Skip to main content
IUCrData logoLink to IUCrData
. 2020 Mar 10;5(Pt 3):x200315. doi: 10.1107/S2414314620003156

12,15-Dimethyl-8-oxa­tetra­cyclo­[8.8.0.02,7.011,16]octa­deca-1(18),2,4,6,11(16),12,14-heptaen-10-ol

Alan J Lough a,*, Samuel Koh b, William Tam b
Editor: W T A Harrisonc
PMCID: PMC9462194  PMID: 36339481

In the title compound, he pyran ring is in a half-chair conformation and the fused ring system comprising the benzene and cyclo­hexene rings is essentially planar and forms a dihedral angle of 27.95 (6)° with the other benzene ring. In the crystal, O—H⋯O hydrogen bonds connect the mol­ecules into chains propagating along [001].

Keywords: crystal structure, ring-opening, regioselectivity, hydrogen bonds

Abstract

In the title compound, C19H18O2, the pyran ring is in a half-chair conformation. The fused ring system comprising the benzene and cyclo­hexene rings is essentially planar (r.m.s. deviation = 0.053 Å) and forms a dihedral angle of 27.95 (6)° with the other benzene ring. In the crystal, O—H⋯O hydrogen bonds connect the mol­ecules into chains propagating along [001]. graphic file with name x-05-x200315-scheme1-3D1.jpg

Structure description

The ring-opening reaction of oxabenzonorbornadiene (OBD) has been well studied by many groups including our own (Lautens et al., 2003; Rayabarapu & Cheng, 2007; Boutin et al., 2019; Hill et al., 2019; Hill & Tam, 2019). Building on the work of Cheng (Duan & Cheng, 1995), our group has also demonstrated the palladium-catalysed regioselective ring-opening of C1-substituted OBDs using aryl iodides (Raheem et al., 2014). However, to the best of our knowledge, intra­molecular modes of this reactivity have been left unexplored. Currently, the only known intra­molecular transformation of OBD was reported by the Lautens group (Loh et al., 2016) with a similar transformation recently reported by our group on cyclo­propanated OBD (Wicks et al., 2019). Based on this, we set out to investigate palladium-catalysed intra­molecular ring-openings of OBD with C1-tethered aryl halides. The reaction of C1-substituted OBD I (see Fig. 1) in the presence of PdCl2(PPh3)2, Zn, Et3N, and MeCN afforded an expected dehydrated product II in 82% yield, as well as an unexpected and yet unreported hydrated product III in 14% yield. The structure of the alcohol-containing fused tetra­cycle III was confirmed by single-crystal X-ray analysis.

Figure 1.

Figure 1

The reaction scheme

The mol­ecular structure of the title compound is shown in Fig. 2. The pyran ring (O1/C1/C2/C11/C12/C17) is in a half-chair conformation with atoms C1 and C2 deviating from the mean-plane of the other four atoms by −0.197 (2) and 0.556 (1) Å, respectively. The fused ring system comprising the benzene (C3–C8) and cyclo­hexene (C2/C3/C8–C11) rings is essentially planar (r.m.s. deviation = 0.053 Å) and forms a dihedral angle of 27.95 (6)° with the other benzene ring (C12–C17). In the arbitrarily chosen asymmetric unit, atom C2 has an S configuration but crystal symmetry generates a racemic mixture. In the crystal, O—H⋯O hydrogen bonds (Table 1) connect the mol­ecules into chains propagating along [001] (Fig. 3).

Figure 2.

Figure 2

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.86 (2) 2.03 (2) 2.8805 (14) 171.0 (19)

Symmetry code: (i) Inline graphic .

Figure 3.

Figure 3

Part of the crystal structure with O—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a 2 dram vial was added oxabenzonorbornadiene I (Fig. 1) (67.8 mg, 0.168 mmol), then purged with argon before importing into a glove box under an inert argon atmosphere. The vial was loaded sequentially with Zn (123.3 mg, 1.89 mmol, 11.2 eq.), MeCN (1.5 ml), Et3N (0.09 ml, 0.669 mmol, 0.25 eq.) and PdCl2(PPh3)2 (12.5 mg, 0.0178 mmol, 10.6 mol%), then exported and stirred at 333 K for 1 day. The mixture was cooled to room temperature and stirred in air for 10 minutes before removing the solvent under reduced pressure. The crude mixture was then purified by flash column chromatography using gradient elution (EtOAc:hexa­nes 1:9 to EtOAc:hexa­nes 1:4) to obtain the ring-opened product II (35.8 mg, 82%) as a white solid and III (6.6 mg, 14%) as a white solid. The product III was subsequently crystallized from methyl­ene chloride solution by slow evaporation to give product III as colourless crystals with orange specks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C19H18O2
M r 278.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 12.2712 (7), 11.2934 (6), 10.8984 (7)
β (°) 112.565 (2)
V3) 1394.71 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.19 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.703, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22859, 3212, 2404
R int 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.110, 1.04
No. of reflections 3212
No. of parameters 196
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.22

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), PLATON (Spek, 2020), publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620003156/hb4341sup1.cif

x-05-x200315-sup1.cif (694.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003156/hb4341Isup2.hkl

x-05-x200315-Isup2.hkl (256.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620003156/hb4341Isup3.cml

CCDC reference: 1988571

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of Toronto thanks NSERC Canada for funding.

full crystallographic data

Crystal data

C19H18O2 F(000) = 592
Mr = 278.33 Dx = 1.326 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.2712 (7) Å Cell parameters from 6674 reflections
b = 11.2934 (6) Å θ = 2.6–27.5°
c = 10.8984 (7) Å µ = 0.09 mm1
β = 112.565 (2)° T = 150 K
V = 1394.71 (14) Å3 Shard, colourless
Z = 4 0.25 × 0.19 × 0.11 mm

Data collection

Bruker Kappa APEX DUO CCD diffractometer 2404 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromator Rint = 0.040
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −15→15
Tmin = 0.703, Tmax = 0.746 k = −14→12
22859 measured reflections l = −14→14
3212 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.6316P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3212 reflections Δρmax = 0.31 e Å3
196 parameters Δρmin = −0.21 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38362 (9) 0.71483 (9) 0.94095 (10) 0.0227 (2)
O2 0.35317 (9) 0.79851 (9) 0.68983 (10) 0.0195 (2)
H2O 0.3639 (17) 0.8028 (17) 0.616 (2) 0.041 (6)*
C1 0.28530 (12) 0.67697 (13) 0.82436 (13) 0.0194 (3)
H1A 0.216856 0.729079 0.811291 0.023*
H1B 0.263028 0.595336 0.838378 0.023*
C2 0.31342 (12) 0.67990 (12) 0.69883 (13) 0.0165 (3)
C3 0.20305 (12) 0.64875 (12) 0.57662 (13) 0.0168 (3)
C4 0.10115 (12) 0.72098 (12) 0.54010 (14) 0.0183 (3)
C5 −0.00046 (13) 0.68454 (13) 0.43491 (14) 0.0207 (3)
H5A −0.070186 0.730804 0.411431 0.025*
C6 −0.00220 (13) 0.58267 (13) 0.36392 (14) 0.0217 (3)
H6A −0.073619 0.558560 0.294864 0.026*
C7 0.09851 (13) 0.51547 (13) 0.39205 (14) 0.0204 (3)
C8 0.20197 (12) 0.54850 (12) 0.49950 (14) 0.0185 (3)
C9 0.31027 (13) 0.47357 (14) 0.52591 (15) 0.0266 (3)
H9A 0.289357 0.389843 0.532701 0.032*
H9B 0.333308 0.479937 0.448491 0.032*
C10 0.41426 (13) 0.50446 (14) 0.64767 (15) 0.0230 (3)
H10A 0.482918 0.456604 0.670766 0.028*
C11 0.41632 (12) 0.59543 (12) 0.72595 (13) 0.0182 (3)
C12 0.51602 (12) 0.61900 (12) 0.85341 (14) 0.0188 (3)
C13 0.63234 (13) 0.58519 (13) 0.87853 (15) 0.0235 (3)
H13A 0.649773 0.547125 0.810468 0.028*
C14 0.72254 (13) 0.60601 (14) 1.00035 (16) 0.0266 (3)
H14A 0.800938 0.582302 1.015531 0.032*
C15 0.69775 (13) 0.66181 (14) 1.10041 (16) 0.0258 (3)
H15A 0.759337 0.675389 1.184465 0.031*
C16 0.58418 (13) 0.69762 (13) 1.07837 (15) 0.0231 (3)
H16A 0.567555 0.736584 1.146479 0.028*
C17 0.49430 (12) 0.67609 (13) 0.95542 (14) 0.0192 (3)
C18 0.09345 (14) 0.83818 (14) 0.60380 (16) 0.0255 (3)
H18A 0.172468 0.872790 0.644921 0.038*
H18B 0.060772 0.825342 0.671871 0.038*
H18C 0.042111 0.892264 0.535837 0.038*
C19 0.09555 (14) 0.40895 (14) 0.30771 (15) 0.0271 (3)
H19A 0.154520 0.418330 0.268138 0.041*
H19B 0.016948 0.401618 0.237010 0.041*
H19C 0.113242 0.337581 0.363080 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0194 (5) 0.0335 (6) 0.0143 (5) 0.0017 (4) 0.0056 (4) −0.0035 (4)
O2 0.0245 (5) 0.0175 (5) 0.0182 (5) −0.0023 (4) 0.0100 (4) −0.0002 (4)
C1 0.0176 (7) 0.0263 (8) 0.0140 (7) −0.0015 (6) 0.0059 (5) −0.0003 (5)
C2 0.0197 (7) 0.0162 (7) 0.0141 (6) −0.0010 (5) 0.0071 (5) −0.0006 (5)
C3 0.0191 (7) 0.0186 (7) 0.0136 (6) −0.0012 (5) 0.0073 (5) 0.0013 (5)
C4 0.0223 (7) 0.0181 (7) 0.0162 (7) 0.0000 (6) 0.0091 (6) 0.0019 (5)
C5 0.0203 (7) 0.0231 (8) 0.0182 (7) 0.0023 (6) 0.0068 (6) 0.0035 (6)
C6 0.0220 (7) 0.0255 (8) 0.0146 (7) −0.0036 (6) 0.0036 (6) 0.0013 (6)
C7 0.0264 (7) 0.0195 (7) 0.0155 (7) −0.0032 (6) 0.0083 (6) 0.0001 (5)
C8 0.0223 (7) 0.0183 (7) 0.0160 (7) −0.0010 (5) 0.0085 (6) 0.0000 (5)
C9 0.0279 (8) 0.0252 (8) 0.0239 (8) 0.0039 (6) 0.0068 (6) −0.0078 (6)
C10 0.0225 (7) 0.0247 (8) 0.0214 (7) 0.0041 (6) 0.0079 (6) −0.0007 (6)
C11 0.0192 (7) 0.0202 (7) 0.0159 (7) 0.0005 (5) 0.0076 (5) 0.0024 (5)
C12 0.0206 (7) 0.0179 (7) 0.0176 (7) −0.0003 (6) 0.0071 (6) 0.0021 (5)
C13 0.0231 (7) 0.0234 (8) 0.0243 (8) 0.0018 (6) 0.0094 (6) 0.0022 (6)
C14 0.0194 (7) 0.0278 (8) 0.0298 (8) 0.0025 (6) 0.0065 (6) 0.0041 (7)
C15 0.0229 (8) 0.0256 (8) 0.0221 (8) −0.0028 (6) 0.0010 (6) 0.0033 (6)
C16 0.0263 (8) 0.0242 (8) 0.0177 (7) −0.0018 (6) 0.0073 (6) 0.0003 (6)
C17 0.0189 (7) 0.0203 (7) 0.0180 (7) −0.0001 (5) 0.0064 (6) 0.0032 (6)
C18 0.0250 (8) 0.0242 (8) 0.0245 (8) 0.0053 (6) 0.0063 (6) −0.0030 (6)
C19 0.0320 (9) 0.0247 (8) 0.0215 (8) −0.0029 (6) 0.0070 (6) −0.0061 (6)

Geometric parameters (Å, º)

O1—C17 1.3771 (17) C9—H9A 0.9900
O1—C1 1.4410 (17) C9—H9B 0.9900
O2—C2 1.4417 (17) C10—C11 1.329 (2)
O2—H2O 0.86 (2) C10—H10A 0.9500
C1—C2 1.5343 (18) C11—C12 1.4809 (19)
C1—H1A 0.9900 C12—C17 1.397 (2)
C1—H1B 0.9900 C12—C13 1.399 (2)
C2—C11 1.5184 (19) C13—C14 1.384 (2)
C2—C3 1.5322 (19) C13—H13A 0.9500
C3—C8 1.4071 (19) C14—C15 1.390 (2)
C3—C4 1.4162 (19) C14—H14A 0.9500
C4—C5 1.393 (2) C15—C16 1.381 (2)
C4—C18 1.514 (2) C15—H15A 0.9500
C5—C6 1.382 (2) C16—C17 1.392 (2)
C5—H5A 0.9500 C16—H16A 0.9500
C6—C7 1.381 (2) C18—H18A 0.9800
C6—H6A 0.9500 C18—H18B 0.9800
C7—C8 1.408 (2) C18—H18C 0.9800
C7—C19 1.506 (2) C19—H19A 0.9800
C8—C9 1.507 (2) C19—H19B 0.9800
C9—C10 1.487 (2) C19—H19C 0.9800
C17—O1—C1 117.52 (11) H9A—C9—H9B 107.5
C2—O2—H2O 107.0 (13) C11—C10—C9 123.53 (14)
O1—C1—C2 112.41 (11) C11—C10—H10A 118.2
O1—C1—H1A 109.1 C9—C10—H10A 118.2
C2—C1—H1A 109.1 C10—C11—C12 123.11 (13)
O1—C1—H1B 109.1 C10—C11—C2 123.44 (13)
C2—C1—H1B 109.1 C12—C11—C2 113.31 (12)
H1A—C1—H1B 107.9 C17—C12—C13 117.53 (13)
O2—C2—C11 108.61 (11) C17—C12—C11 119.23 (12)
O2—C2—C3 111.32 (11) C13—C12—C11 123.23 (13)
C11—C2—C3 114.62 (11) C14—C13—C12 121.44 (14)
O2—C2—C1 106.17 (11) C14—C13—H13A 119.3
C11—C2—C1 105.53 (11) C12—C13—H13A 119.3
C3—C2—C1 110.11 (11) C13—C14—C15 119.62 (14)
C8—C3—C4 119.39 (13) C13—C14—H14A 120.2
C8—C3—C2 120.44 (12) C15—C14—H14A 120.2
C4—C3—C2 120.18 (12) C16—C15—C14 120.41 (14)
C5—C4—C3 118.42 (13) C16—C15—H15A 119.8
C5—C4—C18 116.22 (13) C14—C15—H15A 119.8
C3—C4—C18 125.34 (13) C15—C16—C17 119.37 (14)
C6—C5—C4 121.55 (13) C15—C16—H16A 120.3
C6—C5—H5A 119.2 C17—C16—H16A 120.3
C4—C5—H5A 119.2 O1—C17—C16 115.93 (13)
C7—C6—C5 120.87 (13) O1—C17—C12 122.45 (12)
C7—C6—H6A 119.6 C16—C17—C12 121.62 (13)
C5—C6—H6A 119.6 C4—C18—H18A 109.5
C6—C7—C8 118.93 (13) C4—C18—H18B 109.5
C6—C7—C19 119.58 (13) H18A—C18—H18B 109.5
C8—C7—C19 121.49 (13) C4—C18—H18C 109.5
C3—C8—C7 120.59 (13) H18A—C18—H18C 109.5
C3—C8—C9 122.15 (13) H18B—C18—H18C 109.5
C7—C8—C9 117.25 (13) C7—C19—H19A 109.5
C10—C9—C8 115.51 (12) C7—C19—H19B 109.5
C10—C9—H9A 108.4 H19A—C19—H19B 109.5
C8—C9—H9A 108.4 C7—C19—H19C 109.5
C10—C9—H9B 108.4 H19A—C19—H19C 109.5
C8—C9—H9B 108.4 H19B—C19—H19C 109.5
C17—O1—C1—C2 −41.25 (17) C7—C8—C9—C10 −174.41 (13)
O1—C1—C2—O2 −54.75 (14) C8—C9—C10—C11 −3.5 (2)
O1—C1—C2—C11 60.43 (14) C9—C10—C11—C12 174.19 (14)
O1—C1—C2—C3 −175.37 (11) C9—C10—C11—C2 −1.2 (2)
O2—C2—C3—C8 123.95 (13) O2—C2—C11—C10 −122.26 (14)
C11—C2—C3—C8 0.19 (18) C3—C2—C11—C10 2.93 (19)
C1—C2—C3—C8 −118.58 (14) C1—C2—C11—C10 124.26 (15)
O2—C2—C3—C4 −55.88 (16) O2—C2—C11—C12 61.99 (14)
C11—C2—C3—C4 −179.64 (11) C3—C2—C11—C12 −172.82 (11)
C1—C2—C3—C4 61.59 (16) C1—C2—C11—C12 −51.50 (14)
C8—C3—C4—C5 5.28 (19) C10—C11—C12—C17 −150.86 (15)
C2—C3—C4—C5 −174.89 (12) C2—C11—C12—C17 24.91 (18)
C8—C3—C4—C18 −172.91 (13) C10—C11—C12—C13 28.1 (2)
C2—C3—C4—C18 6.9 (2) C2—C11—C12—C13 −156.10 (13)
C3—C4—C5—C6 −2.2 (2) C17—C12—C13—C14 0.8 (2)
C18—C4—C5—C6 176.20 (13) C11—C12—C13—C14 −178.20 (14)
C4—C5—C6—C7 −2.3 (2) C12—C13—C14—C15 −0.1 (2)
C5—C6—C7—C8 3.6 (2) C13—C14—C15—C16 −0.7 (2)
C5—C6—C7—C19 −176.41 (13) C14—C15—C16—C17 0.8 (2)
C4—C3—C8—C7 −4.1 (2) C1—O1—C17—C16 −169.75 (12)
C2—C3—C8—C7 176.07 (12) C1—O1—C17—C12 10.5 (2)
C4—C3—C8—C9 174.87 (13) C15—C16—C17—O1 −179.75 (13)
C2—C3—C8—C9 −5.0 (2) C15—C16—C17—C12 0.0 (2)
C6—C7—C8—C3 −0.3 (2) C13—C12—C17—O1 178.97 (13)
C19—C7—C8—C3 179.64 (13) C11—C12—C17—O1 −2.0 (2)
C6—C7—C8—C9 −179.36 (13) C13—C12—C17—C16 −0.8 (2)
C19—C7—C8—C9 0.6 (2) C11—C12—C17—C16 178.27 (13)
C3—C8—C9—C10 6.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.86 (2) 2.03 (2) 2.8805 (14) 171.0 (19)

Symmetry code: (i) x, −y+3/2, z−1/2.

References

  1. Boutin, R., Koh, S. & Tam, W. (2019). Curr. Org. Synth. 16, 460–484. [DOI] [PMC free article] [PubMed]
  2. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Duan, J. & Cheng, C. H. (1995). Organometallics, 14, 1608–1618.
  4. Hill, J. & Tam, W. (2019). J. Org. Chem. 84, 8309–8314. [DOI] [PubMed]
  5. Hill, J., Wicks, C., Pounder, A. & Tam, W. (2019). Tetrahedron Lett. 60, 150990.
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Lautens, M., Fagnou, K. & Hiebert, S. (2003). Acc. Chem. Res. 36, 48–58. [DOI] [PubMed]
  8. Loh, C. C. J., Schmid, M., Webster, R., Yen, A., Yazdi, S. K., Franke, P. T. & Lautens, M. (2016). Angew. Chem. Int. Ed. 55, 10074–10078. [DOI] [PubMed]
  9. Raheem, M. A., Edmunds, M. & Tam, W. (2014). Can. J. Chem. 92, 888–895.
  10. Rayabarapu, D. K. & Cheng, C.-H. (2007). Acc. Chem. Res. 40, 971–983. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Wicks, C., Koh, S., Pounder, A., Carlson, E. & Tam, W. (2019). Tetrahedron Lett. 60, 151228.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620003156/hb4341sup1.cif

x-05-x200315-sup1.cif (694.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003156/hb4341Isup2.hkl

x-05-x200315-Isup2.hkl (256.6KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620003156/hb4341Isup3.cml

CCDC reference: 1988571

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES