Skip to main content
IUCrData logoLink to IUCrData
. 2020 Oct 9;5(Pt 10):x201335. doi: 10.1107/S2414314620013358

Pyridine-4-carboxamidoxime N-oxide

Clifford W Padgett a,*, Kirkland Sheriff a, Will E Lynch a
Editor: S Bernèsb
PMCID: PMC9462162  PMID: 36339027

The mol­ecular structure of pyridine-4-carboxamidoxime N-oxide is presented, which gives a two-dimensional supra­molecular crystal structure.

Keywords: crystal structure, N-oxide, oxime, hydrogen bonding, supra­molecular structure

Abstract

Our work in the area of synthesis of metal–organic frameworks (MOFs) based on organic N-oxides led to the crystallization of pyridine-4-carboxamidoxime N-oxide. Herein we report the first crystal structure of the title compound, C6H7N3O2 [systematic name: (Z)-4-(N′-hy­droxy­carbamimido­yl)pyridine N-oxide]. The hy­droxy­carbamimidoyl group is essentially coplanar with the aromatic ring, r.m.s.d. = 0.112 Å. The compound crystallizes in hydrogen-bonding layers built from the formation of strong O—H⋯O hydrogen bonds between the oxime oxygen atom and the oxygen atom of the N-oxide, and the formation of N—H⋯O hydrogen bonds between one amine nitro­gen atom and the N-oxide oxygen atom. These combined build R 3 4(24) ring motifs in the crystal. The crystal structure has no π–π inter­actions. graphic file with name x-05-x201335-scheme1-3D1.jpg

Structure description

Since their first reported syntheses (Meisenheimer et al., 1926), pyridine N-oxide and related compounds have garnered much inter­est in chemistry. We are particularly inter­ested in their uses in coordination polymers and as potential catalysts. The utility of these aromatic N-oxides to facilitate organic oxotransfer reactions has been well documented over the years (see, for example: Espenson, 2003). Many of these reactions are actually catalyzed by transition-metal inter­actions with the N-oxide ligands (see, for example: Moustafa et al., 2014). Others have reported their use as coordination polymers (Ren et al., 2018). We have also previously reported N-oxides used in coordination polymers of Mn (Kang et al., 2017 and Lynch et al., 2018). In this work, the syntheses of metal complexes of the title compound were attempted (Mn, Cu, Ce, Nd, Er, and Pr) by mixing the halide or nitrate salts of the metals with the title compound in methanol; unfortunately, all resulting crystals were of the uncomplexed ligand.

Herein we report the first crystal structure of pyridine-4-carboxamidoxime N-oxide (Fig. 1), which crystallizes in the monoclinic space group P21/c. The mol­ecule is nearly planar with a r.m.s.d. of 0.112 Å for all non-hydrogen atoms, with the carbamimidoyl group slightly rotated by 15.09 (8)° with respect to the pyridine ring plane. N1—O1 has a distance of 1.3226 (18) Å and is consistent with normal N-oxide distances. The crystal structure contains a strong inter­molecular hydrogen bond between O2⋯O1i which forms a chain running parallel to the b axis; the O2⋯O1i separation is 2.6747 (19) Å. Another hydrogen bond is formed between N3⋯O1ii which links neighboring chains together; the N3⋯O1ii separation is 2.899 (2) Å [symmetry codes: (i) x, y + 1, z; (ii) x, −y +  Inline graphic , z +  Inline graphic , see Table 1].

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.91 (3) 1.77 (3) 2.6747 (19) 172 (2)
N3—H3A⋯O1ii 0.91 (2) 2.00 (2) 2.899 (2) 167 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

These hydrogen bonds link four mol­ecules together and form an Inline graphic (24) ring motif in the crystal. Each mol­ecule is also part of four different R(24) synthons, generating sheets of hydrogen-bonding mol­ecules parallel to the (100) face of the unit cell (Fig. 2). There are no other short contacts or π–π inter­actions observed in the crystal.

Figure 2.

Figure 2

Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds are colored red.

Synthesis and crystallization

An amount of 0.025 g of pyridine-4-carboxamidoxime N-oxide (Alfa Aesar) was weighed and dissolved in a 25 ml beaker in enough methanol to form a solution that allowed to slowly evaporate at room temperature. The clear crystals were analyzed on a Rigaku Xtal Miniflex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H7N3O2
M r 153.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 7.4130 (8), 9.2858 (7), 10.1238 (10)
β (°) 102.841 (10)
V3) 679.45 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.35 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.940, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5858, 1238, 961
R int 0.034
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.101, 1.04
No. of reflections 1238
No. of parameters 113
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.15

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620013358/bh4056sup1.cif

x-05-x201335-sup1.cif (189.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620013358/bh4056Isup2.hkl

x-05-x201335-Isup2.hkl (100.5KB, hkl)

CCDC reference: 2035503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X–ray facility.

full crystallographic data

Crystal data

C6H7N3O2 F(000) = 320
Mr = 153.15 Dx = 1.497 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.4130 (8) Å Cell parameters from 3017 reflections
b = 9.2858 (7) Å θ = 2.1–32.6°
c = 10.1238 (10) Å µ = 0.12 mm1
β = 102.841 (10)° T = 170 K
V = 679.45 (11) Å3 Block, clear dark colourless
Z = 4 0.35 × 0.2 × 0.2 mm

Data collection

Rigaku XtaLAB mini diffractometer 1238 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 961 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.034
Detector resolution: 13.6612 pixels mm-1 θmax = 25.4°, θmin = 2.8°
ω–scans h = −8→8
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −11→11
Tmin = 0.940, Tmax = 1.000 l = −12→12
5858 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2172P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1238 reflections Δρmax = 0.17 e Å3
113 parameters Δρmin = −0.14 e Å3
3 restraints Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.007 (2)

Special details

Refinement. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). N—H and O—H hydrogen atoms were refined with free coordinates and isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7185 (2) 0.20253 (15) 0.40257 (15) 0.0361 (4)
C1 0.6365 (3) 0.31255 (19) 0.32458 (18) 0.0392 (5)
H1 0.565809 0.293556 0.235921 0.047*
O1 0.6953 (2) 0.06920 (13) 0.35596 (13) 0.0498 (4)
C2 0.6543 (2) 0.45181 (18) 0.37200 (17) 0.0371 (5)
H2 0.596971 0.528186 0.315518 0.044*
N2 0.7210 (2) 0.73345 (15) 0.47364 (16) 0.0434 (4)
O2 0.7388 (2) 0.86472 (14) 0.54650 (15) 0.0628 (5)
H2A 0.713 (3) 0.933 (3) 0.481 (2) 0.084 (8)*
C3 0.7554 (2) 0.48156 (17) 0.50187 (16) 0.0311 (4)
N3 0.8319 (3) 0.64526 (18) 0.69433 (16) 0.0450 (5)
H3A 0.807 (3) 0.572 (2) 0.748 (2) 0.066 (7)*
H3B 0.805 (3) 0.7337 (18) 0.722 (2) 0.059 (7)*
C4 0.8403 (3) 0.36626 (19) 0.57809 (18) 0.0382 (5)
H4 0.912748 0.382572 0.666750 0.046*
C5 0.8210 (3) 0.22887 (19) 0.52697 (19) 0.0407 (5)
H5 0.881159 0.151356 0.580441 0.049*
C6 0.7673 (2) 0.62923 (18) 0.55763 (17) 0.0337 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0481 (9) 0.0226 (7) 0.0376 (8) 0.0000 (7) 0.0092 (7) −0.0035 (6)
C1 0.0496 (11) 0.0309 (10) 0.0334 (9) 0.0011 (8) 0.0016 (8) −0.0018 (8)
O1 0.0790 (10) 0.0213 (7) 0.0470 (8) −0.0002 (6) 0.0098 (7) −0.0077 (6)
C2 0.0468 (11) 0.0263 (9) 0.0359 (10) 0.0036 (8) 0.0044 (8) 0.0038 (7)
N2 0.0670 (11) 0.0213 (8) 0.0419 (9) −0.0020 (7) 0.0119 (8) −0.0021 (7)
O2 0.1140 (14) 0.0213 (7) 0.0520 (9) −0.0023 (8) 0.0158 (9) −0.0038 (7)
C3 0.0334 (9) 0.0255 (9) 0.0348 (9) −0.0015 (7) 0.0083 (8) −0.0008 (7)
N3 0.0656 (11) 0.0286 (9) 0.0387 (9) −0.0060 (8) 0.0068 (8) −0.0042 (7)
C4 0.0446 (11) 0.0299 (9) 0.0360 (10) 0.0018 (8) 0.0002 (8) −0.0005 (8)
C5 0.0517 (11) 0.0288 (10) 0.0377 (10) 0.0064 (8) 0.0018 (9) 0.0036 (8)
C6 0.0382 (10) 0.0265 (9) 0.0365 (10) −0.0046 (7) 0.0088 (8) −0.0013 (8)

Geometric parameters (Å, º)

N1—C1 1.350 (2) O2—H2A 0.91 (3)
N1—O1 1.3226 (18) C3—C4 1.386 (2)
N1—C5 1.341 (2) C3—C6 1.478 (2)
C1—H1 0.9500 N3—H3A 0.912 (16)
C1—C2 1.376 (2) N3—H3B 0.903 (15)
C2—H2 0.9500 N3—C6 1.368 (2)
C2—C3 1.389 (2) C4—H4 0.9500
N2—O2 1.4156 (19) C4—C5 1.372 (2)
N2—C6 1.284 (2) C5—H5 0.9500
O1—N1—C1 119.59 (15) C4—C3—C6 121.51 (15)
O1—N1—C5 120.50 (15) H3A—N3—H3B 114 (2)
C5—N1—C1 119.91 (15) C6—N3—H3A 116.5 (14)
N1—C1—H1 119.6 C6—N3—H3B 111.1 (14)
N1—C1—C2 120.77 (16) C3—C4—H4 119.6
C2—C1—H1 119.6 C5—C4—C3 120.77 (16)
C1—C2—H2 119.8 C5—C4—H4 119.6
C1—C2—C3 120.47 (16) N1—C5—C4 120.90 (16)
C3—C2—H2 119.8 N1—C5—H5 119.5
C6—N2—O2 108.89 (15) C4—C5—H5 119.5
N2—O2—H2A 103.8 (16) N2—C6—C3 117.52 (15)
C2—C3—C6 121.33 (15) N2—C6—N3 124.75 (16)
C4—C3—C2 117.14 (16) N3—C6—C3 117.71 (15)
N1—C1—C2—C3 −0.7 (3) C2—C3—C6—N3 165.27 (17)
C1—N1—C5—C4 1.7 (3) O2—N2—C6—C3 179.01 (15)
C1—C2—C3—C4 1.8 (3) O2—N2—C6—N3 −3.0 (3)
C1—C2—C3—C6 −176.45 (16) C3—C4—C5—N1 −0.5 (3)
O1—N1—C1—C2 178.21 (17) C4—C3—C6—N2 165.18 (17)
O1—N1—C5—C4 −177.58 (17) C4—C3—C6—N3 −13.0 (3)
C2—C3—C4—C5 −1.2 (3) C5—N1—C1—C2 −1.1 (3)
C2—C3—C6—N2 −16.6 (3) C6—C3—C4—C5 177.05 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1i 0.91 (3) 1.77 (3) 2.6747 (19) 172 (2)
N3—H3A···O1ii 0.91 (2) 2.00 (2) 2.899 (2) 167 (2)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2.

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Espenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.
  3. Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438. [DOI] [PMC free article] [PubMed]
  4. Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405–1410. [DOI] [PMC free article] [PubMed]
  5. Meisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. 59, 1848–1853.
  6. Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.
  7. Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151.
  8. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620013358/bh4056sup1.cif

x-05-x201335-sup1.cif (189.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620013358/bh4056Isup2.hkl

x-05-x201335-Isup2.hkl (100.5KB, hkl)

CCDC reference: 2035503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES