 0.018 (7) 0.005 (5) −0.012 (5) −0.005 (6)
C10 0.015 (6) 0.013 (6) 0.017 (7) 0.010 (5) 0.003 (5) 0.004 (6)
C11 0.014 (6) 0.012 (7) 0.020 (7) −0.005 (5) −0.007 (5) 0.003 (5)
C12 0.013 (7) 0.022 (7) 0.018 (7) 0.003 (5) 0.002 (5) 0.010 (6)
C13 0.010 (6) 0.021 (6) 0.023 (8) 0.000 (5) −0.005 (5) −0.003 (6)
C14 0.016 (6) 0.022 (7) 0.031 (8) 0.000 (5) −0.003 (5) 0.003 (6)
C15 0.039 (8) 0.024 (7) 0.047 (9) −0.001 (7) −0.017 (7) 0.007 (8)

Geometric parameters (Å, º)

Pt1—Cl1 2.360 (3) C6—H6 0.9300
Pt1—Cl2 2.329 (3) C7—H7A 0.9700
Pt1—S1 2.266 (3) C7—H7B 0.9700
Pt1—C11 1.968 (12) C7—C8 1.533 (18)
S1—C1 1.786 (12) C8—H8A 0.9700
S1—C7 1.834 (12) C8—H8B 0.9700
N1—C10 1.390 (15) C9—H9 0.9300
N1—C11 1.343 (15) C9—C10 1.349 (17)
N1—C12 1.474 (15) C10—H10 0.9300
N2—C8 1.465 (15) C12—H12A 0.9700
N2—C9 1.393 (14) C12—H12B 0.9700
N2—C11 1.360 (14) C12—C13 1.513 (17)
C1—C2 1.388 (17) C13—H13A 0.9700
C1—C6 1.385 (17) C13—H13B 0.9700
C2—H2 0.9300 C13—C14 1.532 (16)
C2—C3 1.394 (16) C14—H14A 0.9700
C3—H3 0.9300 C14—H14B 0.9700
C3—C4 1.383 (19) C14—C15 1.507 (18)
C4—H4 0.9300 C15—H15A 0.9600
C4—C5 1.383 (19) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C5—C6 1.388 (19)
Cl2—Pt1—Cl1 90.54 (11) N2—C8—C7 109.9 (10)
S1—Pt1—Cl1 87.93 (11) N2—C8—H8A 109.7
S1—Pt1—Cl2 174.77 (11) N2—C8—H8B 109.7
C11—Pt1—Cl1 179.0 (4) C7—C8—H8A 109.7
C11—Pt1—Cl2 90.4 (4) C7—C8—H8B 109.7
C11—Pt1—S1 91.1 (4) H8A—C8—H8B 108.2
C1—S1—Pt1 108.5 (4) N2—C9—H9 127.0
C1—S1—C7 101.4 (6) C10—C9—N2 106.0 (10)
C7—S1—Pt1 109.2 (4) C10—C9—H9 127.0
C10—N1—C12 123.6 (10) N1—C10—H10 126.1
C11—N1—C10 110.1 (10) C9—C10—N1 107.7 (10)
C11—N1—C12 125.9 (9) C9—C10—H10 126.1
C9—N2—C8 126.2 (9) N1—C11—Pt1 131.4 (8)
C11—N2—C8 123.2 (9) N1—C11—N2 105.7 (9)
C11—N2—C9 110.5 (10) N2—C11—Pt1 122.8 (8)
C2—C1—S1 122.8 (9) N1—C12—H12A 109.5
C6—C1—S1 116.6 (10) N1—C12—H12B 109.5
C6—C1—C2 120.7 (12) N1—C12—C13 110.8 (10)
C1—C2—H2 120.5 H12A—C12—H12B 108.1
C1—C2—C3 118.9 (12) C13—C12—H12A 109.5
C3—C2—H2 120.5 C13—C12—H12B 109.5
C2—C3—H3 119.7 C12—C13—H13A 109.0
C4—C3—C2 120.7 (12) C12—C13—H13B 109.0
C4—C3—H3 119.7 C12—C13—C14 112.7 (10)
C3—C4—H4 120.1 H13A—C13—H13B 107.8
C3—C4—C5 119.8 (12) C14—C13—H13A 109.0
C5—C4—H4 120.1 C14—C13—H13B 109.0
C4—C5—H5 119.9 C13—C14—H14A 109.3
C4—C5—C6 120.2 (13) C13—C14—H14B 109.3
C6—C5—H5 119.9 H14A—C14—H14B 108.0
C1—C6—C5 119.7 (12) C15—C14—C13 111.7 (11)
C1—C6—H6 120.2 C15—C14—H14A 109.3
C5—C6—H6 120.2 C15—C14—H14B 109.3
S1—C7—H7A 109.3 C14—C15—H15A 109.5
S1—C7—H7B 109.3 C14—C15—H15B 109.5
H7A—C7—H7B 107.9 C14—C15—H15C 109.5
C8—C7—S1 111.8 (8) H15A—C15—H15B 109.5
C8—C7—H7A 109.3 H15A—C15—H15C 109.5
C8—C7—H7B 109.3 H15B—C15—H15C 109.5
Pt1—S1—C1—C2 62.3 (11) C8—N2—C9—C10 175.0 (11)
Pt1—S1—C1—C6 −118.3 (9) C8—N2—C11—Pt1 3.2 (16)
Pt1—S1—C7—C8 14.3 (10) C8—N2—C11—N1 −174.1 (10)
S1—C1—C2—C3 −177.4 (10) C9—N2—C8—C7 −108.8 (12)
S1—C1—C6—C5 178.0 (10) C9—N2—C11—Pt1 178.8 (8)
S1—C7—C8—N2 −67.4 (11) C9—N2—C11—N1 1.5 (14)
N1—C12—C13—C14 −171.7 (10) C10—N1—C11—Pt1 −179.0 (10)
N2—C9—C10—N1 −0.9 (13) C10—N1—C11—N2 −2.0 (14)
C1—S1—C7—C8 128.8 (9) C10—N1—C12—C13 86.3 (13)
C1—C2—C3—C4 −2 (2) C11—N1—C10—C9 1.8 (14)
C2—C1—C6—C5 −2.5 (19) C11—N1—C12—C13 −85.0 (14)
C2—C3—C4—C5 0 (2) C11—N2—C8—C7 66.0 (14)
C3—C4—C5—C6 1 (2) C11—N2—C9—C10 −0.4 (14)
C4—C5—C6—C1 0 (2) C12—N1—C10—C9 −170.7 (11)
C6—C1—C2—C3 3.2 (19) C12—N1—C11—Pt1 −6.7 (19)
C7—S1—C1—C2 −52.6 (11) C12—N1—C11—N2 170.3 (10)
C7—S1—C1—C6 126.8 (10) C12—C13—C14—C15 179.8 (10)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C10/C9/N2/C11 ring.

D—H···A D—H H···A D···A D—H···A
C9—H9···Cl2i 0.93 2.58 3.485 (12) 163
C2—H2···Cg1 0.93 2.98 3.828 (13) 151
C14—H14A···Cg1ii 0.97 2.82 3.480 (13) 126

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2.

References

  1. Bierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574–590.
  2. Chianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Enders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606–5655. [DOI] [PubMed]
  5. Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122–3172. [DOI] [PubMed]
  6. Kühl, O. (2007). Chem. Soc. Rev. 36, 592–607.
  7. Liu, Y., Kean, Z. S., d’Aquino, A. I., Manraj, Y. D., Mendez-Arroyo, J. & Mirkin, C. A. (2017). Inorg. Chem. 56, 5902–5910. [DOI] [PubMed]
  8. Nelson, D. J. & Nolan, S. P. (2013). Chem. Soc. Rev. 42, 6723–6753. [DOI] [PubMed]
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Perrin, L., Clot, E., Eisenstein, O., Loch, J. & Crabtree, R. H. (2001). Inorg. Chem. 40, 5806–5811. [DOI] [PubMed]
  11. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Rosen, M. S., Stern, C. L. & Mirkin, C. A. (2013). Chem. Sci. 4, 4193–4198.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Yuan, D. & Huynh, H. V. (2012). Molecules, 17, 2491–2517. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620014339/is5540sup1.cif

x-05-x201433-sup1.cif (19.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620014339/is5540Isup2.hkl

x-05-x201433-Isup2.hkl (167KB, hkl)

CCDC reference: 2041081

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES