Skip to main content
IUCrData logoLink to IUCrData
. 2020 Mar 31;5(Pt 3):x200417. doi: 10.1107/S2414314620004174

Trimethyl 4,4′,4′′-(ethene-1,1,2-tri­yl)tribenzoate

Melvin J G Lesley a,*, Koray Ozhan a,, Herman H-Y Sung b, Ian D Williams b
Editor: M Zellerc
PMCID: PMC9462201  PMID: 36339477

The tandem in situ double Suzuki coupling reaction of a diborated ethyl­ene compound containing electron-withdrawing aromatic ester groups was studied. The major product is derived from the Suzuki coupling involving the boryl group and an aryl­iodide derivative followed by preferential protodeboronation of the second boryl ligand.

Keywords: crystal structure, protodeboronation, Suzuki coupling

Abstract

The title compound, C26H22O6, is formed as the major product from the reaction between syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene and excess methyl 4-iodo­benzoate in basic DMSO using a palladium catalyst at 80°C via Suzuki coupling followed by protodeboronation. Crystals were grown by slow evaporation of a hexa­nes solution at room temperature. graphic file with name x-05-x200417-scheme1-3D1.jpg

Structure description

Protodeboronation is a well-known side reaction resulting in the replacement of boryl groups with hydrogen (Lee & Cheon, 2016). Initial studies of reductive deboronation have been reported for alkene (Brown & Murray, 1959, 1986) and alkyne (Brown & Zweifel, 1961; Zweifel et al., 1971) derivatives under acidic conditions as an alternative method to the hydrogenation of π-bonds. More recent studies have focused on the beneficial outcomes of protodeboronation for the control of regioselectivity in reactions with aryl­boronic acid or aryl­boronate ester derivatives and heteroatomic ring structures utilizing both acidic (Beckett et al., 1993; Kuivila & Nahabedian, 1961; Nahabedian & Kuivila, 1961) and basic (Lozada et al., 2014) reaction conditions. Protodeboronation has also been reported for reactions involving metal catalysis employing copper (Liu et al., 2014), gold (Barker et al., 2015) and palladium (Lai et al., 2006; Brown & Armstrong, 1996). The palladium-catalyzed Suzuki coupling reaction (Lennox & Lloyd-Jones, 2014; Suzuki, 2011; Miyaura & Suzuki, 1995) commonly employs basic conditions in hygroscopic solvents such as DMSO and DMF in addition to water for the dissolution of the base. These reactions are therefore prone to protodeboronation especially when elevated temperatures are employed. The title compound, (I), was the major product isolated in the attempted synthesis of 1,1′,2,2′-tetra­kis­(4-methyl­carb­oxy­phen­yl)ethene via the Pd-catalyzed double Suzuki coupling reaction (Ishiyama et al., 1993; Ishiyama, Yamamoto et al., 1996) between syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene (Ishiyama, Matsuda et al., 1996) and methyl 4-iodo­benzoate. The mol­ecular structure of (I) is shown in Fig. 1.

Figure 1.

Figure 1

A view of the mol­ecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level.

The title compound (I) contains four mol­ecules in the unit cell. The three methyl 4-carb­oxy­phenyl rings 1 (C11–C16), 2 (C21–C26), and 3 (C31–C36) form dihedral angles of 23.37 (6), 65.95 (4), and 33.72 (7)°, respectively, with the plane including the alkene vector (C10/C11) made up from the atoms C1, C10, C11, C21 and C31. The angles between the meth­oxy groups and the phenyl rings were calculated and indicate the groups are close to coplanar with angles of 6.3 (1)° for the mean planes defined by (C11–C16) and (C17, O2, C18); 12.5 (1)° for the mean planes defined by (C21–C26) and (C27, O4, C28); and 6.7 (2)° for the mean planes defined by (C31–C36) and (C37, O6, C38). The bond lengths and angles conform to typical value ranges (Allen et al., 1987). There are a number of short C—O⋯H—C inter­molecular inter­actions (Table 1) observed in the crystal packing as shown in Fig. 2.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.95 2.51 3.4082 (18) 159
C18—H18B⋯O4ii 0.98 2.72 3.5520 (19) 144
C28—H28C⋯O6iii 0.98 2.85 3.769 (2) 156
C38—H38A⋯O1iv 0.98 2.79 3.275 (2) 111
C38—H38B⋯O3v 0.98 2.57 3.339 (2) 135
C38—H38C⋯O2vi 0.98 2.66 3.595 (2) 159

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

A view of the packing diagram showing short C—O⋯H—C inter­molecular inter­actions.

Synthesis and crystallization

A 100-ml Schlenk flask was equipped with a magnetic stir bar and charged with syn-1,2-bis­(pinacolatoboron)-1,2-bis­(4-methyl­carb­oxy­phen­yl)ethene (3.710 g, 6.77 mmol), methyl 4-iodo­benzoate (3.723 g, 14.2 mmol), Pd2(dba)3 (0.155 g, 2.5 mol%), and P(o-tol­yl)3 (0.108 g, 5.25 mol%). The reaction flask was evacuated for a period of 30 minutes and placed under a dry N2 (g) atmosphere. An aqueous solution of degassed K2CO3 (2.42 ml, 7 M, 2.5 equiv.) was added via syringe followed by the addition of degassed DME (50 ml). A condenser was attached and the reaction was heated to reflux under an N2 atmosphere for 24 h. The reaction mixture was cooled to room temperature and water and diethyl ether were added. The orange ether layer was isolated and dried in vacuo. Recrystallization from ether/hexa­nes gave a white precipitate that was isolated by filtration and washed with hexane (2 × 10 ml) yielding a white solid (2.345 g, 81%; m.p. 397 K). The hexane layers were combined and slow evaporation in air gave a crop of colorless crystals of (I). Analytical data for C26H22O6; calculated (found): %C: 72.55 (71.28); %H: 5.15 (5.16); HRMS (EI: m + 1+) calculated (found): 431.142 (431.149); 1H NMR (300 MHz, CDCl3): 8.01 (d, J = 7.8 Hz, 2H, Ar—H), 7.99 (d, J = 7.8 Hz, 2H, Ar—H), 7.81 (d, J = 6.3 Hz, 2H, Ar—H), 7.36 (d, J = 7.8 Hz, 2H, Ar—H), 7.25 (d, J = 7.8 Hz, 2H, Ar—H), 7.12 (s, 1H, =CH), 7.07 (d, J = 6.3 Hz, 2H, Ar—H), 3.94 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.88 (s, 3H, OCH3); 13C{1H} (75 MHz, CDCl3): 166.71(1 C, C=O), 166.70 (1 C, C=O), 166.64 (1 C, C=O), 146.6 (1 C, C4 —Ar), 144.1 (1 C, C4 —Ar), 143.0 (1 C, C4 —Ar), 141.0 (1 C, Ph(Ph)—C=), 130.4 (2 C, Ar—C—H), 130.1 (2 C, Ar—C—H), 129.8 (1 C, C1 —Ar), 129.7 (overlapped 2 C, Ar—C—H and 1 C, =CH), 129.6 (1 C, C1 —Ar), 129.5 (2 C, Ar—C–-H) 129.4 (2 C, Ar—C—H), 128.8 (1 C, C1 —Ar), 127.6 (2 C, Ar—C—H), 52.22 (1 C, OCH3), 52.18 (1 C, OCH3), 52.08 (1 C, OCH3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C26H22O6
M r 430.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1631 (6), 19.253 (2), 18.0743 (19)
β (°) 96.830 (1)
V3) 2129.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.4 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.964, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 19788, 5132, 4358
R int 0.021
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.125, 1.02
No. of reflections 5132
No. of parameters 292
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.23

Computer programs: SMART and SAINT (Bruker, 2006), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620004174/zl4040sup1.cif

x-05-x200417-sup1.cif (597.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004174/zl4040Isup2.hkl

x-05-x200417-Isup2.hkl (408.5KB, hkl)

CCDC reference: 1984328

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MJGL thanks IDW and HKUST for hosting a sabbatical leave used to complete this work.

full crystallographic data

Crystal data

C26H22O6 F(000) = 904
Mr = 430.43 Dx = 1.343 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.1631 (6) Å Cell parameters from 6842 reflections
b = 19.253 (2) Å θ = 2.3–28.2°
c = 18.0743 (19) Å µ = 0.10 mm1
β = 96.830 (1)° T = 100 K
V = 2129.5 (4) Å3 Needle, colourless
Z = 4 0.4 × 0.12 × 0.06 mm

Data collection

Bruker SMART APEX CCD area detector diffractometer 4358 reflections with I > 2σ(I)
ω and φ scans Rint = 0.021
Absorption correction: multi-scan (SADABS; Bruker, 2004) θmax = 28.3°, θmin = 1.6°
Tmin = 0.964, Tmax = 1.00 h = −8→7
19788 measured reflections k = −25→25
5132 independent reflections l = −24→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0603P)2 + 1.2194P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5132 reflections Δρmax = 0.42 e Å3
292 parameters Δρmin = −0.23 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms were placed geometrically and treated with riding constraints and thermal parameters derived from the C atoms to which they were attached. All –CH and CH2 groups had H—Uiso fixed at 1.2 times the C atom. Methyls were idealized as freely rotating CH3 groups with H—Uiso fixed at 1.5 times that of the C atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.4240 (2) 0.76631 (7) 0.24887 (7) 0.0368 (3)
O2 1.39707 (17) 0.77704 (6) 0.12488 (6) 0.0271 (2)
O3 0.73744 (19) 0.41585 (6) 0.52402 (6) 0.0316 (3)
O4 1.06230 (17) 0.40164 (6) 0.48215 (6) 0.0276 (2)
O5 −0.37892 (18) 0.37535 (6) 0.03473 (6) 0.0307 (3)
O6 −0.20613 (18) 0.28543 (6) 0.09445 (6) 0.0286 (3)
C1 0.5152 (2) 0.52320 (7) 0.18403 (8) 0.0195 (3)
C10 0.5799 (2) 0.57397 (7) 0.14079 (8) 0.0209 (3)
H10 0.4962 0.5785 0.0934 0.025*
C11 0.7611 (2) 0.62360 (7) 0.15587 (8) 0.0204 (3)
C12 0.8586 (2) 0.64214 (8) 0.22724 (8) 0.0251 (3)
H12 0.7998 0.6249 0.2699 0.030*
C13 1.0391 (2) 0.68521 (8) 0.23623 (9) 0.0260 (3)
H13 1.1035 0.6972 0.2849 0.031*
C14 1.1273 (2) 0.71115 (7) 0.17448 (8) 0.0219 (3)
C15 1.0257 (2) 0.69628 (7) 0.10334 (8) 0.0216 (3)
H15 1.0810 0.7155 0.0609 0.026*
C16 0.8438 (2) 0.65346 (7) 0.09441 (8) 0.0215 (3)
H16 0.7739 0.6442 0.0457 0.026*
C17 1.3300 (2) 0.75414 (8) 0.18812 (9) 0.0236 (3)
C18 1.5992 (2) 0.81570 (8) 0.13491 (10) 0.0286 (3)
H18A 1.5806 0.8571 0.1650 0.043*
H18B 1.6390 0.8297 0.0862 0.043*
H18C 1.7152 0.7865 0.1604 0.043*
C21 0.6187 (2) 0.50418 (7) 0.26047 (8) 0.0189 (3)
C22 0.4967 (2) 0.51013 (7) 0.32031 (8) 0.0201 (3)
H22 0.3573 0.5318 0.3132 0.024*
C23 0.5766 (2) 0.48481 (7) 0.39003 (8) 0.0204 (3)
H23 0.4915 0.4888 0.4303 0.024*
C24 0.7814 (2) 0.45347 (7) 0.40100 (8) 0.0189 (3)
C25 0.9079 (2) 0.44951 (8) 0.34232 (8) 0.0212 (3)
H25 1.0498 0.4296 0.3501 0.025*
C26 0.8270 (2) 0.47469 (8) 0.27240 (8) 0.0220 (3)
H26 0.9139 0.4718 0.2325 0.026*
C27 0.8533 (2) 0.42235 (7) 0.47540 (8) 0.0216 (3)
C28 1.1394 (3) 0.36749 (9) 0.55144 (9) 0.0318 (4)
H28A 1.0950 0.3944 0.5932 0.048*
H28B 1.2992 0.3642 0.5564 0.048*
H28C 1.0765 0.3208 0.5518 0.048*
C31 0.3270 (2) 0.47814 (7) 0.15514 (8) 0.0188 (3)
C32 0.3224 (2) 0.40802 (8) 0.17503 (8) 0.0207 (3)
H32 0.4409 0.3891 0.2072 0.025*
C33 0.1488 (2) 0.36576 (7) 0.14883 (8) 0.0216 (3)
H33 0.1491 0.3181 0.1626 0.026*
C34 −0.0268 (2) 0.39329 (7) 0.10213 (8) 0.0200 (3)
C35 −0.0243 (2) 0.46303 (8) 0.08209 (8) 0.0210 (3)
H35 −0.1436 0.4820 0.0504 0.025*
C36 0.1507 (2) 0.50481 (7) 0.10801 (8) 0.0205 (3)
H36 0.1510 0.5523 0.0936 0.025*
C37 −0.2229 (2) 0.35197 (8) 0.07316 (8) 0.0220 (3)
C38 −0.3997 (3) 0.24411 (9) 0.07264 (10) 0.0312 (4)
H38A −0.5224 0.2627 0.0964 0.047*
H38B −0.3724 0.1959 0.0884 0.047*
H38C −0.4353 0.2458 0.0184 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0355 (6) 0.0451 (7) 0.0285 (6) −0.0181 (5) −0.0013 (5) −0.0022 (5)
O2 0.0243 (5) 0.0288 (6) 0.0287 (6) −0.0083 (4) 0.0056 (4) −0.0029 (4)
O3 0.0357 (6) 0.0374 (6) 0.0231 (6) 0.0127 (5) 0.0088 (5) 0.0084 (5)
O4 0.0238 (5) 0.0371 (6) 0.0208 (5) 0.0077 (4) −0.0018 (4) 0.0055 (4)
O5 0.0261 (6) 0.0356 (6) 0.0282 (6) −0.0044 (5) −0.0060 (5) 0.0026 (5)
O6 0.0270 (5) 0.0254 (5) 0.0320 (6) −0.0065 (4) −0.0029 (4) −0.0014 (4)
C1 0.0184 (6) 0.0222 (7) 0.0178 (7) 0.0020 (5) 0.0010 (5) −0.0010 (5)
C10 0.0200 (6) 0.0237 (7) 0.0184 (7) 0.0007 (5) 0.0000 (5) −0.0005 (5)
C11 0.0176 (6) 0.0192 (7) 0.0241 (7) 0.0010 (5) 0.0015 (5) 0.0003 (5)
C12 0.0288 (7) 0.0271 (7) 0.0197 (7) −0.0048 (6) 0.0042 (6) 0.0022 (6)
C13 0.0277 (7) 0.0282 (8) 0.0208 (7) −0.0037 (6) −0.0022 (6) −0.0006 (6)
C14 0.0203 (6) 0.0190 (6) 0.0265 (7) −0.0008 (5) 0.0026 (5) −0.0009 (5)
C15 0.0229 (7) 0.0206 (7) 0.0220 (7) 0.0003 (5) 0.0050 (5) 0.0021 (5)
C16 0.0235 (7) 0.0211 (7) 0.0192 (7) 0.0016 (5) −0.0011 (5) −0.0009 (5)
C17 0.0241 (7) 0.0210 (7) 0.0254 (7) −0.0014 (5) 0.0014 (6) −0.0018 (6)
C18 0.0229 (7) 0.0262 (8) 0.0373 (9) −0.0079 (6) 0.0067 (6) −0.0047 (6)
C21 0.0191 (6) 0.0191 (6) 0.0180 (6) −0.0007 (5) 0.0006 (5) 0.0005 (5)
C22 0.0171 (6) 0.0222 (7) 0.0206 (7) 0.0028 (5) 0.0007 (5) 0.0004 (5)
C23 0.0209 (6) 0.0223 (7) 0.0187 (7) 0.0017 (5) 0.0050 (5) −0.0003 (5)
C24 0.0200 (6) 0.0184 (6) 0.0176 (6) 0.0005 (5) −0.0002 (5) −0.0001 (5)
C25 0.0166 (6) 0.0258 (7) 0.0206 (7) 0.0033 (5) 0.0006 (5) 0.0005 (5)
C26 0.0199 (6) 0.0282 (7) 0.0187 (7) 0.0026 (5) 0.0051 (5) 0.0009 (6)
C27 0.0248 (7) 0.0203 (7) 0.0192 (7) 0.0038 (5) 0.0004 (5) 0.0000 (5)
C28 0.0354 (8) 0.0336 (8) 0.0243 (8) 0.0096 (7) −0.0056 (6) 0.0061 (6)
C31 0.0180 (6) 0.0218 (7) 0.0168 (6) −0.0008 (5) 0.0035 (5) −0.0014 (5)
C32 0.0192 (6) 0.0233 (7) 0.0190 (7) 0.0028 (5) −0.0010 (5) 0.0023 (5)
C33 0.0255 (7) 0.0187 (6) 0.0207 (7) −0.0003 (5) 0.0034 (5) 0.0010 (5)
C34 0.0199 (6) 0.0247 (7) 0.0155 (6) −0.0028 (5) 0.0032 (5) −0.0031 (5)
C35 0.0197 (6) 0.0270 (7) 0.0160 (6) 0.0022 (5) 0.0004 (5) 0.0028 (5)
C36 0.0226 (7) 0.0201 (6) 0.0189 (7) 0.0013 (5) 0.0028 (5) 0.0037 (5)
C37 0.0241 (7) 0.0259 (7) 0.0163 (7) −0.0018 (6) 0.0038 (5) −0.0025 (5)
C38 0.0295 (8) 0.0297 (8) 0.0331 (9) −0.0109 (6) −0.0017 (7) −0.0055 (7)

Geometric parameters (Å, º)

O1—C17 1.2021 (19) C21—C22 1.3934 (19)
O2—C17 1.3356 (19) C21—C26 1.3967 (19)
O2—C18 1.4439 (17) C22—H22 0.9500
O3—C27 1.2030 (18) C22—C23 1.3857 (19)
O4—C27 1.3400 (17) C23—H23 0.9500
O4—C28 1.4439 (18) C23—C24 1.3921 (19)
O5—C37 1.2046 (18) C24—C25 1.391 (2)
O6—C37 1.3380 (19) C24—C27 1.4905 (19)
O6—C38 1.4491 (17) C25—H25 0.9500
C1—C10 1.341 (2) C25—C26 1.390 (2)
C1—C21 1.4968 (19) C26—H26 0.9500
C1—C31 1.4922 (19) C28—H28A 0.9800
C10—H10 0.9500 C28—H28B 0.9800
C10—C11 1.4704 (19) C28—H28C 0.9800
C11—C12 1.403 (2) C31—C32 1.398 (2)
C11—C16 1.399 (2) C31—C36 1.3963 (19)
C12—H12 0.9500 C32—H32 0.9500
C12—C13 1.382 (2) C32—C33 1.382 (2)
C13—H13 0.9500 C33—H33 0.9500
C13—C14 1.391 (2) C33—C34 1.396 (2)
C14—C15 1.391 (2) C34—C35 1.391 (2)
C14—C17 1.495 (2) C34—C37 1.4891 (19)
C15—H15 0.9500 C35—H35 0.9500
C15—C16 1.386 (2) C35—C36 1.382 (2)
C16—H16 0.9500 C36—H36 0.9500
C18—H18A 0.9800 C38—H38A 0.9800
C18—H18B 0.9800 C38—H38B 0.9800
C18—H18C 0.9800 C38—H38C 0.9800
C17—O2—C18 114.39 (12) C23—C24—C27 118.03 (12)
C27—O4—C28 115.36 (12) C25—C24—C23 119.75 (13)
C37—O6—C38 114.49 (12) C25—C24—C27 122.17 (12)
C10—C1—C21 126.32 (13) C24—C25—H25 120.0
C10—C1—C31 119.49 (13) C26—C25—C24 120.08 (13)
C31—C1—C21 114.16 (12) C26—C25—H25 120.0
C1—C10—H10 115.2 C21—C26—H26 119.8
C1—C10—C11 129.60 (13) C25—C26—C21 120.40 (13)
C11—C10—H10 115.2 C25—C26—H26 119.8
C12—C11—C10 124.65 (13) O3—C27—O4 123.37 (13)
C16—C11—C10 117.39 (13) O3—C27—C24 124.22 (13)
C16—C11—C12 117.95 (13) O4—C27—C24 112.41 (12)
C11—C12—H12 119.6 O4—C28—H28A 109.5
C13—C12—C11 120.77 (14) O4—C28—H28B 109.5
C13—C12—H12 119.6 O4—C28—H28C 109.5
C12—C13—H13 119.8 H28A—C28—H28B 109.5
C12—C13—C14 120.47 (14) H28A—C28—H28C 109.5
C14—C13—H13 119.8 H28B—C28—H28C 109.5
C13—C14—C15 119.48 (13) C32—C31—C1 120.65 (12)
C13—C14—C17 117.72 (13) C36—C31—C1 121.06 (13)
C15—C14—C17 122.80 (13) C36—C31—C32 118.29 (12)
C14—C15—H15 120.0 C31—C32—H32 119.4
C16—C15—C14 119.93 (13) C33—C32—C31 121.24 (13)
C16—C15—H15 120.0 C33—C32—H32 119.4
C11—C16—H16 119.4 C32—C33—H33 120.1
C15—C16—C11 121.20 (13) C32—C33—C34 119.78 (13)
C15—C16—H16 119.4 C34—C33—H33 120.1
O1—C17—O2 123.56 (14) C33—C34—C37 123.26 (13)
O1—C17—C14 124.15 (14) C35—C34—C33 119.49 (13)
O2—C17—C14 112.30 (12) C35—C34—C37 117.24 (13)
O2—C18—H18A 109.5 C34—C35—H35 119.8
O2—C18—H18B 109.5 C36—C35—C34 120.39 (13)
O2—C18—H18C 109.5 C36—C35—H35 119.8
H18A—C18—H18B 109.5 C31—C36—H36 119.6
H18A—C18—H18C 109.5 C35—C36—C31 120.81 (13)
H18B—C18—H18C 109.5 C35—C36—H36 119.6
C22—C21—C1 119.09 (12) O5—C37—O6 123.55 (13)
C22—C21—C26 118.98 (13) O5—C37—C34 124.19 (14)
C26—C21—C1 121.67 (12) O6—C37—C34 112.26 (12)
C21—C22—H22 119.6 O6—C38—H38A 109.5
C23—C22—C21 120.73 (13) O6—C38—H38B 109.5
C23—C22—H22 119.6 O6—C38—H38C 109.5
C22—C23—H23 120.0 H38A—C38—H38B 109.5
C22—C23—C24 119.99 (13) H38A—C38—H38C 109.5
C24—C23—H23 120.0 H38B—C38—H38C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O5i 0.95 2.51 3.4082 (18) 159
C18—H18B···O4ii 0.98 2.72 3.5520 (19) 144
C28—H28C···O6iii 0.98 2.85 3.769 (2) 156
C38—H38A···O1iv 0.98 2.79 3.275 (2) 111
C38—H38B···O3v 0.98 2.57 3.339 (2) 135
C38—H38C···O2vi 0.98 2.66 3.595 (2) 159

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+3, y+1/2, −z+1/2; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x+1, −y+1, −z.

Funding Statement

Funding for this research was provided by: CSU Faculty Research Grant (grant to MJGL); CSU Faculty Travel Grant (grant to MJGL).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–S19.
  2. Barker, G., Webster, S., Johnson, D. G., Curley, R., Andrews, M., Young, P. C., Macgregor, S. A. & Lee, A.-L. (2015). J. Org. Chem. 80, 9807–9816. [DOI] [PubMed]
  3. Beckett, M. A., Gilmore, R. J. & Idrees, K. (1993). J. Organomet. Chem. 455, 47–49.
  4. Brown, H. C. & Murray, K. J. (1959). J. Am. Chem. Soc. 81, 4108–4109.
  5. Brown, H. C. & Murray, K. J. (1986). Tetrahedron, 42, 5497–5504.
  6. Brown, H. C. & Zweifel, G. (1961). J. Am. Chem. Soc. 83, 3834–3840.
  7. Brown, S. D. & Armstrong, R. W. (1996). J. Am. Chem. Soc. 118, 6331–6332.
  8. Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Ishiyama, T., Matsuda, N., Miyaura, N. & Suzuki, A. (1993). J. Am. Chem. Soc. 115, 11018–11019.
  12. Ishiyama, T., Matsuda, N., Murata, M., Ozawa, F., Suzuki, A. & Miyaura, N. (1996). Organometallics, 15, 713–720.
  13. Ishiyama, T., Yamamoto, M. & Miyaura, N. (1996). Chem. Lett. 25, 1117–1118.
  14. Kuivila, H. G. & Nahabedian, K. V. (1961). J. Am. Chem. Soc. 83, 2159–2163.
  15. Lai, R.-Y., Chen, C.-L. & Liu, S.-T. (2006). Jnl Chin. Chem. Soc. 53, 979–985.
  16. Lee, C.-Y. & Cheon, C.-H. (2016). Development of Organic Transformations Based on Protodeboronation. In Boron Reagents in Synthesis, ACS Symposium Series Vol. 1236, edited by A. Coca, pp. 483–523. Washington: ACS.
  17. Lennox, A. J. J. & Lloyd-Jones, G. C. (2014). Chem. Soc. Rev. 43, 412–443. [DOI] [PubMed]
  18. Liu, C., Li, X., Wu, Y. & Qiu, J. (2014). RSC Adv. 4, 54307–54311.
  19. Lozada, J., Liu, Z. & Perrin, D. M. (2014). J. Org. Chem. 79, 5365–5368. [DOI] [PubMed]
  20. Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.
  21. Nahabedian, K. V. & Kuivila, H. G. (1961). J. Am. Chem. Soc. 83, 2167–2174.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722–6737.
  25. Zweifel, G., Clark, G. M. & Polston, N. L. (1971). J. Am. Chem. Soc. 93, 3395–3399.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314620004174/zl4040sup1.cif

x-05-x200417-sup1.cif (597.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620004174/zl4040Isup2.hkl

x-05-x200417-Isup2.hkl (408.5KB, hkl)

CCDC reference: 1984328

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES