Skip to main content
IUCrData logoLink to IUCrData
. 2020 Feb 21;5(Pt 2):x200212. doi: 10.1107/S2414314620002126

1,4-Bis­(4-meth­oxy­phen­yl)naphthalene

R Manickam a, G Jagadeesan b, J Karunakaran c, G Srinivasan a,*
Editor: E R T Tiekinkd
PMCID: PMC9462186  PMID: 36340833

Two independent mol­ecules comprise the asymmetric unit of the title naphthalene derivative, which exhibit very similar conformations. The pendant 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system.

Keywords: crystal structure, naphthalene derivative, C—H⋯π inter­actions

Abstract

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them. graphic file with name x-05-x200212-scheme1-3D1.jpg

Structure description

Mol­ecules related to the title compound are of inter­est in the field of organic electronics. A closely related structure is available whereby a perfluorinated phenyl ring is fused to the naphthalene ring system which is also perfluorinated (Tannaci et al., 2008). Here, the effects of fluorination are apparent in that the pendant 4-meth­oxy­benzene rings are effectively perpendicular to the central plane.

The mol­ecular structures of the two crystallographically independent mol­ecules comprising the asymmetric unit in the title compound are shown in Fig. 1. The mol­ecules exhibit very similar conformations, as illustrated in the overlay diagram of Fig. 2. The r.m.s deviation between the bond lengths in the two mol­ecules is 0.419 Å (Spek, 2020).

Figure 1.

Figure 1

The mol­ecular structures of the title compound showing atom-numbering scheme and displacement ellipsoids at the 30% probability level. The H atoms are shown as spheres of arbitrary radius.

Figure 2.

Figure 2

An overlay diagram of the first (red image) and inverted-second (black) independent mol­ecules of the title compound.

Within the naphthalene ring system, the dihedral angles between the least-squares planes through the constituent rings are 3.76 (15) and 3.39 (15)° for the two independent mol­ecules. The best plane of the (C1–C10) naphthalene ring system forms dihedral angles of 67.09 (13) and 60.71 (13)°, respectively, with the appended (C11–C16) and (C18–C23) rings of the meth­oxy-substituted benzene rings indicating splayed dispositions. The corresponding values for the second independent mol­ecule are 59.63 (13) and 63.75 (13)°. The dihedral angle between the peripheral rings, i.e. between the (C11–C16)/(C18–C23) benzene rings is 6.91 (16)° while that for the corresponding rings in the second independent mol­ecule, i.e. (C35–C40)/(C42–C47), is 8.82 (16)°.

In the crystal, C—H⋯π inter­actions, Table 1, link mol­ecules into a supra­molecular chain along the b-axis direction, i.e. with a helical topology. The chains assemble in the crystal without directional inter­actions between them.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1–Cg3 are the centroids of the (C42–C47), (C25—C34) and (C11–C16) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1 0.93 2.76 3.531 (4) 141
C15—H15⋯Cg2i 0.93 2.96 3.737 (4) 142
C27—H27⋯Cg3 0.93 2.81 3.610 (4) 145

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

Tetra­thia­fulvalene [2-(1,3-di­thio­lan-2-yl­idene)-2H-1,3-di­thi­ole; 0.204 g, 1.0 mmol] was added to a solution of 1,3-bis­(4-meth­oxy­phen­yl)isobenzo­furan (0.33 g, 1.0 mmol) in dry xylenes (15 ml). The solution was refluxed until the benzo[c]furan was consumed, i.e. after ca 6 h, as indicated by the disappearance of fluorescence from the solution. After removal of xylenes in vacuo, the crude product was dissolved in dry di­chloro­methane (DCM, 15 ml) and kept at 273 K. To this solution, triflic acid (0.075 g, 0.50 mmol) was added followed by stirring at room temperature for 10 min. After the completion of reaction (as monitored by TLC), the solution was poured into ice–water (20 ml) and then extracted with DCM (2 × 10 ml). The combined organic layer was washed with aq. NaHCO3 (2 × 10 ml) and then dried over Na2SO4. The removal of solvent was followed by column chromatographic purification (silica gel, 10% ethyl acetate in hexa­ne) to afford 1,4-bis­(4-meth­oxy­phen­yl)naphthalene (0.288 g, 85%) as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of an ethyl acetate solution of the compound held at room temperature; m.p. 421–423 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C24H20O2
M r 340.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 21.5500 (8), 6.0366 (2), 27.4915 (9)
β (°) 92.111 (1)
V3) 3573.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.984, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 124530, 7894, 4154
R int 0.078
(sin θ/λ)max−1) 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.077, 0.281, 1.02
No. of reflections 7894
No. of parameters 473
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620002126/tk4061sup1.cif

x-05-x200212-sup1.cif (41.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620002126/tk4061Isup2.hkl

x-05-x200212-Isup2.hkl (386.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620002126/tk4061Isup3.cml

CCDC reference: 1984009

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officers, SAIF, IIT Madras, Chennai, India, for the data collection.

full crystallographic data

Crystal data

C24H20O2 F(000) = 1440
Mr = 340.40 Dx = 1.265 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2yn Cell parameters from 7894 reflections
a = 21.5500 (8) Å θ = 1.2–27.1°
b = 6.0366 (2) Å µ = 0.08 mm1
c = 27.4915 (9) Å T = 296 K
β = 92.111 (1)° BLOCK, yellow
V = 3573.9 (2) Å3 0.20 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 7894 independent reflections
Radiation source: fine-focus sealed tube 4154 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.078
φ & ω scans θmax = 27.1°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −27→27
Tmin = 0.984, Tmax = 0.988 k = −7→7
124530 measured reflections l = −35→35

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.281 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1238P)2 + 3.8143P] where P = (Fo2 + 2Fc2)/3
7894 reflections (Δ/σ)max < 0.001
473 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C-bound H-atoms were included in calculated positions and treated as riding with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for the other H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.42322 (15) 0.6450 (5) 0.76704 (11) 0.0430 (8)
H1 0.4453 0.6431 0.7386 0.052*
C2 0.43579 (16) 0.4887 (6) 0.80184 (11) 0.0468 (8)
H2 0.4656 0.3804 0.7969 0.056*
C3 0.40344 (16) 0.4927 (6) 0.84511 (12) 0.0485 (8)
H3 0.4122 0.3874 0.8691 0.058*
C4 0.35946 (15) 0.6486 (5) 0.85236 (11) 0.0442 (8)
H4 0.3389 0.6492 0.8815 0.053*
C5 0.34414 (14) 0.8104 (5) 0.81670 (10) 0.0357 (7)
C6 0.29864 (14) 0.9775 (5) 0.82446 (10) 0.0379 (7)
C7 0.29017 (16) 1.1416 (5) 0.78998 (11) 0.0457 (8)
H7 0.2614 1.2534 0.7950 0.055*
C8 0.32445 (15) 1.1425 (5) 0.74734 (11) 0.0443 (8)
H8 0.3182 1.2574 0.7252 0.053*
C9 0.36667 (14) 0.9803 (5) 0.73731 (10) 0.0378 (7)
C10 0.37770 (14) 0.8092 (5) 0.77290 (10) 0.0360 (7)
C11 0.40148 (14) 0.9863 (5) 0.69146 (10) 0.0392 (7)
C12 0.39530 (16) 0.8223 (6) 0.65583 (11) 0.0456 (8)
H12 0.3686 0.7039 0.6605 0.055*
C13 0.42824 (16) 0.8328 (6) 0.61361 (11) 0.0469 (8)
H13 0.4231 0.7231 0.5901 0.056*
C14 0.46885 (15) 1.0066 (6) 0.60642 (10) 0.0419 (8)
C15 0.47614 (17) 1.1689 (6) 0.64097 (11) 0.0495 (9)
H15 0.5035 1.2856 0.6364 0.059*
C16 0.44226 (17) 1.1576 (5) 0.68292 (11) 0.0478 (8)
H16 0.4472 1.2692 0.7061 0.057*
C17 0.5414 (2) 1.1779 (7) 0.55437 (13) 0.0680 (11)
H17A 0.5197 1.3165 0.5561 0.102*
H17B 0.5577 1.1606 0.5226 0.102*
H17C 0.5749 1.1758 0.5784 0.102*
C18 0.26124 (14) 0.9741 (5) 0.86889 (10) 0.0386 (7)
C19 0.22387 (15) 0.7959 (6) 0.87984 (11) 0.0463 (8)
H19 0.2223 0.6748 0.8589 0.056*
C20 0.18858 (16) 0.7924 (6) 0.92110 (11) 0.0494 (9)
H20 0.1637 0.6709 0.9276 0.059*
C21 0.19088 (16) 0.9707 (6) 0.95229 (11) 0.0506 (9)
C22 0.22778 (18) 1.1493 (6) 0.94256 (13) 0.0584 (10)
H22 0.2296 1.2691 0.9638 0.070*
C23 0.26234 (17) 1.1513 (6) 0.90108 (12) 0.0526 (9)
H23 0.2868 1.2740 0.8946 0.063*
C24 0.1212 (2) 0.8005 (9) 1.00620 (15) 0.0839 (15)
H24A 0.0918 0.7689 0.9800 0.126*
H24B 0.0994 0.8323 1.0352 0.126*
H24C 0.1477 0.6745 1.0117 0.126*
C25 0.64533 (16) 0.5039 (5) 0.64015 (11) 0.0449 (8)
H25 0.6665 0.4996 0.6113 0.054*
C26 0.60133 (16) 0.6621 (5) 0.64606 (11) 0.0462 (8)
H26 0.5934 0.7659 0.6216 0.055*
C27 0.56793 (16) 0.6694 (6) 0.68881 (11) 0.0461 (8)
H27 0.5381 0.7785 0.6928 0.055*
C28 0.57920 (15) 0.5166 (5) 0.72438 (11) 0.0424 (8)
H28 0.5562 0.5220 0.7523 0.051*
C29 0.62471 (14) 0.3499 (5) 0.72018 (10) 0.0362 (7)
C30 0.63511 (14) 0.1831 (5) 0.75665 (10) 0.0371 (7)
C31 0.67742 (16) 0.0207 (5) 0.74832 (11) 0.0452 (8)
H31 0.6829 −0.0925 0.7710 0.054*
C32 0.71299 (16) 0.0197 (6) 0.70637 (11) 0.0462 (8)
H32 0.7421 −0.0921 0.7026 0.055*
C33 0.70595 (14) 0.1781 (5) 0.67099 (10) 0.0378 (7)
C34 0.65981 (14) 0.3453 (5) 0.67696 (10) 0.0366 (7)
C35 0.74535 (15) 0.1737 (5) 0.62787 (11) 0.0403 (7)
C36 0.74759 (17) −0.0110 (6) 0.59848 (12) 0.0491 (8)
H36 0.7223 −0.1314 0.6051 0.059*
C37 0.78635 (18) −0.0229 (6) 0.55932 (13) 0.0561 (9)
H37 0.7863 −0.1480 0.5396 0.067*
C38 0.82476 (17) 0.1528 (6) 0.55015 (12) 0.0517 (9)
C39 0.82314 (17) 0.3408 (6) 0.57853 (12) 0.0523 (9)
H39 0.8483 0.4610 0.5717 0.063*
C40 0.78406 (16) 0.3503 (6) 0.61715 (12) 0.0473 (8)
H40 0.7836 0.4771 0.6364 0.057*
C41 0.8757 (3) −0.0372 (9) 0.48697 (16) 0.0996 (18)
H41A 0.8867 −0.1565 0.5087 0.149*
H41B 0.9083 −0.0150 0.4646 0.149*
H41C 0.8379 −0.0733 0.4691 0.149*
C42 0.59868 (14) 0.1807 (5) 0.80161 (10) 0.0382 (7)
C43 0.56057 (17) 0.0038 (5) 0.81173 (12) 0.0481 (8)
H43 0.5577 −0.1130 0.7897 0.058*
C44 0.52641 (17) −0.0064 (6) 0.85351 (11) 0.0492 (8)
H44 0.5008 −0.1269 0.8591 0.059*
C45 0.53109 (15) 0.1648 (5) 0.88663 (10) 0.0423 (8)
C46 0.56849 (16) 0.3437 (6) 0.87743 (11) 0.0449 (8)
H46 0.5711 0.4602 0.8995 0.054*
C47 0.60218 (15) 0.3520 (5) 0.83579 (11) 0.0429 (8)
H47 0.6276 0.4734 0.8304 0.051*
C48 0.4601 (2) −0.0070 (8) 0.93981 (16) 0.0840 (14)
H48A 0.4298 −0.0267 0.9137 0.126*
H48B 0.4394 0.0220 0.9695 0.126*
H48C 0.4847 −0.1390 0.9435 0.126*
O1 0.49974 (12) 1.0013 (4) 0.56346 (8) 0.0566 (7)
O2 0.15737 (14) 0.9849 (5) 0.99390 (9) 0.0790 (9)
O3 0.86713 (14) 0.1572 (5) 0.51385 (10) 0.0776 (9)
O4 0.49915 (12) 0.1742 (4) 0.92913 (8) 0.0601 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0435 (19) 0.0480 (19) 0.0377 (16) 0.0002 (16) 0.0024 (14) −0.0006 (14)
C2 0.046 (2) 0.0478 (19) 0.0462 (18) 0.0056 (16) 0.0030 (15) 0.0003 (15)
C3 0.052 (2) 0.049 (2) 0.0444 (18) 0.0091 (17) −0.0002 (15) 0.0116 (15)
C4 0.0435 (19) 0.0504 (19) 0.0387 (17) 0.0019 (16) 0.0013 (14) 0.0047 (15)
C5 0.0354 (16) 0.0401 (16) 0.0315 (15) −0.0007 (14) 0.0003 (12) 0.0005 (12)
C6 0.0361 (17) 0.0430 (17) 0.0345 (15) −0.0030 (14) 0.0012 (13) −0.0061 (13)
C7 0.049 (2) 0.0444 (18) 0.0445 (18) 0.0045 (16) 0.0057 (15) 0.0011 (15)
C8 0.050 (2) 0.0441 (18) 0.0386 (17) 0.0036 (16) 0.0013 (14) 0.0074 (14)
C9 0.0399 (17) 0.0438 (17) 0.0298 (15) −0.0032 (15) 0.0001 (13) −0.0003 (13)
C10 0.0377 (17) 0.0385 (16) 0.0316 (15) −0.0035 (14) −0.0012 (12) −0.0008 (12)
C11 0.0422 (18) 0.0429 (18) 0.0322 (15) 0.0007 (15) 0.0000 (13) 0.0025 (13)
C12 0.049 (2) 0.0512 (19) 0.0364 (16) −0.0076 (16) −0.0023 (14) −0.0017 (15)
C13 0.054 (2) 0.053 (2) 0.0334 (16) −0.0058 (17) −0.0008 (14) −0.0100 (15)
C14 0.0452 (19) 0.0519 (19) 0.0288 (15) 0.0021 (16) 0.0032 (13) 0.0017 (14)
C15 0.058 (2) 0.049 (2) 0.0422 (18) −0.0116 (17) 0.0083 (16) −0.0018 (15)
C16 0.065 (2) 0.0427 (18) 0.0357 (16) −0.0100 (17) 0.0066 (15) −0.0064 (14)
C17 0.074 (3) 0.081 (3) 0.050 (2) −0.015 (2) 0.019 (2) 0.003 (2)
C18 0.0351 (17) 0.0437 (17) 0.0370 (16) 0.0006 (14) 0.0012 (13) −0.0016 (13)
C19 0.047 (2) 0.0501 (19) 0.0420 (17) −0.0064 (16) 0.0039 (15) −0.0079 (15)
C20 0.047 (2) 0.059 (2) 0.0424 (18) −0.0118 (17) 0.0060 (15) −0.0031 (16)
C21 0.049 (2) 0.066 (2) 0.0374 (17) −0.0028 (19) 0.0113 (15) −0.0043 (16)
C22 0.066 (2) 0.059 (2) 0.051 (2) −0.013 (2) 0.0132 (18) −0.0207 (18)
C23 0.057 (2) 0.052 (2) 0.0493 (19) −0.0100 (18) 0.0128 (17) −0.0088 (16)
C24 0.078 (3) 0.116 (4) 0.059 (3) −0.024 (3) 0.026 (2) 0.001 (3)
C25 0.0458 (19) 0.0479 (19) 0.0409 (17) 0.0011 (16) 0.0035 (14) 0.0043 (15)
C26 0.050 (2) 0.0440 (18) 0.0443 (18) 0.0094 (16) −0.0009 (15) 0.0122 (15)
C27 0.046 (2) 0.0485 (19) 0.0440 (18) 0.0077 (16) 0.0039 (15) 0.0007 (15)
C28 0.0443 (19) 0.0447 (18) 0.0382 (16) 0.0018 (16) 0.0031 (14) −0.0010 (14)
C29 0.0359 (17) 0.0356 (16) 0.0368 (16) −0.0027 (14) 0.0007 (13) −0.0039 (13)
C30 0.0376 (17) 0.0391 (17) 0.0343 (15) −0.0002 (14) −0.0017 (13) −0.0005 (13)
C31 0.052 (2) 0.0430 (18) 0.0411 (17) 0.0063 (16) 0.0026 (15) 0.0075 (14)
C32 0.045 (2) 0.0456 (19) 0.0484 (19) 0.0078 (16) 0.0032 (15) −0.0010 (15)
C33 0.0375 (17) 0.0402 (17) 0.0358 (15) −0.0003 (14) 0.0003 (13) −0.0026 (13)
C34 0.0351 (16) 0.0387 (16) 0.0357 (15) −0.0008 (14) −0.0008 (12) −0.0025 (13)
C35 0.0400 (18) 0.0430 (18) 0.0378 (16) 0.0041 (15) 0.0013 (13) 0.0002 (14)
C36 0.052 (2) 0.0454 (19) 0.0501 (19) 0.0012 (17) 0.0084 (16) −0.0033 (16)
C37 0.066 (3) 0.054 (2) 0.048 (2) 0.009 (2) 0.0048 (18) −0.0102 (17)
C38 0.052 (2) 0.064 (2) 0.0405 (18) 0.0125 (19) 0.0116 (16) 0.0080 (17)
C39 0.052 (2) 0.053 (2) 0.052 (2) −0.0006 (18) 0.0096 (16) 0.0072 (17)
C40 0.048 (2) 0.0461 (19) 0.0477 (19) −0.0004 (16) 0.0043 (15) −0.0035 (15)
C41 0.126 (5) 0.119 (4) 0.056 (3) 0.029 (4) 0.033 (3) −0.009 (3)
C42 0.0393 (18) 0.0422 (17) 0.0327 (15) 0.0039 (15) −0.0022 (13) 0.0007 (13)
C43 0.062 (2) 0.0400 (18) 0.0430 (18) −0.0083 (17) 0.0067 (16) −0.0051 (14)
C44 0.059 (2) 0.0448 (19) 0.0444 (18) −0.0086 (17) 0.0072 (16) 0.0038 (15)
C45 0.0447 (19) 0.0513 (19) 0.0309 (15) −0.0027 (16) 0.0003 (13) 0.0015 (14)
C46 0.050 (2) 0.0495 (19) 0.0345 (16) −0.0049 (17) −0.0035 (14) −0.0091 (14)
C47 0.0418 (19) 0.0453 (18) 0.0412 (17) −0.0054 (15) −0.0034 (14) −0.0024 (14)
C48 0.100 (4) 0.088 (3) 0.066 (3) −0.027 (3) 0.033 (3) 0.004 (2)
O1 0.0658 (17) 0.0693 (16) 0.0355 (12) −0.0087 (14) 0.0114 (11) −0.0048 (11)
O2 0.087 (2) 0.096 (2) 0.0561 (16) −0.0194 (18) 0.0347 (15) −0.0180 (15)
O3 0.083 (2) 0.090 (2) 0.0618 (17) 0.0176 (17) 0.0337 (15) 0.0066 (16)
O4 0.0695 (17) 0.0706 (17) 0.0412 (13) −0.0107 (14) 0.0150 (12) −0.0020 (12)

Geometric parameters (Å, º)

C1—C2 1.364 (4) C25—C26 1.360 (4)
C1—C10 1.408 (4) C25—C34 1.419 (4)
C1—H1 0.9300 C25—H25 0.9300
C2—C3 1.401 (4) C26—C27 1.401 (4)
C2—H2 0.9300 C26—H26 0.9300
C3—C4 1.356 (4) C27—C28 1.360 (4)
C3—H3 0.9300 C27—H27 0.9300
C4—C5 1.414 (4) C28—C29 1.413 (4)
C4—H4 0.9300 C28—H28 0.9300
C5—C10 1.427 (4) C29—C34 1.432 (4)
C5—C6 1.428 (4) C29—C30 1.433 (4)
C6—C7 1.379 (4) C30—C31 1.364 (4)
C6—C18 1.488 (4) C30—C42 1.488 (4)
C7—C8 1.409 (4) C31—C32 1.408 (4)
C7—H7 0.9300 C31—H31 0.9300
C8—C9 1.372 (4) C32—C33 1.369 (4)
C8—H8 0.9300 C32—H32 0.9300
C9—C10 1.437 (4) C33—C34 1.431 (4)
C9—C11 1.491 (4) C33—C35 1.484 (4)
C11—C16 1.383 (4) C35—C36 1.379 (4)
C11—C12 1.395 (4) C35—C40 1.392 (4)
C12—C13 1.384 (4) C36—C37 1.389 (5)
C12—H12 0.9300 C36—H36 0.9300
C13—C14 1.385 (5) C37—C38 1.375 (5)
C13—H13 0.9300 C37—H37 0.9300
C14—C15 1.369 (4) C38—O3 1.378 (4)
C14—O1 1.377 (3) C38—C39 1.378 (5)
C15—C16 1.389 (4) C39—C40 1.380 (4)
C15—H15 0.9300 C39—H39 0.9300
C16—H16 0.9300 C40—H40 0.9300
C17—O1 1.422 (4) C41—O3 1.403 (5)
C17—H17A 0.9600 C41—H41A 0.9600
C17—H17B 0.9600 C41—H41B 0.9600
C17—H17C 0.9600 C41—H41C 0.9600
C18—C19 1.383 (4) C42—C43 1.382 (4)
C18—C23 1.388 (4) C42—C47 1.398 (4)
C19—C20 1.389 (4) C43—C44 1.388 (4)
C19—H19 0.9300 C43—H43 0.9300
C20—C21 1.375 (5) C44—C45 1.379 (4)
C20—H20 0.9300 C44—H44 0.9300
C21—C22 1.372 (5) C45—C46 1.377 (4)
C21—O2 1.378 (4) C45—O4 1.379 (3)
C22—C23 1.385 (5) C46—C47 1.379 (4)
C22—H22 0.9300 C46—H46 0.9300
C23—H23 0.9300 C47—H47 0.9300
C24—O2 1.407 (5) C48—O4 1.418 (5)
C24—H24A 0.9600 C48—H48A 0.9600
C24—H24B 0.9600 C48—H48B 0.9600
C24—H24C 0.9600 C48—H48C 0.9600
C2—C1—C10 121.9 (3) C34—C25—H25 119.2
C2—C1—H1 119.1 C25—C26—C27 120.3 (3)
C10—C1—H1 119.1 C25—C26—H26 119.9
C1—C2—C3 119.4 (3) C27—C26—H26 119.9
C1—C2—H2 120.3 C28—C27—C26 119.9 (3)
C3—C2—H2 120.3 C28—C27—H27 120.1
C4—C3—C2 120.6 (3) C26—C27—H27 120.1
C4—C3—H3 119.7 C27—C28—C29 122.1 (3)
C2—C3—H3 119.7 C27—C28—H28 119.0
C3—C4—C5 121.6 (3) C29—C28—H28 119.0
C3—C4—H4 119.2 C28—C29—C34 118.1 (3)
C5—C4—H4 119.2 C28—C29—C30 122.3 (3)
C4—C5—C10 117.9 (3) C34—C29—C30 119.6 (3)
C4—C5—C6 121.9 (3) C31—C30—C29 118.4 (3)
C10—C5—C6 120.1 (3) C31—C30—C42 120.6 (3)
C7—C6—C5 118.6 (3) C29—C30—C42 121.0 (3)
C7—C6—C18 120.8 (3) C30—C31—C32 121.9 (3)
C5—C6—C18 120.6 (3) C30—C31—H31 119.1
C6—C7—C8 121.0 (3) C32—C31—H31 119.1
C6—C7—H7 119.5 C33—C32—C31 122.0 (3)
C8—C7—H7 119.5 C33—C32—H32 119.0
C9—C8—C7 122.5 (3) C31—C32—H32 119.0
C9—C8—H8 118.8 C32—C33—C34 118.1 (3)
C7—C8—H8 118.8 C32—C33—C35 120.2 (3)
C8—C9—C10 118.1 (3) C34—C33—C35 121.7 (3)
C8—C9—C11 120.7 (3) C25—C34—C33 122.0 (3)
C10—C9—C11 121.2 (3) C25—C34—C29 118.0 (3)
C1—C10—C5 118.5 (3) C33—C34—C29 119.9 (3)
C1—C10—C9 121.8 (3) C36—C35—C40 117.5 (3)
C5—C10—C9 119.6 (3) C36—C35—C33 121.1 (3)
C16—C11—C12 117.2 (3) C40—C35—C33 121.4 (3)
C16—C11—C9 120.3 (3) C35—C36—C37 122.1 (3)
C12—C11—C9 122.6 (3) C35—C36—H36 119.0
C13—C12—C11 121.2 (3) C37—C36—H36 119.0
C13—C12—H12 119.4 C38—C37—C36 119.1 (3)
C11—C12—H12 119.4 C38—C37—H37 120.5
C12—C13—C14 120.0 (3) C36—C37—H37 120.5
C12—C13—H13 120.0 C37—C38—O3 124.6 (3)
C14—C13—H13 120.0 C37—C38—C39 120.2 (3)
C15—C14—O1 124.4 (3) O3—C38—C39 115.2 (3)
C15—C14—C13 120.0 (3) C38—C39—C40 119.9 (3)
O1—C14—C13 115.6 (3) C38—C39—H39 120.0
C14—C15—C16 119.4 (3) C40—C39—H39 120.0
C14—C15—H15 120.3 C39—C40—C35 121.2 (3)
C16—C15—H15 120.3 C39—C40—H40 119.4
C11—C16—C15 122.3 (3) C35—C40—H40 119.4
C11—C16—H16 118.9 O3—C41—H41A 109.5
C15—C16—H16 118.9 O3—C41—H41B 109.5
O1—C17—H17A 109.5 H41A—C41—H41B 109.5
O1—C17—H17B 109.5 O3—C41—H41C 109.5
H17A—C17—H17B 109.5 H41A—C41—H41C 109.5
O1—C17—H17C 109.5 H41B—C41—H41C 109.5
H17A—C17—H17C 109.5 C43—C42—C47 117.0 (3)
H17B—C17—H17C 109.5 C43—C42—C30 120.7 (3)
C19—C18—C23 117.2 (3) C47—C42—C30 122.3 (3)
C19—C18—C6 121.8 (3) C42—C43—C44 122.6 (3)
C23—C18—C6 121.0 (3) C42—C43—H43 118.7
C18—C19—C20 122.0 (3) C44—C43—H43 118.7
C18—C19—H19 119.0 C45—C44—C43 119.0 (3)
C20—C19—H19 119.0 C45—C44—H44 120.5
C21—C20—C19 119.3 (3) C43—C44—H44 120.5
C21—C20—H20 120.4 C46—C45—O4 115.9 (3)
C19—C20—H20 120.4 C46—C45—C44 119.7 (3)
C22—C21—C20 120.1 (3) O4—C45—C44 124.3 (3)
C22—C21—O2 116.0 (3) C45—C46—C47 120.7 (3)
C20—C21—O2 124.0 (3) C45—C46—H46 119.6
C21—C22—C23 120.0 (3) C47—C46—H46 119.6
C21—C22—H22 120.0 C46—C47—C42 120.9 (3)
C23—C22—H22 120.0 C46—C47—H47 119.5
C22—C23—C18 121.4 (3) C42—C47—H47 119.5
C22—C23—H23 119.3 O4—C48—H48A 109.5
C18—C23—H23 119.3 O4—C48—H48B 109.5
O2—C24—H24A 109.5 H48A—C48—H48B 109.5
O2—C24—H24B 109.5 O4—C48—H48C 109.5
H24A—C24—H24B 109.5 H48A—C48—H48C 109.5
O2—C24—H24C 109.5 H48B—C48—H48C 109.5
H24A—C24—H24C 109.5 C14—O1—C17 117.5 (3)
H24B—C24—H24C 109.5 C21—O2—C24 117.5 (3)
C26—C25—C34 121.6 (3) C38—O3—C41 118.0 (4)
C26—C25—H25 119.2 C45—O4—C48 117.5 (3)
C10—C1—C2—C3 −1.1 (5) C27—C28—C29—C30 −177.5 (3)
C1—C2—C3—C4 0.7 (5) C28—C29—C30—C31 176.2 (3)
C2—C3—C4—C5 0.7 (5) C34—C29—C30—C31 −1.6 (4)
C3—C4—C5—C10 −1.7 (5) C28—C29—C30—C42 −1.2 (4)
C3—C4—C5—C6 −178.9 (3) C34—C29—C30—C42 −179.0 (3)
C4—C5—C6—C7 174.2 (3) C29—C30—C31—C32 3.3 (5)
C10—C5—C6—C7 −3.0 (4) C42—C30—C31—C32 −179.4 (3)
C4—C5—C6—C18 −5.8 (4) C30—C31—C32—C33 −1.8 (5)
C10—C5—C6—C18 177.1 (3) C31—C32—C33—C34 −1.5 (5)
C5—C6—C7—C8 1.5 (5) C31—C32—C33—C35 178.6 (3)
C18—C6—C7—C8 −178.5 (3) C26—C25—C34—C33 179.9 (3)
C6—C7—C8—C9 1.4 (5) C26—C25—C34—C29 2.6 (5)
C7—C8—C9—C10 −2.6 (5) C32—C33—C34—C25 −174.1 (3)
C7—C8—C9—C11 179.3 (3) C35—C33—C34—C25 5.7 (5)
C2—C1—C10—C5 0.1 (5) C32—C33—C34—C29 3.0 (4)
C2—C1—C10—C9 176.8 (3) C35—C33—C34—C29 −177.1 (3)
C4—C5—C10—C1 1.3 (4) C28—C29—C34—C25 −2.1 (4)
C6—C5—C10—C1 178.5 (3) C30—C29—C34—C25 175.8 (3)
C4—C5—C10—C9 −175.5 (3) C28—C29—C34—C33 −179.4 (3)
C6—C5—C10—C9 1.7 (4) C30—C29—C34—C33 −1.5 (4)
C8—C9—C10—C1 −175.6 (3) C32—C33—C35—C36 56.0 (4)
C11—C9—C10—C1 2.4 (4) C34—C33—C35—C36 −123.9 (3)
C8—C9—C10—C5 1.1 (4) C32—C33—C35—C40 −120.3 (4)
C11—C9—C10—C5 179.1 (3) C34—C33—C35—C40 59.8 (4)
C8—C9—C11—C16 63.9 (4) C40—C35—C36—C37 −0.4 (5)
C10—C9—C11—C16 −114.1 (4) C33—C35—C36—C37 −176.8 (3)
C8—C9—C11—C12 −116.7 (4) C35—C36—C37—C38 1.5 (5)
C10—C9—C11—C12 65.3 (4) C36—C37—C38—O3 177.0 (3)
C16—C11—C12—C13 −0.6 (5) C36—C37—C38—C39 −2.2 (5)
C9—C11—C12—C13 179.9 (3) C37—C38—C39—C40 1.8 (5)
C11—C12—C13—C14 0.9 (5) O3—C38—C39—C40 −177.5 (3)
C12—C13—C14—C15 −0.4 (5) C38—C39—C40—C35 −0.8 (5)
C12—C13—C14—O1 179.5 (3) C36—C35—C40—C39 0.1 (5)
O1—C14—C15—C16 179.7 (3) C33—C35—C40—C39 176.5 (3)
C13—C14—C15—C16 −0.3 (5) C31—C30—C42—C43 −59.6 (4)
C12—C11—C16—C15 −0.1 (5) C29—C30—C42—C43 117.7 (3)
C9—C11—C16—C15 179.3 (3) C31—C30—C42—C47 119.0 (3)
C14—C15—C16—C11 0.6 (5) C29—C30—C42—C47 −63.7 (4)
C7—C6—C18—C19 120.9 (4) C47—C42—C43—C44 0.5 (5)
C5—C6—C18—C19 −59.1 (4) C30—C42—C43—C44 179.2 (3)
C7—C6—C18—C23 −58.8 (4) C42—C43—C44—C45 −0.8 (5)
C5—C6—C18—C23 121.2 (3) C43—C44—C45—C46 1.1 (5)
C23—C18—C19—C20 0.1 (5) C43—C44—C45—O4 179.4 (3)
C6—C18—C19—C20 −179.6 (3) O4—C45—C46—C47 −179.6 (3)
C18—C19—C20—C21 −0.3 (5) C44—C45—C46—C47 −1.1 (5)
C19—C20—C21—C22 −0.1 (6) C45—C46—C47—C42 0.8 (5)
C19—C20—C21—O2 179.4 (3) C43—C42—C47—C46 −0.5 (5)
C20—C21—C22—C23 0.6 (6) C30—C42—C47—C46 −179.1 (3)
O2—C21—C22—C23 −178.9 (3) C15—C14—O1—C17 −0.7 (5)
C21—C22—C23—C18 −0.8 (6) C13—C14—O1—C17 179.4 (3)
C19—C18—C23—C22 0.4 (5) C22—C21—O2—C24 −177.2 (4)
C6—C18—C23—C22 −179.9 (3) C20—C21—O2—C24 3.4 (6)
C34—C25—C26—C27 −1.3 (5) C37—C38—O3—C41 −5.7 (6)
C25—C26—C27—C28 −0.5 (5) C39—C38—O3—C41 173.5 (4)
C26—C27—C28—C29 1.0 (5) C46—C45—O4—C48 179.9 (3)
C27—C28—C29—C34 0.4 (5) C44—C45—O4—C48 1.5 (5)

Hydrogen-bond geometry (Å, º)

Cg1–Cg3 are the centroids of the (C42–C47), (C25—C34) and (C11–C16) rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···Cg1 0.93 2.76 3.531 (4) 141
C15—H15···Cg2i 0.93 2.96 3.737 (4) 142
C27—H27···Cg3 0.93 2.81 3.610 (4) 145

Symmetry code: (i) x, y+1, z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  6. Tannaci, J. F., Noji, M., McBee, J. L. & Tilley, T. D. (2008). J. Org. Chem. 73, 7895–7900. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620002126/tk4061sup1.cif

x-05-x200212-sup1.cif (41.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620002126/tk4061Isup2.hkl

x-05-x200212-Isup2.hkl (386.2KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620002126/tk4061Isup3.cml

CCDC reference: 1984009

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES