Skip to main content
IUCrData logoLink to IUCrData
. 2020 Dec 11;5(Pt 12):x201578. doi: 10.1107/S2414314620015783

(2S,3′S,3a’R,5′R,7a’R)-5′-[(E)-5-(Furan-3-yl)-2-methyl­pent-1-en-1-yl]-3-hy­droxy-3′,4,7′-trimethyl-1′,2′,3′,3a’,5′,7a’-hexa­hydro-5H-spiro­[furan-2,4′-inden]-5-one

Thomas Majer a, Dieter Schollmeyer b, Pierre Koch c, Harald Gross a,*
Editor: M Bolted
PMCID: PMC9462169  PMID: 36337332

The title compound ircinianin belongs to the sesterterpene tetronic acid compound family and was isolated from the marine sponge Ircinia wistarii. These chemical scaffolds are pharmacologically relevant, since they represent a new class of glycine receptor modulators.

Keywords: crystal structure, natural product, ircinianin

Abstract

The title compound, ircinianin, C25H32O4, belongs to the sesterterpene tetronic acid compound family and was isolated from the marine sponge Ircinia wistarii. These chemical scaffolds are pharmacologically relevant, since they represent a new class of glycine receptor modulators. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hy­droxy-3-methyl­furan-2(5H)-one ring. The crystal packing is characterized by inter­molecular O—H⋯O hydrogen bonds, which generate [010] chains. graphic file with name x-05-x201578-scheme1-3D1.jpg

Structure description

The genus Ircinia of the sea sponge family Irciniidae is a prolific source of natural products with a huge variety of different natural product classes like macrolides, alkaloids, steroids, peptides and terpenes (Coll et al., 1997; Kondo et al., 1992; Kobayashi et al., 1995; Mau et al., 1996; Chevallier et al., 2006). Particularly, regarding the latter compound class, Ircinia spp. are known to produce unusual and rare terpenoids, especially sesterterpene tetronic acids in a linear and cyclic form, like ircinianin and its structural congeners (Hofheinz & Schönholzer, 1977; Barrow et al., 1988; Coll et al., 1997; Höller et al., 1997; Balansa et al., 2013; Balansa et al., 2010).

Balansa et al. (2013) showed that these analogues exhibit a significant isoform-selective potentiation of glycine-gated chloride channel receptors (GlyRs). The compounds have therefore the potential to be developed either as mol­ecular tools to probe GlyR function or can serve as lead structures to treat GlyR-mediated neural disorders.

The title compound (Fig. 1) is a polycyclic sesterterpene tetronic acid with a furan moiety. The furan ring makes a dihedral angle of 35.14 (12)° to the 4-hy­droxy-3-methyl­furan-2(5H)-one ring. In the crystal, the molecules are linked by O—H⋯O hydrogen bonds (Table 1, Fig. 2), forming chains parallel to the b axis. The crystal structure of the title compound has already been reported in 1977 by researchers from the pharmaceutical company Hoffmann La Roche (Hofheinz & Schönholzer, 1977; CCDC reference: 1180878). However, in this study the hydrogen atoms were not refined, and only the relative stereochemistry could be deduced. The absolute structure was so far solely determined by asymmetric total synthesis in 1997 (Uenishi et al., 1997).

Figure 1.

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O29—H29⋯O27i 0.84 (3) 1.80 (3) 2.6207 (18) 166 (3)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Partial packing diagram of the title compound. View along the a-axis.

Synthesis and crystallization

The title compound C25H32O4 was isolated from the marine sponge Ircinia wistarii. The sample (voucher number HER6) was collected from Wistarii Reef, Heron Island, Great Barrier Reef, Australia in July 1998 from a depth of 20 m. After collection, the material was stored in EtOH and kept frozen at 253 K until use.

The sponge material (800 g, wet weight) was cut into smaller pieces (2 × 2 cm) and was extracted with a solvent mixture of CHCl3/MeOH (1:1, v/v; 2 l of volume per extraction step) for three times (after 4, 8 and 20 h). The extraction solvent of each step was collected and combined. After filtration and evaporation to dryness, 25.46 g crude extract was obtained. The crude extract was redissolved in MeOH and fractioned by preparative reversed phase open column chromatography [Polygoprep 60–50 C18 (Macherey-Nagel) as stationary phase] using gravity and stepwise MeOH/H2O gradients with increasing lipophilicity and DCM. In total, eleven fractions were gained, and the ircinianin-enriched fraction (MeOH/H2O – 90:10) was identified by LC–MS. This fraction was then purified by reversed phase HPLC [Luna Omega 5 µm Polar C18 100 Å column, 250 × 4.6 mm, at 1.2 ml min−1 and UV detection at 215 nm with a 3 min gradient elution, from 20:80 to 55:45 ACN/H2O + 0.1% TFA, followed by ramping over 27 min to 90:10], yielding 140 mg of ircinianin, judged as pure based on total ion current profiles, ESI–MS and NMR spectrometry. Suitable crystals were prepared by slow evaporation at room temperature from a ACN/H2O (65:35) solution under atmospheric pressure.

Spectroscopic data of the title compound were in accordance with literature data (Balansa et al., 2013). For ease of comparison with related compounds, the title compound was given in the NMR section the same numbering scheme as previously used in the literature (Balansa et al., 2013):

1H NMR (400 MHz, MeOH-d4 ): δ 7.38 (H-1, t, 1.6), 7.26 (H-4, m), 6.30 (H-2, m), 5.11 (H-10, dd, 10.3, 1.1), 5.03 (H-12, m), 3.08 (H-11, dm, 10.3), 2.42 (H-15, m)A, 2.41 (H-5 br t, 7.5)A, 2.04 (H-7, m), 2.00 (H-17a, m), 1.89 (H-16a, m), 1.71 (H-14, m), 1.68 (H-6, m), 1.65 (H-18, m), 1.64 (H-25, s), 1.60 (H-20, m), 1.57 (H-9, d, 1.3), 1.33 (H-16b, m), 1.31 (H-17b, m), 0.92 (H-19, d, 6.3).

13C NMR (100 MHz, MeOH-d4 ): δ 179.2 (C-22, s C)B, 177.7 (C-24, s)B, 144.0 (C-1, d), 140.3 (C-4, d), 137.1 (C-13, s), 136.6 (C-8, s), 126.5 (C-3, s), 125.0 (C-10, d), 123.6 (C-12, d), 112.1 (C-2, d), 97.5 (C-23, s), 86.9 (C-21, s), 52.0 (C-20, d), 48.7 (C-11, d), 46.2 (C-15, d), 40.5 (C-7, t), 33.6 (C-17, t), 33.2 (C-18, d), 29.5 (C-6, t), 27.3 (C-16, t), 25.3 (C-5, t), 20.8 (C-14, q), 20.7 (C-19, q), 16.3 (C-9, q), 6.1 (C-25, q). [A Overlapping signals; B assignments inter­changeable; C implied multiplicities determined by DEPT (qC = s; CH = d; CH2 = t; CH3 = q).]

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.

Table 2. Experimental details.

Crystal data
Chemical formula C25H32O4
M r 396.50
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 10.8217 (2), 11.1644 (2), 18.2804 (5)
V3) 2208.60 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.91 × 0.08 × 0.08
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration
T min, T max 0.914, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 18913, 3945, 3849
R int 0.018
(sin θ/λ)max−1) 0.600
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.086, 1.08
No. of reflections 3945
No. of parameters 377
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Absolute structure Flack x determined using 1639 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.03 (9)

Computer programs: X-RED32 and X-AREA (Stoe & Cie, 2019), SIR2004 (Burla et al., 2005), SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620015783/bt4103sup1.cif

x-05-x201578-sup1.cif (643.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620015783/bt4103Isup2.hkl

x-05-x201578-Isup2.hkl (314.6KB, hkl)

CCDC reference: 2047802

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully thank Anthony D. Wright for collecting the animal material by SCUBA diving and for providing the sponge sample to the Department of Pharmaceutical Biology, Eberhard Karls University, Tübingen.

full crystallographic data

Crystal data

C25H32O4 Dx = 1.192 Mg m3
Mr = 396.50 Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, P212121 Cell parameters from 58680 reflections
a = 10.8217 (2) Å θ = 2.4–68.0°
b = 11.1644 (2) Å µ = 0.63 mm1
c = 18.2804 (5) Å T = 120 K
V = 2208.60 (8) Å3 Coloumn, colourless
Z = 4 0.91 × 0.08 × 0.08 mm
F(000) = 856

Data collection

Stoe IPDS 2T diffractometer 3945 independent reflections
Radiation source: Incoatec microSource Cu 3849 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.018
rotation method, ω scans θmax = 67.8°, θmin = 4.6°
Absorption correction: integration h = −12→12
Tmin = 0.914, Tmax = 0.990 k = −13→13
18913 measured reflections l = −19→21

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3312P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.19 e Å3
3945 reflections Δρmin = −0.20 e Å3
377 parameters Absolute structure: Flack x determined using 1639 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.03 (9)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.49694 (18) 0.41060 (15) 0.47235 (10) 0.0219 (4)
H1 0.428 (2) 0.357 (2) 0.4651 (13) 0.030 (6)*
C2 0.56472 (18) 0.37841 (17) 0.54252 (10) 0.0253 (4)
H2 0.513 (2) 0.368 (2) 0.5861 (13) 0.025 (5)*
C3 0.68627 (19) 0.36830 (17) 0.55010 (10) 0.0259 (4)
C4 0.76937 (17) 0.38055 (17) 0.48472 (10) 0.0236 (4)
H4 0.786 (2) 0.301 (2) 0.4652 (13) 0.030 (6)*
C5 0.89455 (18) 0.4432 (2) 0.49168 (11) 0.0301 (4)
H5A 0.954 (2) 0.393 (2) 0.5169 (13) 0.029 (4)*
H5AB 0.883 (2) 0.521 (2) 0.5200 (13) 0.029 (4)*
C6 0.9310 (2) 0.4654 (2) 0.41093 (12) 0.0380 (5)
H6A 0.993 (3) 0.406 (3) 0.3941 (16) 0.052 (5)*
H6AB 0.967 (3) 0.552 (3) 0.4041 (16) 0.052 (5)*
C7 0.81215 (17) 0.45092 (17) 0.36372 (10) 0.0259 (4)
H7 0.815 (3) 0.373 (2) 0.3362 (15) 0.042 (7)*
C8 0.70955 (17) 0.44944 (16) 0.42160 (10) 0.0214 (4)
H8 0.694 (2) 0.535 (2) 0.4385 (12) 0.024 (5)*
C9 0.58241 (17) 0.39703 (15) 0.40444 (10) 0.0205 (4)
C10 0.44429 (17) 0.53607 (16) 0.48011 (10) 0.0235 (4)
H10 0.500 (2) 0.602 (2) 0.4651 (13) 0.030 (6)*
C11 0.33472 (19) 0.56473 (18) 0.50782 (10) 0.0284 (4)
C12 0.2416 (2) 0.4744 (2) 0.53387 (18) 0.0485 (6)
H12A 0.181 (4) 0.508 (5) 0.553 (3) 0.111 (9)*
H12B 0.277 (5) 0.402 (4) 0.551 (3) 0.111 (9)*
H12C 0.208 (5) 0.437 (4) 0.482 (3) 0.111 (9)*
C13 0.2955 (2) 0.69443 (19) 0.51459 (12) 0.0333 (5)
H13A 0.368 (3) 0.746 (3) 0.5061 (17) 0.053 (6)*
H13B 0.260 (3) 0.702 (3) 0.5669 (18) 0.053 (6)*
C14 0.1950 (2) 0.7288 (2) 0.45910 (12) 0.0347 (5)
H14A 0.122 (3) 0.665 (3) 0.4642 (16) 0.054 (6)*
H14B 0.158 (3) 0.819 (3) 0.4699 (17) 0.054 (6)*
C15 0.2427 (2) 0.7328 (2) 0.38087 (13) 0.0426 (5)
H15A 0.304 (3) 0.814 (3) 0.3804 (18) 0.066 (6)*
H15B 0.280 (3) 0.652 (3) 0.3716 (18) 0.066 (6)*
C16 0.1423 (2) 0.7499 (2) 0.32518 (12) 0.0363 (5)
C17 0.1271 (2) 0.6877 (2) 0.26257 (13) 0.0422 (5)
H17 0.169 (2) 0.617 (2) 0.2377 (13) 0.033 (6)*
O18 0.02589 (17) 0.72790 (16) 0.22460 (9) 0.0467 (4)
C19 −0.0236 (2) 0.8178 (2) 0.26580 (14) 0.0444 (6)
H19 −0.103 (3) 0.863 (3) 0.2478 (16) 0.049 (8)*
C20 0.0435 (2) 0.8351 (2) 0.32708 (13) 0.0404 (5)
H20 0.029 (3) 0.894 (3) 0.3654 (16) 0.044 (7)*
C21 0.7463 (2) 0.3359 (2) 0.62195 (12) 0.0371 (5)
H21A 0.810 (3) 0.393 (3) 0.6351 (16) 0.052 (5)*
H21B 0.791 (3) 0.266 (3) 0.6173 (16) 0.052 (5)*
H21C 0.686 (3) 0.331 (3) 0.6612 (17) 0.052 (5)*
C22 0.8012 (2) 0.5468 (2) 0.30527 (13) 0.0395 (5)
H22A 0.727 (3) 0.533 (3) 0.2718 (17) 0.053 (4)*
H22B 0.881 (3) 0.544 (3) 0.2759 (17) 0.053 (4)*
H22C 0.792 (3) 0.626 (3) 0.3312 (17) 0.053 (4)*
O23 0.59733 (12) 0.26878 (10) 0.39111 (7) 0.0211 (3)
C24 0.55392 (17) 0.24167 (15) 0.32376 (9) 0.0217 (4)
C25 0.50545 (18) 0.34673 (15) 0.28756 (9) 0.0228 (4)
C26 0.52443 (16) 0.43886 (16) 0.33396 (9) 0.0209 (4)
O27 0.56032 (13) 0.13752 (11) 0.30220 (7) 0.0271 (3)
C28 0.4465 (2) 0.34514 (19) 0.21335 (11) 0.0321 (5)
H28A 0.434 (4) 0.417 (4) 0.195 (2) 0.077 (6)*
H28B 0.375 (4) 0.296 (3) 0.215 (2) 0.077 (6)*
H28C 0.499 (4) 0.307 (3) 0.178 (2) 0.077 (6)*
O29 0.50180 (13) 0.55511 (11) 0.32690 (7) 0.0258 (3)
H29 0.481 (3) 0.569 (3) 0.2837 (18) 0.048 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0240 (8) 0.0201 (8) 0.0215 (9) −0.0012 (7) 0.0001 (7) −0.0006 (6)
C2 0.0310 (10) 0.0253 (9) 0.0196 (8) 0.0011 (8) 0.0014 (8) −0.0005 (7)
C3 0.0316 (10) 0.0257 (9) 0.0205 (9) 0.0010 (8) −0.0017 (8) −0.0013 (7)
C4 0.0266 (9) 0.0231 (9) 0.0212 (9) 0.0005 (7) −0.0032 (7) −0.0007 (7)
C5 0.0255 (10) 0.0339 (10) 0.0310 (10) −0.0016 (8) −0.0049 (8) −0.0019 (9)
C6 0.0274 (11) 0.0511 (14) 0.0356 (11) −0.0073 (10) 0.0008 (9) 0.0015 (10)
C7 0.0269 (9) 0.0252 (9) 0.0255 (9) −0.0016 (7) 0.0036 (7) −0.0008 (7)
C8 0.0256 (9) 0.0180 (8) 0.0206 (8) −0.0008 (7) −0.0006 (7) −0.0005 (7)
C9 0.0273 (9) 0.0147 (8) 0.0195 (8) 0.0010 (6) −0.0015 (7) −0.0012 (6)
C10 0.0263 (9) 0.0218 (8) 0.0224 (8) −0.0006 (7) −0.0033 (7) −0.0026 (7)
C11 0.0295 (10) 0.0281 (9) 0.0276 (9) 0.0021 (8) −0.0004 (7) −0.0030 (8)
C12 0.0376 (12) 0.0383 (13) 0.0695 (18) 0.0016 (10) 0.0184 (12) 0.0015 (12)
C13 0.0331 (10) 0.0309 (11) 0.0358 (11) 0.0066 (9) −0.0017 (9) −0.0085 (8)
C14 0.0321 (10) 0.0346 (11) 0.0374 (11) 0.0067 (9) −0.0001 (9) −0.0071 (9)
C15 0.0372 (12) 0.0515 (14) 0.0393 (12) 0.0121 (11) 0.0019 (10) 0.0029 (11)
C16 0.0388 (12) 0.0351 (10) 0.0351 (11) −0.0006 (9) 0.0030 (9) 0.0030 (9)
C17 0.0490 (13) 0.0400 (12) 0.0377 (12) −0.0029 (11) 0.0054 (10) 0.0032 (10)
O18 0.0504 (10) 0.0526 (10) 0.0371 (8) −0.0140 (8) −0.0016 (7) 0.0023 (7)
C19 0.0394 (13) 0.0498 (14) 0.0439 (13) −0.0018 (10) −0.0021 (10) 0.0103 (11)
C20 0.0414 (12) 0.0399 (12) 0.0398 (12) 0.0038 (10) −0.0014 (10) 0.0006 (10)
C21 0.0370 (12) 0.0530 (14) 0.0214 (10) 0.0089 (11) −0.0025 (9) 0.0007 (9)
C22 0.0391 (12) 0.0416 (12) 0.0378 (12) −0.0005 (10) 0.0090 (9) 0.0124 (10)
O23 0.0291 (7) 0.0148 (6) 0.0192 (6) 0.0009 (5) −0.0029 (5) −0.0005 (4)
C24 0.0255 (9) 0.0200 (8) 0.0196 (8) −0.0018 (7) 0.0004 (7) −0.0013 (6)
C25 0.0275 (9) 0.0202 (9) 0.0207 (8) 0.0004 (7) −0.0027 (7) 0.0003 (7)
C26 0.0240 (8) 0.0180 (8) 0.0208 (8) 0.0007 (7) 0.0008 (7) 0.0011 (7)
O27 0.0388 (7) 0.0178 (6) 0.0247 (6) 0.0005 (5) −0.0051 (6) −0.0038 (5)
C28 0.0453 (12) 0.0258 (10) 0.0251 (9) 0.0035 (9) −0.0114 (9) −0.0027 (8)
O29 0.0379 (7) 0.0177 (6) 0.0217 (6) 0.0035 (5) −0.0040 (6) 0.0013 (5)

Geometric parameters (Å, º)

C1—C10 1.519 (2) C13—H13A 0.98 (3)
C1—C2 1.521 (2) C13—H13B 1.03 (3)
C1—C9 1.555 (2) C14—C15 1.521 (3)
C1—H1 0.96 (2) C14—H14A 1.07 (3)
C2—C3 1.327 (3) C14—H14B 1.10 (3)
C2—H2 0.98 (2) C15—C16 1.502 (3)
C3—C4 1.502 (3) C15—H15A 1.12 (3)
C3—C21 1.509 (3) C15—H15B 1.01 (3)
C4—C5 1.530 (3) C16—C17 1.349 (3)
C4—C8 1.530 (2) C16—C20 1.431 (3)
C4—H4 0.97 (2) C17—O18 1.372 (3)
C5—C6 1.548 (3) C17—H17 1.01 (3)
C5—H5A 0.97 (2) O18—C19 1.365 (3)
C5—H5AB 1.02 (3) C19—C20 1.349 (3)
C6—C7 1.557 (3) C19—H19 1.05 (3)
C6—H6A 0.99 (3) C20—H20 0.98 (3)
C6—H6AB 1.05 (3) C21—H21A 0.97 (3)
C7—C22 1.517 (3) C21—H21B 0.92 (3)
C7—C8 1.534 (2) C21—H21C 0.97 (3)
C7—H7 1.00 (3) C22—H22A 1.02 (3)
C8—C9 1.528 (3) C22—H22B 1.02 (3)
C8—H8 1.02 (2) C22—H22C 1.01 (3)
C9—O23 1.4613 (19) O23—C24 1.352 (2)
C9—C26 1.507 (2) C24—O27 1.230 (2)
C10—C11 1.329 (3) C24—C25 1.445 (2)
C10—H10 0.99 (3) C25—C26 1.349 (3)
C11—C12 1.503 (3) C25—C28 1.499 (2)
C11—C13 1.514 (3) C26—O29 1.327 (2)
C12—H12A 0.83 (5) C28—H28A 0.88 (4)
C12—H12B 0.95 (5) C28—H28B 0.95 (4)
C12—H12C 1.10 (5) C28—H28C 0.96 (4)
C13—C14 1.536 (3) O29—H29 0.84 (3)
C10—C1—C2 108.67 (15) C11—C13—C14 112.56 (17)
C10—C1—C9 112.79 (14) C11—C13—H13A 108.7 (19)
C2—C1—C9 111.31 (15) C14—C13—H13A 108.3 (19)
C10—C1—H1 107.0 (14) C11—C13—H13B 105.1 (17)
C2—C1—H1 110.1 (14) C14—C13—H13B 108.9 (17)
C9—C1—H1 106.9 (14) H13A—C13—H13B 113 (3)
C3—C2—C1 125.88 (17) C15—C14—C13 112.82 (19)
C3—C2—H2 117.9 (14) C15—C14—H14A 110.7 (16)
C1—C2—H2 116.2 (14) C13—C14—H14A 107.4 (17)
C2—C3—C4 120.16 (17) C15—C14—H14B 105.3 (16)
C2—C3—C21 122.54 (19) C13—C14—H14B 111.4 (16)
C4—C3—C21 117.16 (17) H14A—C14—H14B 109 (2)
C3—C4—C5 120.37 (16) C16—C15—C14 113.3 (2)
C3—C4—C8 113.11 (16) C16—C15—H15A 108.9 (17)
C5—C4—C8 101.99 (15) C14—C15—H15A 103.4 (17)
C3—C4—H4 108.6 (14) C16—C15—H15B 107 (2)
C5—C4—H4 106.4 (14) C14—C15—H15B 105.6 (19)
C8—C4—H4 105.2 (14) H15A—C15—H15B 119 (3)
C4—C5—C6 102.69 (16) C17—C16—C20 105.8 (2)
C4—C5—H5A 111.3 (14) C17—C16—C15 126.7 (2)
C6—C5—H5A 112.2 (14) C20—C16—C15 127.5 (2)
C4—C5—H5AB 108.8 (13) C16—C17—O18 111.0 (2)
C6—C5—H5AB 112.4 (13) C16—C17—H17 136.5 (14)
H5A—C5—H5AB 109.3 (19) O18—C17—H17 112.5 (14)
C5—C6—C7 107.52 (16) C19—O18—C17 105.96 (18)
C5—C6—H6A 111.3 (17) C20—C19—O18 110.6 (2)
C7—C6—H6A 108.5 (18) C20—C19—H19 129.1 (17)
C5—C6—H6AB 110.9 (16) O18—C19—H19 120.3 (16)
C7—C6—H6AB 109.8 (16) C19—C20—C16 106.7 (2)
H6A—C6—H6AB 109 (2) C19—C20—H20 127.2 (17)
C22—C7—C8 115.92 (17) C16—C20—H20 126.1 (17)
C22—C7—C6 112.42 (18) C3—C21—H21A 111.3 (18)
C8—C7—C6 102.52 (15) C3—C21—H21B 110.5 (19)
C22—C7—H7 104.9 (16) H21A—C21—H21B 102 (3)
C8—C7—H7 111.4 (16) C3—C21—H21C 111.6 (18)
C6—C7—H7 109.8 (16) H21A—C21—H21C 109 (2)
C9—C8—C4 110.08 (15) H21B—C21—H21C 112 (3)
C9—C8—C7 120.96 (15) C7—C22—H22A 111.9 (17)
C4—C8—C7 102.67 (15) C7—C22—H22B 106.6 (17)
C9—C8—H8 105.9 (12) H22A—C22—H22B 110 (2)
C4—C8—H8 108.2 (12) C7—C22—H22C 107.2 (18)
C7—C8—H8 108.6 (12) H22A—C22—H22C 110 (2)
O23—C9—C26 101.95 (13) H22B—C22—H22C 111 (3)
O23—C9—C8 108.06 (14) C24—O23—C9 109.44 (13)
C26—C9—C8 115.58 (15) O27—C24—O23 118.94 (16)
O23—C9—C1 107.11 (13) O27—C24—C25 129.87 (17)
C26—C9—C1 113.87 (14) O23—C24—C25 111.19 (14)
C8—C9—C1 109.53 (14) C26—C25—C24 106.00 (15)
C11—C10—C1 126.34 (18) C26—C25—C28 130.00 (17)
C11—C10—H10 118.1 (14) C24—C25—C28 124.01 (16)
C1—C10—H10 115.5 (14) O29—C26—C25 131.03 (16)
C10—C11—C12 123.88 (19) O29—C26—C9 117.58 (15)
C10—C11—C13 120.76 (19) C25—C26—C9 111.38 (15)
C12—C11—C13 115.36 (19) C25—C28—H28A 114 (3)
C11—C12—H12A 111 (3) C25—C28—H28B 109 (2)
C11—C12—H12B 114 (3) H28A—C28—H28B 114 (3)
H12A—C12—H12B 125 (4) C25—C28—H28C 111 (2)
C11—C12—H12C 102 (3) H28A—C28—H28C 104 (3)
H12A—C12—H12C 106 (4) H28B—C28—H28C 103 (3)
H12B—C12—H12C 95 (3) C26—O29—H29 109 (2)
C10—C1—C2—C3 −109.2 (2) C1—C10—C11—C12 −2.5 (3)
C9—C1—C2—C3 15.6 (3) C1—C10—C11—C13 177.95 (18)
C1—C2—C3—C4 −4.4 (3) C10—C11—C13—C14 107.9 (2)
C1—C2—C3—C21 180.00 (19) C12—C11—C13—C14 −71.7 (3)
C2—C3—C4—C5 142.7 (2) C11—C13—C14—C15 −69.9 (3)
C21—C3—C4—C5 −41.5 (3) C13—C14—C15—C16 172.2 (2)
C2—C3—C4—C8 21.9 (3) C14—C15—C16—C17 −133.3 (2)
C21—C3—C4—C8 −162.28 (18) C14—C15—C16—C20 46.9 (3)
C3—C4—C5—C6 −165.52 (18) C20—C16—C17—O18 0.3 (3)
C8—C4—C5—C6 −39.4 (2) C15—C16—C17—O18 −179.6 (2)
C4—C5—C6—C7 16.7 (2) C16—C17—O18—C19 −0.5 (3)
C5—C6—C7—C22 137.51 (19) C17—O18—C19—C20 0.5 (3)
C5—C6—C7—C8 12.3 (2) O18—C19—C20—C16 −0.4 (3)
C3—C4—C8—C9 −50.8 (2) C17—C16—C20—C19 0.1 (3)
C5—C4—C8—C9 178.42 (14) C15—C16—C20—C19 179.9 (2)
C3—C4—C8—C7 179.09 (15) C26—C9—O23—C24 −0.34 (18)
C5—C4—C8—C7 48.36 (17) C8—C9—O23—C24 −122.55 (15)
C22—C7—C8—C9 77.3 (2) C1—C9—O23—C24 119.52 (15)
C6—C7—C8—C9 −159.85 (17) C9—O23—C24—O27 178.94 (16)
C22—C7—C8—C4 −159.65 (18) C9—O23—C24—C25 −0.9 (2)
C6—C7—C8—C4 −36.81 (18) O27—C24—C25—C26 −177.91 (19)
C4—C8—C9—O23 −54.40 (18) O23—C24—C25—C26 2.0 (2)
C7—C8—C9—O23 65.0 (2) O27—C24—C25—C28 2.5 (3)
C4—C8—C9—C26 −167.82 (14) O23—C24—C25—C28 −177.65 (18)
C7—C8—C9—C26 −48.4 (2) C24—C25—C26—O29 177.21 (18)
C4—C8—C9—C1 61.96 (18) C28—C25—C26—O29 −3.2 (4)
C7—C8—C9—C1 −178.59 (15) C24—C25—C26—C9 −2.2 (2)
C10—C1—C9—O23 −163.92 (14) C28—C25—C26—C9 177.4 (2)
C2—C1—C9—O23 73.62 (17) O23—C9—C26—O29 −177.86 (14)
C10—C1—C9—C26 −52.0 (2) C8—C9—C26—O29 −61.0 (2)
C2—C1—C9—C26 −174.48 (14) C1—C9—C26—O29 67.2 (2)
C10—C1—C9—C8 79.12 (18) O23—C9—C26—C25 1.60 (19)
C2—C1—C9—C8 −43.34 (18) C8—C9—C26—C25 118.51 (17)
C2—C1—C10—C11 −88.2 (2) C1—C9—C26—C25 −113.39 (17)
C9—C1—C10—C11 147.88 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O29—H29···O27i 0.84 (3) 1.80 (3) 2.6207 (18) 166 (3)

Symmetry code: (i) −x+1, y+1/2, −z+1/2.

References

  1. Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2010). Bioorg. Med. Chem. 18, 2912–2919. [DOI] [PubMed]
  2. Balansa, W., Islam, R., Fontaine, F., Piggott, A. M., Zhang, H., Xiao, X., Webb, T. I., Gilbert, D. F., Lynch, J. W. & Capon, R. J. (2013). Org. Biomol. Chem. 11, 4695–4701. [DOI] [PubMed]
  3. Barrow, C. J., Blunt, J. W., Munro, M. H. G. & Perry, N. B. (1988). J. Nat. Prod. 51, 1294–1298.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  5. Chevallier, C., Bugni, T. S., Feng, X., Harper, M. K., Orendt, A. M. & Ireland, C. M. (2006). J. Org. Chem. 71, 2510–2513. [DOI] [PMC free article] [PubMed]
  6. Coll, J. C., Kearns, P. S., Rideout, J. A. & Hooper, J. (1997). J. Nat. Prod. 60, 1178–1179.
  7. Hofheinz, W. & Schönholzer, P. (1977). Helv. Chim. Acta, 60, 1367–1370. [DOI] [PubMed]
  8. Höller, U., König, G. M. & Wright, A. D. (1997). J. Nat. Prod. 60, 832–835.
  9. Kobayashi, J., Shinonaga, H., Shigemori, H., Umeyama, A., Shoji, N. & Arihara, S. (1995). J. Nat. Prod. 58, 312–318. [DOI] [PubMed]
  10. Kondo, K., Shigemori, H., Kikuchi, Y., Ishibashi, M., Sasaki, T. & Kobayashi, J. (1992). J. Org. Chem. 57, 2480–2483.
  11. Mau, C. M. S., Nakao, Y., Yoshida, W. Y., Scheuer, P. J. & Kelly-Borges, M. (1996). J. Org. Chem. 61, 6302–6304. [DOI] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  15. Stoe & Cie (2019). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.
  16. Uenishi, J., Kawahama, R. & Yonemitsu, O. (1997). J. Org. Chem. 62, 1691–1701.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620015783/bt4103sup1.cif

x-05-x201578-sup1.cif (643.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620015783/bt4103Isup2.hkl

x-05-x201578-Isup2.hkl (314.6KB, hkl)

CCDC reference: 2047802

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES