Skip to main content
IUCrData logoLink to IUCrData
. 2020 Mar 17;5(Pt 3):x200385. doi: 10.1107/S2414314620003855

4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbo­nitrile

Radhika Bhat a, K N Shraddha a, Noor Shahina Begum a,*
Editor: W T A Harrisonb
PMCID: PMC9462203  PMID: 36339485

In the crystal, mol­ecules of the title compound are linked into (100) sheets by N—H⋯N hydrogen bonds.

Keywords: crystal structure, pyrimidine, N—H⋯N hydrogen bonds

Abstract

In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intra­molecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (100) sheets and a weak aromatic π-π stacking inter­action is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings. graphic file with name x-05-x200385-scheme1-3D1.jpg

Structure description

Pyrimidine derivatives exhibit a broad spectrum of biological activities such as GPR119 agonists (Fang et al., 2019), VEGFR-2 tyrosine kinase inhibitors (Sun et al., 2018) and anti­tumor activity (Hassan et al., 2017). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The title compound crystallizes with one mol­ecule in the asymmetric unit (Fig. 1). The piperidine ring adopts a chair conformation, with atoms N3 and C7 displaced from the mean plane of the other four atoms (C5/C6/C8/C9) by −0.2472 (2) and 0.2133 (3) Å, respectively. The exocyclic N3—C4 bond has an axial orientation and the dihedral angle between the piperidine ring mean plane (all atoms) and the pyrimidine ring is 49.57 (11)°. A short intra­molecular C9—H9B⋯N5 contact generates an S(7) ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The short C—H⋯N contact is indicated by a double-dashed line.

In the crystal, N4—H4A⋯N1 hydrogen bonds (Table 1) link the mol­ecules into inversion dimers characterized by an Inline graphic (8) graph set motif (Fig. 2) and N4—H4B⋯N5 hydrogen bonds link the dimers into (100) sheets. The packing also features π–π stacking inter­actions between inversion-related pyrimidine rings at a centroid–centroid distance of 3.5559 (11) Å (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.12 2.983 (2) 173
N4—H4B⋯N5ii 0.86 2.44 3.115 (3) 135
C9—H9B⋯N5 0.97 2.61 3.484 (1) 148

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

Unit-cell packing of the title compound showing N—H⋯N inter­actions as dotted green and purple lines. H atoms not involved in hydrogen bonding have been excluded.

Figure 3.

Figure 3

A fragment of the packing depicting the π–π inter­action as a dashed line.

Synthesis and crystallization

A mixture of 4-amino-6-chloro-pyrimidine-5-carbo­nitrile 1.0 g (0.0065 mol) and piperidine (2.75 g, 0.0325 mol) was refluxed in 20 ml of ethanol for 6 h. The reaction mixture was then cooled and stirred for 2 h at room temperature. The solid obtained was filtered, washed with ethanol and dried giving 0.98 g of white solid (yield 74%), which was recrystallized from acetone solution to obtain colourless blocks of the title compound. IR (ν, cm−1: 3426, 3308 (NH), 2190 (C=N), 1646 (C=N), 1223 (CN). 1H NMR (400 MHz DMSO-d 6): δ 8.01 (s, 1H, pyrimidine CH), 7.21 (br. s, 1 N, NH2), 3.76 (t, 2H, CH2), 1.73–1.48 (m, 6H, 3CH2). 13C NMR (DMSO-d 6): δ 168.5, 164.3, 159.9, 118.1, 58.9, 26.8, 24.9.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C10H13N5
M r 203.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 446
a, b, c (Å) 10.7335 (9), 12.4005 (10), 7.9206 (6)
β (°) 93.654 (4)
V3) 1052.09 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998)
No. of measured, independent and observed [I > 2σ(I)] reflections 12900, 1855, 1452
R int 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.180, 1.16
No. of reflections 1855
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.28

Computer programs: SMART and SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620003855/hb4343sup1.cif

x-05-x200385-sup1.cif (474.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003855/hb4343Isup2.hkl

x-05-x200385-Isup2.hkl (149.3KB, hkl)

IR. DOI: 10.1107/S2414314620003855/hb4343sup3.pdf

x-05-x200385-sup3.pdf (51.3KB, pdf)

Proton NMR. DOI: 10.1107/S2414314620003855/hb4343sup4.pdf

x-05-x200385-sup4.pdf (57.1KB, pdf)

C-13 NMR. DOI: 10.1107/S2414314620003855/hb4343sup5.pdf

x-05-x200385-sup5.pdf (64.5KB, pdf)

Supporting information file. DOI: 10.1107/S2414314620003855/hb4343Isup6.cml

CCDC reference: 1988336

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C10H13N5 F(000) = 432
Mr = 203.25 Dx = 1.283 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.7335 (9) Å Cell parameters from 1855 reflections
b = 12.4005 (10) Å θ = 1.9–25.0°
c = 7.9206 (6) Å µ = 0.08 mm1
β = 93.654 (4)° T = 446 K
V = 1052.09 (15) Å3 Block, colourless
Z = 4 0.18 × 0.16 × 0.15 mm

Data collection

Bruker SMART APEX CCD diffractometer 1452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −12→12
k = −14→14
12900 measured reflections l = −9→8
1855 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1087P)2 + 0.0972P] where P = (Fo2 + 2Fc2)/3
1855 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. H atoms were placed at calculated positions in the riding-model approximation, with N—H = 0.86 Å and C—H = 0.93 0.96 and 0.97 Å for aromatic, methyl and methine H atoms, respectively. The constraint Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(carrier) otherwise was applied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.81607 (15) 0.03767 (13) 0.1080 (2) 0.0523 (5)
C2 0.88239 (16) 0.02327 (14) 0.2655 (2) 0.0549 (5)
C4 0.82310 (16) −0.04487 (14) −0.0150 (3) 0.0578 (5)
N1 0.95761 (14) −0.06277 (12) 0.2958 (2) 0.0637 (5)
N3 0.75761 (15) −0.04668 (14) −0.1662 (2) 0.0722 (5)
C10 0.76188 (17) 0.14099 (15) 0.0789 (2) 0.0574 (5)
N4 0.87641 (16) 0.09400 (13) 0.3914 (2) 0.0702 (5)
H4A 0.919123 0.083441 0.485517 0.084*
H4B 0.829833 0.150200 0.378499 0.084*
N2 0.90227 (15) −0.12859 (13) 0.0178 (3) 0.0691 (5)
N5 0.72548 (18) 0.22727 (14) 0.0646 (3) 0.0782 (6)
C3 0.96377 (18) −0.12964 (16) 0.1669 (3) 0.0691 (6)
H3 1.020183 −0.186103 0.184080 0.083*
C8 0.5344 (2) −0.0579 (2) −0.2263 (3) 0.0902 (8)
H8A 0.460985 −0.016619 −0.263451 0.108*
H8B 0.520469 −0.087903 −0.115968 0.108*
C5 0.7794 (2) −0.1314 (2) −0.2914 (3) 0.0855 (7)
H5A 0.854903 −0.170765 −0.256953 0.103*
H5B 0.790807 −0.098612 −0.400522 0.103*
C6 0.6712 (2) −0.2074 (2) −0.3063 (3) 0.0802 (7)
H6A 0.665402 −0.245504 −0.200085 0.096*
H6B 0.684841 −0.260338 −0.393412 0.096*
C9 0.6452 (2) 0.01582 (19) −0.2108 (3) 0.0776 (6)
H9A 0.653908 0.052850 −0.317313 0.093*
H9B 0.633297 0.069592 −0.124387 0.093*
C7 0.5513 (3) −0.1489 (3) −0.3494 (4) 0.1092 (10)
H7A 0.481912 −0.198846 −0.345855 0.131*
H7B 0.551740 −0.120234 −0.463297 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0429 (9) 0.0413 (9) 0.0733 (12) −0.0013 (7) 0.0095 (8) 0.0058 (8)
C2 0.0461 (9) 0.0421 (9) 0.0771 (13) −0.0017 (7) 0.0087 (8) 0.0062 (8)
C4 0.0398 (9) 0.0528 (10) 0.0819 (13) −0.0079 (7) 0.0118 (8) −0.0037 (9)
N1 0.0569 (10) 0.0484 (9) 0.0858 (12) 0.0083 (7) 0.0045 (8) 0.0039 (8)
N3 0.0522 (10) 0.0749 (12) 0.0894 (13) −0.0009 (8) 0.0024 (8) −0.0172 (9)
C10 0.0547 (10) 0.0478 (11) 0.0695 (12) −0.0035 (8) 0.0036 (8) 0.0065 (8)
N4 0.0774 (11) 0.0569 (10) 0.0753 (12) 0.0180 (8) −0.0036 (8) −0.0008 (8)
N2 0.0502 (9) 0.0555 (10) 0.1022 (14) 0.0033 (7) 0.0089 (9) −0.0119 (9)
N5 0.0879 (13) 0.0496 (10) 0.0955 (15) 0.0058 (9) −0.0071 (10) 0.0081 (8)
C3 0.0503 (11) 0.0509 (11) 0.1066 (17) 0.0086 (8) 0.0076 (10) −0.0009 (11)
C8 0.0557 (13) 0.118 (2) 0.0950 (17) 0.0059 (12) −0.0105 (11) −0.0233 (15)
C5 0.0727 (14) 0.1028 (19) 0.0825 (16) 0.0020 (13) 0.0154 (11) −0.0248 (14)
C6 0.0959 (17) 0.0833 (15) 0.0607 (13) −0.0066 (13) 0.0000 (11) −0.0158 (10)
C9 0.0793 (15) 0.0737 (14) 0.0787 (15) 0.0076 (11) −0.0039 (11) 0.0027 (11)
C7 0.0790 (17) 0.137 (3) 0.109 (2) −0.0090 (16) −0.0162 (14) −0.0462 (19)

Geometric parameters (Å, º)

C1—C2 1.408 (3) C8—C9 1.499 (3)
C1—C4 1.418 (3) C8—C7 1.510 (4)
C1—C10 1.420 (3) C8—H8A 0.9700
C2—N4 1.332 (2) C8—H8B 0.9700
C2—N1 1.350 (2) C5—C6 1.495 (3)
C4—N3 1.350 (3) C5—H5A 0.9700
C4—N2 1.356 (3) C5—H5B 0.9700
N1—C3 1.321 (3) C6—C7 1.498 (4)
N3—C9 1.459 (3) C6—H6A 0.9700
N3—C5 1.474 (3) C6—H6B 0.9700
C10—N5 1.142 (2) C9—H9A 0.9700
N4—H4A 0.8600 C9—H9B 0.9700
N4—H4B 0.8600 C7—H7A 0.9700
N2—C3 1.316 (3) C7—H7B 0.9700
C3—H3 0.9300
C2—C1—C4 118.10 (16) H8A—C8—H8B 107.8
C2—C1—C10 115.91 (16) N3—C5—C6 110.29 (18)
C4—C1—C10 125.39 (18) N3—C5—H5A 109.6
N4—C2—N1 116.35 (18) C6—C5—H5A 109.6
N4—C2—C1 122.27 (16) N3—C5—H5B 109.6
N1—C2—C1 121.37 (17) C6—C5—H5B 109.6
N3—C4—N2 116.21 (18) H5A—C5—H5B 108.1
N3—C4—C1 125.02 (18) C5—C6—C7 111.4 (2)
N2—C4—C1 118.76 (19) C5—C6—H6A 109.4
C3—N1—C2 114.68 (18) C7—C6—H6A 109.4
C4—N3—C9 125.62 (18) C5—C6—H6B 109.4
C4—N3—C5 120.85 (19) C7—C6—H6B 109.4
C9—N3—C5 112.34 (18) H6A—C6—H6B 108.0
N5—C10—C1 174.5 (2) N3—C9—C8 109.6 (2)
C2—N4—H4A 120.0 N3—C9—H9A 109.8
C2—N4—H4B 120.0 C8—C9—H9A 109.8
H4A—N4—H4B 120.0 N3—C9—H9B 109.8
C3—N2—C4 116.86 (17) C8—C9—H9B 109.8
N2—C3—N1 129.86 (18) H9A—C9—H9B 108.2
N2—C3—H3 115.1 C6—C7—C8 110.6 (2)
N1—C3—H3 115.1 C6—C7—H7A 109.5
C9—C8—C7 112.4 (2) C8—C7—H7A 109.5
C9—C8—H8A 109.1 C6—C7—H7B 109.5
C7—C8—H8A 109.1 C8—C7—H7B 109.5
C9—C8—H8B 109.1 H7A—C7—H7B 108.1
C7—C8—H8B 109.1
C4—C1—C2—N4 −176.67 (15) C1—C4—N3—C5 174.72 (17)
C10—C1—C2—N4 11.7 (2) N3—C4—N2—C3 −177.91 (17)
C4—C1—C2—N1 4.5 (3) C1—C4—N2—C3 3.0 (3)
C10—C1—C2—N1 −167.09 (16) C4—N2—C3—N1 2.8 (3)
C2—C1—C4—N3 174.67 (16) C2—N1—C3—N2 −4.6 (3)
C10—C1—C4—N3 −14.6 (3) C4—N3—C5—C6 108.9 (2)
C2—C1—C4—N2 −6.3 (3) C9—N3—C5—C6 −59.3 (3)
C10—C1—C4—N2 164.43 (16) N3—C5—C6—C7 55.9 (3)
N4—C2—N1—C3 −178.31 (16) C4—N3—C9—C8 −109.3 (2)
C1—C2—N1—C3 0.6 (3) C5—N3—C9—C8 58.3 (3)
N2—C4—N3—C9 162.23 (19) C7—C8—C9—N3 −55.0 (3)
C1—C4—N3—C9 −18.7 (3) C5—C6—C7—C8 −52.9 (3)
N2—C4—N3—C5 −4.3 (3) C9—C8—C7—C6 52.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N1i 0.86 2.12 2.983 (2) 173
N4—H4B···N5ii 0.86 2.44 3.115 (3) 135
C9—H9B···N5 0.97 2.61 3.484 (1) 148

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x, −y+1/2, z+1/2.

References

  1. Bruker. (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fang, Y., Xiong, L., Hu, J., Zhang, S., Xie, S., Tu, L., Wan, Y., Jin, Y., Li, X., Hu, S. & Yang, Z. (2019). Bioorg. Chem. 86, 103–111. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hassan, A. S., Mady, M. F., Awad, H. M. & Hafez, T. S. (2017). Chin. Chem. Lett. 28, 388–393.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  7. Sun, W., Hu, S., Fang, S. & Yan, H. (2018). Bioorg. Chem. 78, 393–405. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314620003855/hb4343sup1.cif

x-05-x200385-sup1.cif (474.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003855/hb4343Isup2.hkl

x-05-x200385-Isup2.hkl (149.3KB, hkl)

IR. DOI: 10.1107/S2414314620003855/hb4343sup3.pdf

x-05-x200385-sup3.pdf (51.3KB, pdf)

Proton NMR. DOI: 10.1107/S2414314620003855/hb4343sup4.pdf

x-05-x200385-sup4.pdf (57.1KB, pdf)

C-13 NMR. DOI: 10.1107/S2414314620003855/hb4343sup5.pdf

x-05-x200385-sup5.pdf (64.5KB, pdf)

Supporting information file. DOI: 10.1107/S2414314620003855/hb4343Isup6.cml

CCDC reference: 1988336

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES